
Dataflow Analysis
Lecture 3: CPEN 400P

Karthik Pattabiraman, UBC

Copyright 2011, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make
copies of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Outline

Goals of dataflow analysis

Dominators and Dominator sets: DFA-1

Live-Out variable analysis: DFA-2

Other problems using DFA

Generalized framework for DFA

2

3

Data-flow Analysis - 1

Definition
Data-flow analysis is a collection of techniques for compile-time
reasoning about the run-time flow of values

• We use the results of DFA to prove safety & identify
opportunities
> Not an end unto itself

• Almost always involves building a graph

> Control-flow graph, call graph, or derivatives thereof

3

Dataflow Analysis - 2

• Usually formulated as a set of simultaneous equations

> Sets attached to nodes and edges
> Often use sets with a lattice or semilattice structure

• Desired result is usually meet over all paths solution

> “What is true on every path from the entry?”
> “Can this happen on any path from the entry?”

4

Outline

Goals of dataflow analysis

Dominators and Dominator sets: DFA-1

Live-Out variable analysis: DFA-2

Other problems using DFA

Generalized framework for DFA

5

6

Dominators

Definitions
x dominates y if and only if every path from the entry of the

control-flow graph to the node for y includes x

• By definition, x dominates x

• The first entry node of a procedure dominates every block in it

• We associate a DOM set with each node

• |DOM(x)| ≥ 1

6

Uses of Dominators

Dominators have many uses in analysis & transformation

• Finding loops

• Building SSA form

• Making code motion decisions

7

B0

B1

B2 B5

B6 B7

B8

B3

B4

Basic
Block

Dominator Set

B0

B1

B2

B3

B4

B5

B6

B7

B8

8

B0

B1

B2 B5

B6 B7

B8

B3

B4

Basic
Block

Dominator Set

B0 { 0 }

B1 { 0, 1 }

B2 { 0, 1, 2 }

B3 { 0, 1, 3 }

B4 { 0, 1, 3, 4 }

B5 { 0, 1, 5 }

B6 { 0, 1, 5, 6 }

B7 { 0, 1, 5, 7 }

B8 { 0, 1, 5, 8 }

9

How does one compute Dominators using DFA ?

Think recursive algorithm over a set

What’s the starting node and it’s dominator ?

Every node dominates itself

If I know the dominators of all the predecessors of a node, how do I compute the
dominator set of the node ?

10

11

Computing Dominators

• A node n dominates m iff n is on every path from n0 to m
● Every node dominates itself
● All of m’s predecessors need to be dominated by n

DOM(n0) = { n0 }

DOM(n) = { n } ∪ (∩p∈preds(n) DOM(p))

Initially, DOM(n) = N, ∀ n≠n0

11

Computing Dominators
• These simultaneous set equations define a simple problem in

data-flow analysis

• Equations have a unique fixed point solution

• An iterative fixed-point algorithm will solve them quickly

DOM(n0) = { n0 }

DOM(n) = { n } ∪ (∩p∈preds(n) DOM(p))

12

Iterative fixed point algorithm for dominators
DOM(b0) ← Ø

for i ← 1 to N
DOM(bi) ← { all nodes in graph }

change ← true
while (change)

change ← false

 for i ← 0 to N
TEMP ← { i } ∪ (∩x∈pred (b) DOM(x))

if DOM(bi) ≠ TEMP then
change ← true
DOM(bi) ← TEMP 13

B0

B1

B2 B5

B6 B7

B8

B3

B4

Basic Block Dominator Set

B0 { 0 }

B1 N

B2 N

B3 N

B4 N

B5 N

B6 N

B7 N

B8 N

Initial

14

B0

B1

B2 B5

B6 B7

B8

B3

B4

Basic Block Dominator Set

B0 { 0 }

B1 { 0, 1 }

B2 { 0, 1, 2 }

B3 { 0, 1, 2, 3 }

B4 { 0, 1, 2, 3, 4 }

B5 { 0, 1, 5 }

B6 { 0, 1, 5, 6 }

B7 { 0, 1, 5, 7 }

B8 { 0, 1, 5, 8 }

Iteration 1

15

B0

B1

B2 B5

B6 B7

B8

B3

B4

Basic Block Dominator Set

B0 { 0 }

B1 { 0, 1 }

B2 { 0, 1, 2 }

B3 { 0, 1, 3 }

B4 { 0, 1, 3, 4 }

B5 { 0, 1, 5 }

B6 { 0, 1, 5, 6 }

B7 { 0, 1, 5, 7 }

B8 { 0, 1, 5, 8 }

Iteration 2

16

B0

B1

B2 B5

B6 B7

B8

B3

B4

Basic Block Dominator Set

B0 { 0 }

B1 { 0, 1 }

B2 { 0, 1, 2 }

B3 { 0, 1, 3 }

B4 { 0, 1, 3, 4 }

B5 { 0, 1, 5 }

B6 { 0, 1, 5, 6 }

B7 { 0, 1, 5, 7 }

B8 { 0, 1, 5, 8 }

Iteration 3 (No change)

17

Aside on Data-Flow Analysis
Termination

• The DOM sets are initialized to the (finite) set of nodes

• The DOM sets shrink monotonically

• The algorithm reaches a fixed point where they stop changing

Correctness

• We can prove that the fixed point solution is also the MOP

• Beyond the scope of the class, though we’ll explain intuition
later

Efficiency

• The round-robin algorithm is not particularly efficient

• Order in which we visit nodes is important for efficient solutions
1818

Class Activity
What would happen in the above example if we went backwards in this
order (see below). How many iterations would it take to converge ? Why ?

Block Initial Iteration 1 Iteration 2 Iteration 3

B0 { 0 }

B1 N

B5 N

B8 N

B6 N

B7 N

B2 N

B3 N

B4 N 19

Class Activity
What would happen in the above example if we went backwards in this
order (see below). How many iterations would it take to converge ? Why ?

Block Initial Iteration 1 Iteration 2 Iteration 3

B0 { 0 } { 0 } { 0 } { 0 }

B1 N { 0, 1 } { 0, 1 } { 0, 1 }

B5 N { 0, 1, 5 } { 0, 1, 5 } { 0, 1, 5 }

B8 N N { 0, 1, 5, 8 } { 0, 1, 5, 8 }

B6 N { 0, 1, 5, 6 } { 0, 1, 5, 6 } { 0, 1, 5, 6 }

B7 N { 0, 1, 5, 7 } { 0, 1, 5, 7 } { 0, 1, 5, 7 }

B2 N { 0, 1, 2 } { 0, 1, 2 } { 0, 1, 2 }

B3 N { 0, 1, 2, 3 } { 0, 1, 3 } { 0, 1, 3 }

B4 N { 0, 1, 2, 3, 4 } { 0, 1, 3, 4 } { 0, 1, 3, 4 } 20

Outline

Goals of dataflow analysis

Dominators and Dominator sets: DFA-1

Live-Out variable analysis: DFA-2

Other problems using DFA

Generalized framework for DFA

21

Live-Out Problem
For each node (basic block) in the CFG, the set of variables that are live on
exit from the block, i.e., variable is used before being redefined.

Important for compilers to find

1. Variables that are uninitialized (later)
2. Variables for which registers need to be allocated
3. Remove useless or dead store instructions

Formal Defn.: A variable v is live at point p if and only if there exists a path in
the CFG from p to a use of v along which v is not redefined (i.e., overwritten)

22

Two Sets: UEVar and VarKill

UEVar(B): Set of Upper-Exposed Variables in Basic Block B

- Variables that are used in basic block B before they are (re)defined in B
- These are variables that need to have been defined before reaching B

VarKill (B): Set of variables that are defined (i.e., killed) in basic block B

- Anytime a variable is (re)defined, it’s previous value is killed

We’ll define LiveOut(B) in a recursive way using the above two sets

23

Can you find the UEVar and VarKill sets below ?

i ← 1

(test on i)

s ← 0

s ← s + 1
i ← i + 1
(test on i)

print s

Block UEVar VarKill

B0

B1

B2

B3

B4

B0

B1

B2

B3

B4
24

Can you find the UEVar and VarKill sets below ?

i ← 1

(test on i)

s ← 0

s ← s + 1
i ← i + 1
(test on i)

print s

Block UEVar VarKill

B0 { } { i }

B1 { i } { }

B2 { } { s }

B3 { s, i } { s, i }

B4 { s } { }

B0

B1

B2

B3

B4
25

Recursive Formulation of LiveOut
How will you define LiveOut(B) in terms of UEVar and VarKill ?

- Defined in terms of succ(B). Why ?
- A variable is LiveOut in a block B if it’s used in any successor block of

B before being defined (UEVar (succ(B))
- A variable is LiveOut in a block B if it is LiveOut in the successor block
- Unless it is defined in the successor block (VarKill (succ(B))

NOTE: Subtracting a set is the same as intersecting with the complement
(i.e., the set of elements that are not in the set), written as S

- B - A → B intersection (A complement)

26

Dataflow Equations for LiveOut
We write it using two equations: LiveIn and LiveOut for convenience

- LiveIn is the set of variables that are live on entry to a basic block
- LiveOut is the set of variables that are live on exit from a basic block

LiveOut of a block is the Union of the LiveIn sets of its successor block

Initialization LIVEOUT(n) = ∅, ∀n

Fixed-point
equations

LIVEOUT(b) = ∪s∈succ(b) LIVEIN(s)

LIVEIN(b) = UEVAR(b) ∪ (LIVEOUT(b) ∩ VARKILL(b))

27

Comparison between Dominators and LiveOut

Criteria Dominators LiveOut

Type of Analysis Forward data-flow (i.e.,
predecessors)

Backward data-flow (i.e.,
successors)

Meet Over Paths (MOP) Intersection Union

Needs other sets No Yes

Algorithm for solving Iterative Iterative

28

Algorithm for Liveout (from the EaC book)

Eac Book: Figure 8.14

29

Example: Initial

i ← 1

(test on i)

s ← 0

s ← s + 1
i ← i + 1
(test on i)

print s

B0

B1

B2

B3

B4

Block UEVar VarKill LiveOut

B0 { } { i } { }

B1 { i } { } { }

B2 { } { s } { }

B3 { s, i } { s, i } { }

B4 { s } { } { }

30

Example: Iteration-1

i ← 1

(test on i)

s ← 0

s ← s + 1
i ← i + 1
(test on i)

print s

B0

B1

B2

B3

B4

Block UEVar VarKill LiveOut

B0 { } { i } { i }

B1 { i } { } { s, i }

B2 { } { s } { s, i }

B3 { s, i } { s, i } { s, i }

B4 { s } { } { }

31

Example: Iteration-2 (Converged)

i ← 1

(test on i)

s ← 0

s ← s + 1
i ← i + 1
(test on i)

print s

B0

B1

B2

B3

B4

Block UEVar VarKill LiveOut

B0 { } { i } { s, i }

B1 { i } { } { s, i }

B2 { } { s } { s, i }

B3 { s, i } { s, i } { s, i }

B4 { s } { } { }

32

Use of LiveOut: Uninitialized Variables

How will you use LiveOut to compute the set of uninitialized variables in a
procedure ?

- All variables that are in the LiveOut set of the initial block are
undefined by definition

- However, this approach may yield false-positives (i.e., falsely identify
variables as undefined). Can you think of why ?

- This is a common problem with static analysis (over-approximation)

33

Challenges in identifying Uninitialized Variables

Changes via pointers:

int* p = &x;

*p = 0;

…

x = x + 1;

Is x uninitialized above ?

- Use of pointer analysis can resolve this
(also known as alias analysis)

- General problem is undecidable !

Infeasible Paths:

void foo(int n) { // Assume n >= 0

int i = 1;

int s; // s is uninitialized here

while (i <= n) {

if (i==1) s = 0;

s = s + i; // Is s uninitialized here?

}

Difficult to resolve in general case

- Can be resolved in this case via loop specialization
- Need symbolic execution techniques (later)

34

Class Activity: Compute LiveOut for the following code

B0 { }

B1 { }

B2 { }

B3 { }

B4 { }

B5 { }

B6 { }

B7 { }

B8 { }
Eac Book: Figure 9.2 35

Class Activity Solution: Iteration 1

B0 { }

B1 { }

B2 { a, b, c, d, i }

B3 { }

B4 { }

B5 { }

B6 { }

B7 { a, b, c, d, i }

B8 { a, c, d, i }

36

Class Activity Solution: Iteration 2

B0 { }

B1 { a, i }

B2 { a, b, c, d, i }

B3 { i }

B4 { }

B5 { a, d, i }

B6 { a, c, d, i }

B7 { a, b, c, d, i }

B8 { a, c, d, i }

37

Class Activity Solution: Iteration 3

B0 { i }

B1 { a, i }

B2 { a, b, c, d, i }

B3 { i }

B4 { }

B5 { a, c, d, i }

B6 { a, c, d, i }

B7 { a, b, c, d, i }

B8 { a, c, d, i }

38

Class Activity Solution: Iteration 4 (Converged)

B0 { i }

B1 { a, c, i }

B2 { a, b, c, d, i }

B3 { i }

B4 { }

B5 { a, c, d, i }

B6 { a, c, d, i }

B7 { a, b, c, d, i }

B8 { a, c, d, i }

39

Outline

Goals of dataflow analysis

Dominators and Dominator sets: DFA-1

Live-Out variable analysis: DFA-2

Other problems using DFA

Generalized framework for DFA

40

Other Dataflow problems

Many other problems can be expressed as data-flow equations. For example,

1. Available Expressions

2. Reaching Definitions

3. Anticipable Expressions (also known as Very Busy Expressions)

41

42

Available Expressions

An expression is available on entry to b if, along every path from the
entry node to b, it has been computed AND none of its
constituent subexpressions has been subsequently modified.

AVAIL(b) = ∩x∈pred(b) (DEEXPR(x) ∪ (AVAIL(x) ∩ EXPRKILL(x)))

• EXPRKILL(b) is the set of expression killed in b, and

• DEEXPR(b) is the set of expressions defined in b and not
subsequently killed in b (Downward Exposed Expressions)

Initial conditions: AVAIL(n0) = Ø, AVAIL(n) = { all expressions }

Available expressions is a forward data-flow problem (why?)

Using Available Expressions

AVAIL is the basis for global common subexpression elimination

• If x+y ∈ AVAIL(b) then the compiler can replace any upwards
exposed occurrence of x+y in b with a reference to the
previously computed value

• Standard caveats occur about preserving prior computations

> Hash x+y and assign temporary names; copy all x+y to name
> Walk backward through code to find minimal set of copies

• Resulting algorithm is similar to value numbering

> Based on textual identity of expressions, not value identity
> Recognizes redundancy carried along loop-closing branch

43

44

Reaching Definitions

Find the set of definitions (i.e., variables’ values) that reach a program point ‘p’

A definition d reaches operation i if and only if i reads the value v, and there exists a path
from d to v that does not define i

Initially, for all n, Reaches(n) = Ø

Reaches(n) = ⋃ (DEDEF(m) U (Reaches(m) ∩ DEFKILL(m))

DEDEF(m): Downward exposed definitions (i.e., defined in m and not redefined)

DEFKILL(m): If it defines a name v, and m contains definition that also defines v

m 𝝐 preds(n)

Anticipable Expressions

45

An expression e is anticipable or very busy if on exit from block b, if and only if (1)
every path that leaves b evaluates and subsequently uses e, AND (2) evaluating e
at the end of b would produce the same result as the first evaluation along paths.

Initial conditions: ANTOUT(nf) = Ø, ANTOUT(n) = { all expressions }

ANTOUT(n) = ⋂ (UEEXPR(m) U (ANTOUT(m) ∩ EXPRKILL(m))

UEEXPR(m): Upper-Exposed Expressions - Used in ‘m’ before being killed

EXPRKILL(m): Set of expressions that are defined in m (same as in AVAIL)

m 𝝐 succ(n)

Outline

Goals of dataflow analysis

Dominators and Dominator sets: DFA-1

Live-Out variable analysis: DFA-2

Other problems using DFA

Generalized framework for DFA

46

Why identify common features ?

Many kinds of data-flow problems - each comes with unique characteristics

But many characteristics are common (MOP operator, backward Vs forward etc.)

Can be combined into a common framework for code reuse etc. - developer only
needs to specify the unique parts of the problem in a standardized way

Heuristics to efficiently solve generalized data-flow problems matching certain
templates (e.g., traverse basic blocks in reverse post-order for backward dataflow)

Cleaner way to understand and prove correctness of algorithms (not covered)

47

Common features of data-flow analysis

1. Type of data-flow analysis
a. Backward (successors)
b. Forward (predecessors)

2. Meet over Paths (MoP) Operator
a. Union (“May”)
b. Intersection (“Must”)

48

Dataflow Analysis can be classified in this common way

49

Classification
(Direction/MOP)

May Must

Forward Reaching Definitions Available Expressions

Backward Live Variables Anticipable Expressions

What about Dominators ? Where does it fit in the above table ?

Outline

Goals of dataflow analysis

Dominators and Dominator sets: DFA-1

Live-Out variable analysis: DFA-2

Other problems using DFA

Generalized framework for DFA

50

