
CPEN400P: Intermediate
Representations

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of
these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Most of the material in
this lecture comes
from Chapter 5 of EaC

Lecture 2

Karthik Pattabiraman, UBC

Learning Objectives

• List the desirable features of intermediate representations

• List the types of Intermediate Representations and their
types of abstractions

• Understand the pros and cons of different intermediate
representations

• Understand SSA form and it’s advantages

• List the pros and cons of various memory models

1

2

Intermediate Representations: 3-pass compiler

• Front end - produces an intermediate representation (IR)
• Middle end - transforms the IR into an equivalent IR that

runs more efficiently
• Back end - transforms the IR into native code

• IR encodes the compiler’s knowledge of the program
• Middle end usually consists of several passes

Front
End

Middle
End

Back
End

IR IRSource
Code

Target
Code

3

Intermediate Representations

• Decisions in IR design affect the speed and efficiency
 of the compiler

• Some important IR properties
— Ease of generation
— Ease of manipulation
— Procedure size
— Freedom of expression
— Level of abstraction

• The importance of different properties varies between
compilers
— Selecting an appropriate IR for a compiler is critical

4

Types of Intermediate Representations
Three major categories
• Structural

— Graphically oriented
— Heavily used in source-to-source translators
— Tend to be large

• Linear
— Pseudo-code for an abstract machine
— Level of abstraction varies
— Simple, compact data structures
— Easier to rearrange

• Hybrid
— Combination of graphs and linear code
— Example: control-flow graph

Examples:
Trees, DAGs

Examples:
3 address code
Stack machine code

Example:
Control-flow graph,
SSA form

5

Level of Abstraction
• The level of detail exposed in an IR influences the

profitability and feasibility of different optimizations.
• Two different representations of an array reference:

subscript

A i j

loadI 1

 => r

1
sub r

j
, r

1
 => r

2
loadI 10

 => r

3
mult r

2
, r

3
 => r

4
sub r

i
, r

1
 => r

5
add r

4
, r

5
 => r

6
loadI @A

 => r

7
add r

7
, r

6
 => r

8
load r

8

 => r

Aij

High level AST:
Good for memory
disambiguation

Low level linear code:
Good for address calculation

6

Level of Abstraction
• Structural IRs are usually considered high-level
• Linear IRs are usually considered low-level
• Not necessarily true – see example below

+

*

10

j 1

- j 1

-

+

@A

load

Low level AST
loadArray A,i,j

High level linear code

Learning Objectives

• List the desirable features of intermediate representations

• List the types of Intermediate Representations and their
types of abstractions

• Understand the pros and cons of different intermediate
representations

• Understand SSA form and it’s advantages

• List the pros and cons of various memory models

7

8

Abstract Syntax Tree

An abstract syntax tree is the procedure’s parse tree with
 the nodes for most non-terminal nodes removed

x - 2 * y

• Can use linearized form of the tree
— Easier to manipulate than pointers

x 2 y * - in postfix form
- * 2 y x in prefix form

• S-expressions (Scheme,Lisp) are (essentially) ASTs

-

x

2 y

*

9

Directed Acyclic Graph
A directed acyclic graph (DAG) is an AST with a unique
 node for each value

• Makes sharing explicit
• Encodes redundancy

x

2 y

*

-

←

z /

←

w

z ← x - 2 *
y
w ← x / 2

With two copies of the same
expression, the compiler might be
able to arrange the code to
evaluate it only once.

10

Stack Machine Code
Originally used for stack-based computers, now Java
• Example:

x - 2 * y becomes

Advantages
• Compact form
• Introduced names are implicit, not explicit
• Simple to generate and execute code

Useful where code is transmitted
over slow communication links (the net)

push x
push 2
push y
multiply
subtract

Implicit names take up
no space, where explicit
ones do!

11

Three Address Code
Several different representations of three address code
• In general, three address code has statements of the form:

x ← y op z
With 1 operator (op) and, at most, 3 names (x, y, & z)

Example:
z ← x - 2 * ybecomes

Advantages:
• Resembles many real machines
• Introduces a new set of names
• Compact form

t ← 2 * y
z ← x - t

*

12

Three Address Code: Quadruples
Naïve representation of three address code
• Table of k * 4 small integers
• Simple record structure
• Easy to reorder
• Explicit names

load 1 y

loadi 2 2

mult 3 2 1

load 4 x

sub 5 4 3

load r1, y
loadI r2, 2
mult r3, r2, r1
load r4, x
sub r5, r4, r3

RISC assembly code Quadruples

The original FORTRAN
compiler used “quads”

13

Three Address Code: Triples

• Index used as implicit name
• 25% less space consumed than quads
• Much harder to reorder

Remember, for a long time, 640Kb was a lot of RAM

(1) load y

(2) loadI 2

(3) mult (1) (2)

(4) load x

(5) sub (4) (3)

Implicit names occupy no space

14

Two Address Code

• Allows statements of the form
x ← x op y
Has 1 operator (op) and, at most, 2 names (x and y)

Example:
 z ← x - 2 * y becomes

• Can be very compact

Problems
• Machines no longer rely on destructive operations
• Difficult name space

— Destructive operations make reuse hard
— Good model for machines with destructive ops (PDP-11)

t
1
 ← 2

t
2
 ← load y

t
2
 ← t

2
 * t

1
z

 ← load x

z

 ← z - t

2

Learning Objectives

• List the desirable features of intermediate representations

• List the types of Intermediate Representations and their
types of abstractions

• Understand the pros and cons of different intermediate
representations

• Understand SSA form and it’s advantages

• List the pros and cons of various memory models

15

16

Control-flow Graph
Models the transfer of control in the procedure
• Nodes in the graph are basic blocks

— Can be represented with quads or any other linear
representation

• Edges in the graph represent control flow

Example
if (x = y)

a ← 2
b ← 5

a ← 3
b ← 4

c ← a * b

Algorithm for converting linear code to CFG

• Find leaders
— Identify all nodes that are labels/targets for jumps as leaders

• Break CFG into (leader, last) pairs
— For each leader, traverse program until we come to another

leader. Terminate the block and record (leader, last) pair.
— If the last instruction is a conditional branch to l1, l2, then

record edges from the current block to blocks l1 and l2
— If the last instruction is a unconditional branch to label ‘l’, then

add an edge from the current block to ‘l’
— If the last instruction is an indirect jump (e.g., jmp r1), then

→ Strategy 1 (conservative): Add an edge to every basic block
→ Strategy 2 (precise): Add an edge to only those basic blocks that

are targets of the jump – requires pointer/alias analysis to resolve

Add an entry node and exit node and the corresponding arcs if needed

17

Example of CFG Algorithm

18

 Original

x ← …
y ← …
while (x < k)
 x ← x + 1
 y ← y + x

 BBs With explicit branches

start:
x ← …
y ← …
if (x>k) goto next

loop:
 x ← x + 1
 y ← y + x
 if (x<k)goto loop

next: ..

start

loop

next

Class Activity
Draw the CFG for the following code applying the algorithm in
the previous slide for CFG construction (Figure 5.14 in EaC).

19

20

Static Single Assignment (SSA) Form

• The main idea: each name defined exactly once
• Introduce φ-functions to make it work

Strengths of SSA-form
• Sharper analysis
• φ-functions give hints about placement
• Some facts are obvious (e.g., live variables)
• Compact representation of data-flow facts

 Original

x ← …
y ← …
while (x < k)
 x ← x + 1
 y ← y + x

SSA-form

x
0
 ← …

y
0
 ← …

if (x
0
 >= k) goto next

loop: x
1
 ← φ(x

0
,x

2
)

y
1
 ← φ(y

0
,y

2
)

 x
2
 ← x

1
 + 1

 y
2
 ← y

1
 + x

2
if (x

2
 < k) goto loop

next: …

Algorithm to convert code to SSA (Naïve algorithm)

• Non-obvious construction algorithm
— Will examine this algorithm later in this course
— Naïve algorithm inserts too many redundant phi functions

• Naïve algorithm
— Traverse the code in linear order
— The first time you come to a variable, no action is needed
— When you come to a previously defined variable, rename it to a

unique name and replace all references with the new name
— If you come to a Y-point in the code (i.e., control flow

convergence), insert a phi node for every variable defined and
used in the downstream computations, and add the predecessor
block’s latest values as operands of the phi instruction

— Not as simple as it looks

21

Class Activity
Draw the CFG of the following code and convert it to SSA form
(Example based on Figure 5.13 in EaC)

22

x ← …
y ← ..
a ← y + 2
b ← 0

while (x < a) {
if (y < x) {

x ← y + 1
y ← b * 2

} else {
x ← y + 2
y ← a + 2;

}
}

w ← x+ 2
z ← y * a
y ← y + 1

B0: x ← …
 y ← …
 a ← y + 2
 b ← 0
 if (x >= a) jump B5

B2: if (y >= x) jump B4

B3: x ← y + 1
 y ← b * 2
 jump B5

B4: x ← y + 2
 y ← a + 1

B5: if (x >= a) jump B2

B6: w ← x + 2
 z ← y * a
 y ← y + 1

Learning Objectives

• List the desirable features of intermediate representations

• List the types of Intermediate Representations and their
types of abstractions

• Understand the pros and cons of different intermediate
representations

• Understand SSA form and it’s advantages

• List the pros and cons of various memory models

23

24

Memory Models
Two major models

• Register-to-register model
— Keep all values that can legally be stored in a register in registers
— Ignore machine limitations on number of registers
— Compiler back-end must insert loads and stores

• Memory-to-memory model
— Keep all values in memory
— Only promote values to registers directly before they are used
— Compiler back-end can remove loads and stores

Pros of Register-to-Register memory Model

• Compilers for RISC machines usually use
register-to-register
— Reflects programming model
— Easier to determine when registers are used
— Does not limit number of registers in the target
— Easy to represent data-flow facts about the program (i.e., a

value that is safe to move to a register is one that is not
indirectly modified, through a pointer, for example)

25

Cons of Register-to-Register Memory Model

• Pressure on downstream passes and register allocator
— Additional loads/stores required

• Can provide misleading information about program’s
performance at the intermediate code level
— Cannot reason about memory pressure, cache misses etc.
— Not a good match for register-constrained machines

• Handling memory references may be cumbersome at the IR
level as the default mode is to operate on registers
— Need to ensure that any variable whose address can be taken

cannot have multiple references to it (i.e., alias analysis)
— Such variables cannot be stored in registers

26

Learning Objectives

• List the desirable features of intermediate representations

• List the types of Intermediate Representations and their
types of abstractions

• Understand the pros and cons of different intermediate
representations

• List the pros and cons of various memory models

27

TODOs in the near term
Find a partner to do the assignments with and send us a private
note on Piazza by Jan 20th

Try tutorial 1 - installation and writing a simple pass in LLVM
- Needed for doing assignment 1 (Jan 21st release)
- You can get help from TAs during the lab session

Prepare for the PPT on Thursday (Jan 20th)
- Simple C++ programming problems
- Done online in the HR platform

Decide if you want to stay in the course or drop it (Jan 21)

28

