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Learning Objectives

• List the desirable features of intermediate representations

• List the types of Intermediate Representations and their 
types of abstractions

• Understand the pros and cons of different intermediate 
representations

• Understand SSA form and it’s advantages  

• List the pros and cons of various memory models
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Intermediate Representations: 3-pass compiler

• Front end - produces an intermediate representation (IR)
• Middle end - transforms the IR into an equivalent IR that 

runs more efficiently
• Back end - transforms the IR into native code

• IR encodes the compiler’s knowledge of the program
• Middle end usually consists of several passes

Front
End

Middle
End

Back
End

IR IRSource
Code

Target
Code
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Intermediate Representations

• Decisions in IR design affect the speed and efficiency 
     of the compiler

• Some important IR properties
— Ease of generation
— Ease of manipulation
— Procedure size
— Freedom of expression
— Level of abstraction

• The importance of different properties varies between 
compilers
— Selecting an appropriate IR for a compiler is critical
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Types of Intermediate Representations
Three major categories
• Structural

— Graphically oriented
— Heavily used in source-to-source translators
— Tend to be large

• Linear
— Pseudo-code for an abstract machine
— Level of abstraction varies
— Simple, compact data structures
— Easier to rearrange

• Hybrid
— Combination of graphs and linear code
— Example: control-flow graph

Examples:
Trees, DAGs 

Examples:
3 address code
Stack machine code 

Example:
Control-flow graph, 
SSA form 
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Level of Abstraction
• The level of detail exposed in an IR influences the 

profitability and feasibility of different optimizations.
• Two different representations of an array reference:

subscript
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load  r
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   => r

Aij

High level AST:
Good for memory 
disambiguation

Low level linear code:
Good for address calculation
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Level of Abstraction
• Structural IRs are usually considered high-level
• Linear IRs are usually considered low-level
• Not necessarily true – see example below

+

*
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load

Low level AST
loadArray A,i,j

High level linear code 



Learning Objectives

• List the desirable features of intermediate representations

• List the types of Intermediate Representations and their 
types of abstractions

• Understand the pros and cons of different intermediate 
representations

• Understand SSA form and it’s advantages  

• List the pros and cons of various memory models
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Abstract Syntax Tree

An abstract syntax tree is the procedure’s parse tree with 
     the nodes for most non-terminal nodes removed

x - 2 * y

• Can use linearized form of the tree
— Easier to manipulate than pointers

x 2 y * -  in postfix form
- * 2 y x in prefix form

• S-expressions (Scheme,Lisp) are (essentially) ASTs

-

x

2 y

*
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Directed Acyclic Graph
A directed acyclic graph (DAG) is an AST with a unique 
    node for each value

• Makes sharing explicit
• Encodes redundancy

x

2 y

*

-

←

z /

←

w

z ← x - 2 * 
y
w ← x  /  2

With two copies of the same 
expression, the compiler might be 
able to arrange the code to 
evaluate it only once.
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Stack Machine Code
Originally used for stack-based computers, now Java
• Example:

x - 2 * y  becomes

Advantages
• Compact form
• Introduced names are implicit, not explicit
• Simple to generate and execute code

Useful where code is transmitted
over slow communication links  (the net )

push x
push 2
push y
multiply
subtract

Implicit names take up 
no space, where explicit 
ones do!
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Three Address Code
Several different representations of three address code
• In general, three address code has statements of the form:

x ← y op z
With 1 operator (op ) and, at most, 3 names (x, y, & z)

Example:
z ← x - 2 * ybecomes

Advantages:
• Resembles many real machines
• Introduces a new set of names
• Compact form

t ← 2 * y
z ← x - t

*
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Three Address Code: Quadruples
Naïve representation of three address code
• Table of k * 4 small integers
• Simple record structure
• Easy to reorder
• Explicit names

load 1 y

loadi 2 2

mult 3 2 1

load 4 x

sub 5 4 3

load  r1, y
loadI r2, 2
mult  r3, r2, r1
load  r4, x
sub   r5, r4, r3

RISC assembly code Quadruples

The original FORTRAN 
compiler used “quads”
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Three Address Code: Triples

• Index used as implicit name
• 25% less space consumed than quads
• Much harder to reorder

Remember, for a long time, 640Kb was a lot of RAM

(1) load y

(2) loadI 2

(3) mult (1) (2)

(4) load x

(5) sub (4) (3)

Implicit names occupy no space
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Two Address Code

• Allows statements of the form
x ← x op y
Has 1 operator (op ) and, at most, 2 names (x and y)

Example:
     z ← x - 2 * y    becomes

• Can be very compact

Problems
• Machines no longer rely on destructive operations
• Difficult name space

— Destructive operations make reuse hard
— Good model for machines with destructive ops (PDP-11)

t
1
 ← 2

t
2
 ← load y

t
2
 ← t

2
 * t

1
z
 
 ← load x

z
 
 ← z - t

2



Learning Objectives

• List the desirable features of intermediate representations

• List the types of Intermediate Representations and their 
types of abstractions

• Understand the pros and cons of different intermediate 
representations

• Understand SSA form and it’s advantages  

• List the pros and cons of various memory models

15



16

Control-flow Graph
Models the transfer of control in the procedure
• Nodes in the graph are basic blocks

— Can be represented with quads or any other linear 
representation

• Edges in the graph represent control flow

Example
if  (x = y)

a ← 2
b ← 5

a ← 3
b ← 4

c ← a * b



Algorithm for converting linear code to CFG

• Find leaders
— Identify all nodes that are labels/targets for jumps as leaders

• Break CFG into (leader, last) pairs
— For each leader, traverse program until we come to another 

leader. Terminate the block and record (leader, last) pair.
— If the last instruction is a conditional branch to l1, l2, then 

record edges from the current block to blocks l1 and l2
— If the last instruction is a unconditional branch to label ‘l’, then 

add an edge from the current block to ‘l’
— If the last instruction is an indirect jump (e.g., jmp r1), then

→ Strategy 1 (conservative): Add an edge to every basic block
→ Strategy 2 (precise): Add an edge to only those basic blocks that 

are targets of the jump – requires pointer/alias analysis to resolve

Add an entry node and exit node and the corresponding arcs if needed 
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Example of CFG Algorithm
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        Original

x ← …
y ← …
while (x < k)
   x ← x + 1
   y ← y + x

 BBs With explicit branches

start:
x ← …
y ← …
if (x>k) goto next

loop: 
   x ← x + 1
   y ← y + x
   if (x<k)goto loop

next: ..

start

loop

next



Class Activity
Draw the CFG for the following code applying the algorithm in 
the previous slide for CFG construction (Figure 5.14 in EaC). 
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Static Single Assignment (SSA) Form

• The main idea:  each name defined exactly once
• Introduce φ-functions to make it work

Strengths of SSA-form
• Sharper analysis
• φ-functions give hints about placement
• Some facts are obvious (e.g., live variables)
• Compact representation of data-flow facts

        Original

x ← …
y ← …
while (x < k)
   x ← x + 1
   y ← y + x

SSA-form

x
0
 ← …

y
0
 ← …

if (x
0
 >= k) goto next

loop: x
1
 ← φ(x

0
,x

2
)  

y
1
 ← φ(y

0
,y

2
)

       x
2
 ← x

1
 + 1 

       y
2
 ← y

1
 + x

2
if (x

2
 < k) goto loop

next:     …            



Algorithm to convert code to SSA (Naïve algorithm)

• Non-obvious construction algorithm
— Will examine this algorithm later in this course
— Naïve algorithm inserts too many redundant phi functions

• Naïve algorithm
— Traverse the code in linear order
— The first time you come to a variable, no action is needed
— When you come to a previously defined variable, rename it to a 

unique name and replace all references with the new name
— If you come to a Y-point in the code (i.e., control flow 

convergence), insert a phi node for every variable defined and 
used in the downstream computations, and add the predecessor 
block’s latest values as operands of the phi instruction

— Not as simple as it looks
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Class Activity
Draw the CFG of the following code and convert it to SSA form 
(Example based on Figure 5.13 in EaC)
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x ← …
y ← ..
a ← y + 2
b ← 0

while (x < a) {
if (y < x) {

x ← y + 1
y ← b * 2

} else {
x ← y + 2
y ← a + 2;

}
}

w ← x+ 2
z ← y * a
y ← y + 1 

B0: x ← …
      y ← …
      a ← y + 2
      b ← 0
      if (x >= a) jump B5

B2: if (y >= x) jump B4

B3:  x ← y + 1
       y ← b * 2
       jump B5

B4:  x ← y + 2
       y ← a + 1

B5:  if (x >= a) jump B2
 
B6: w ← x + 2 
      z ← y * a
      y ← y + 1  



Learning Objectives

• List the desirable features of intermediate representations

• List the types of Intermediate Representations and their 
types of abstractions

• Understand the pros and cons of different intermediate 
representations

• Understand SSA form and it’s advantages  

• List the pros and cons of various memory models
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Memory Models
Two major models

• Register-to-register model
— Keep all values that can legally be stored in a register in registers
— Ignore machine limitations on number of registers
— Compiler back-end must insert loads and stores

• Memory-to-memory model
— Keep all values in memory
— Only promote values to registers directly before they are used
— Compiler back-end can remove loads and stores



Pros of Register-to-Register memory Model

• Compilers for RISC machines usually use 
register-to-register
— Reflects programming model
— Easier to determine when registers are used
— Does not limit number of registers in the target
— Easy to represent data-flow facts about the program (i.e., a 

value that is safe to move to a register is one that is not 
indirectly modified, through a pointer, for example)
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Cons of Register-to-Register Memory Model

• Pressure on downstream passes and register allocator
— Additional loads/stores required

• Can provide misleading information about program’s 
performance at the intermediate code level
— Cannot reason about memory pressure, cache misses etc.
— Not a good match for register-constrained machines

• Handling memory references may be cumbersome at the IR 
level as the default mode is to operate on registers
— Need to ensure that any variable whose address can be taken 

cannot have multiple references to it (i.e., alias analysis)
— Such variables cannot be stored in registers
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• Understand the pros and cons of different intermediate 
representations  

• List the pros and cons of various memory models
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TODOs in the near term
Find a partner to do the assignments with and send us a private 
note on Piazza by Jan 20th

Try tutorial 1 - installation and writing a simple pass in LLVM
- Needed for doing assignment 1 (Jan 21st release)
- You can get help from TAs during the lab session

Prepare for the PPT on Thursday (Jan 20th)
- Simple C++ programming problems 
- Done online in the HR platform

Decide if you want to stay in the course or drop it (Jan 21)
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