Copyright 2011, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make
copies of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

SSA Form: Construction
Lecture 4: CPEN 400P

Karthik Pattabiraman, UBC




Outline

Def-Use Chains

Why do we need SSA form ?

Dominator Trees and Dominance Frontiers
Inserting Phi-Nodes

Renaming Variables

Converting Out of SSA form



Information Chains

A tuple that connects 2 data-flow events is a chain
event = definition
* Chains express data-flow relationships directly or use

* Chains provide a graphical representation

* Chains jump across unrelated code, simplifying search

We can build chains efficiently Def-Use chains are
the most common

Four interesting types of chain



Information Chains

Example

Q
O\ O w O

_|_

N

e « a + b

d is dead
(why?)

e « 13

fe2o 18

Write £

def-use chains



Notation

Assume that, V operation i and each variable v,

* DEFS(v,i) is the set of operations that may have defined v most
recently before i, along some path in the CFG

e USES(v,i) is the set of operations that may use the value of v
computed at j, along some path in the CFG

x € DEFS(A,y) « y€ USES(A,x)

To construct DEF-USE chains, we solve reaching definitions (how?)



Domain is |definitions|, same
Reaching Definitions as number of operations

The equations
REACHES(n) =@,V neN
REACHES(n) = Upepre ds(n) (DEDEF(p) U (REACHES(p) N DEFKILL(p)))

® REACHES(n) is the set of definitions that reach block n
® DEDEF(N) is the set of definitions in n that reach the end of n
* DEFKILL(n) is the set of defs obscured by a new def in n



Outline

Def-Use Chains

Why do we need SSA form ?

Dominator Trees and Dominance Frontiers
Inserting Phi-Nodes

Renaming Variables

Converting Out of SSA form



Issues with simple def-use Chains

Don’t encode control-flow information and data-flow in a unique way
Can’t trace each value to it's definition as definition may be non-unique

Update of values is dependent on number of “meet points” in standard data-flow
analysis - can take a long time to converge

Need a way to encode both data-flow and control information efficiently to
allow multiple data-flow analysis problems to be run on them



Example (without SSA form)

X « 17 - 4
There are four birth points for x

S « W — X



Example (without SSA form, but with renaming)

There are four birth points for x




Example (with SSA form)

Making Birth Points Explicit

XO<—17_4




Building Static Single Assignment Form
SSA-form

. ) A ¢-function is a special
* Each name is defined exactly once kind of copy that selects

one of its parameters.
e Each use refers to exactly one name

The choice of parameter
is governed by the CFG
edge along which control
reached the current block.

* Straight-line code is trivial Y, \/y - .
* Splits in the CFG are trivial

vy < 9y y,)

What’s hard

e Joins in the CFG are hard

Few machines implement
a ¢-function in hardwhre.




Simple Algorithm For Building SSA form ?

Simple algorithm

1. Insert a ¢ at each join point for each name

2. Solve reaching definitions

3. Rename each name to get single definition & single use

This produces
* Correct SSA form

* More ¢’s than any other known algorithm for SSA construction (too many to be practical)

The rest is optimization (!)



SSA Construction Algorithm - 1 (Detailed sketch)

1. Insert ¢-functions
a.) calculate dominance frontiers Moderately complex

b.) find global names
for each name, build a list ot Bl

Compute list of blocks where each

c.) insert ¢-functions

This adds to
vV global name n the worklist
Creates the iterated V block b in which n is assigned !
dominance frontier Y block din b’s dominance frontier
Use a checklist to avoid putting _ . .
blocks on the worklist twice; jsert a¢ :‘un.ctlon for .n ,m d
keep another checklist to avoid add d to n’s list of defining blocks
inserting the same ¢-function *14
twice.




SSA Construction Algorithm - 2 (Detailed sketch)

2. Rename variables in a pre-order walk over dominator tree
(use an array of stacks, one stack per global hame)
oal Na

Staring with the root block, b 1 counter per name for subscripts

a.) generate unique names for each ¢-function
and push them on the appropriate stacks

b.) rewrite each operation in the block
i. Rewrite uses of global names with the current version
(from the stack)
ii. Rewrite definition by inventing & pushing new name

c.) fill in ¢-function parameters of successor blocks

—

d.) recurse on b’s children in the dominator tree cljeset the state

e.) <on exit from block b> pop names generated in b from sta

Need the end-of-block name for this pgth
15




Outline

Def-Use Chains

Why do we need SSA form ?

Dominator Trees and Dominance Frontiers
Inserting Phi-Nodes

Renaming Variables

Converting Out of SSA form



Dominators (Recap)

Definition:
x dominates y if and only if every path from the entry of the
control-flow graph to the node for y includes x

By definition, x dominates x

The first entry node of a procedure dominates every block in it

We associate a DOM set with each node

IDOM(x)| > 1



Immediate Dominators and Dominator Tree

Immediate dominator:
* For any node x, there must be a yin DOM(x ) closest to x (different from x)
* We call this y the immediate dominator of x

* Note that

* As a matter of notation, we write this as IDOM(x )

Dominator Tree: Contains every node of the flow graph and encodes IDOM set:

- If mis IDOM(n), then there is an edge in the dominator tree from m to n
- Given a node in the dominator tree, it's parent is IDOM(n)



BO

B1

B2

T TT—

BS

B6

B3

B4

B8

~.

B7

Basic Block | Dominator Set | IDOM
BO {0} -
B1 {0,1} 0
B2 {0,1,2} 1
B3 {0,1,3} 1
B4 {0,1,3,4} 3
B5 {0,1,5} 1
B6 {0,1,5,6} 5
B7 {0,1,5,7} 5
B8 {0,1,5,8} 5

19



Dominator Tree

BO
x Basic Block | Dominator Set
BO 0
B, {0}
B/ \ B1 {0,1)
B2 {0,1,2}
2 BS
/ \ B3 {0,1,3)
B4 {0,1,3,4}
B
'/33 Bs | 8 B5 {0,1,5}
B B, B6 {0,1,5,6}
4
B7 {0,1,5,7}
B8 {0,1,5,8}

IDOM



Dominance Frontiers: Intuition

Where does an assignment in block n induce ¢-functions in SSA form?

* n DOM m = no need for a ¢—function in m
> Definition in n blocks any previous definition from reaching m

* |If mhas multiple predecessors, and n (strictly) dominates some of
them, but not all of them, m needs a ¢—function for each definition in n

This is also known as the dominance frontier of m - these are the locations
at which phi nodes need to be inserted (with some minor optimizations)



Dominance Frontier: Formal Definition

More formally, m is in the dominance frontier of n if and only if
1. 3 p € preds(m) such that n € DOM(p), and
2. ndoes not strictly dominate m (n € DOM(m) -{ m})

* This notion of dominance frontier is precisely what we need to insert
¢—functions:

a def in block n induces a ¢—function in each block in DF(n).

Why do you need “strict” dominance in the above definition ?

- Single loop basic blocks (as n doesn’t strictly dominate itself)



Algorithm for computing DFs: Observations

1. Only nodes in the join points of the CFG can be in the dominance frontier
2. For ajoint point j, each predecessor k of j must have jin DF(k) (Why ?)
3. |Ifjis in DF(k) for some predecessor k, then

- For each node /in DOM(k), j must also be in DF(I), 11
Unless | is in DOM(j) (Why ?)

12

AN

k1 k2 k1 k2 k3




Algorithm for Computing DFs: Intuition

B
0
x Computing Dominance Frontiers
B, * Only join points are in DF(n) for some n
* Leads to a simple, intuitive algorithm for computing
dominance frontiers
2 BS
/ \ For each join point x (i.e., |preds(x)| > 1)
B B B For each CFG predecessor p of x
3 6 8
\ B Run from p to IDOM(x) in the dominator tree, & add
B ! x to DF(n) for each n from p up to but not IDOM(x)

* 24



Algorithm for computing DFs: Pseudo-code

For all nodes, n, in the CFG
DF(n) < ¢
For all nodes, n, in the CFG
If n has multiple predecessors then
For each predecessor p of n
runner «— p
While ( runner =/= IDOM(n) )
DF(runner) < DF(runner) U {n}

runner «— IDOM(runner)

// Add the node to the DF of the runner

I/l Go to predecessor node in the DOM Tree



Basic Block | IDOM DF
BO -
B1 0
B2 1
B3 1
B4 3
B5 1
B6 5
B7 5
B8 5

26



Basic Block | IDOM DF
BO -
B1 0
B2 1
B3 1
B4 3
B5 1
B6 5
B7 5
B8 5

27



BO

B2

BS

B8

~.

B7

B3

B4

Basic Block | IDOM DF
BO {1}
B1 0 {1
B2 1 {1
B3 1 {3
B4 3 {1
B5 1 {1
B6 5 {3
B7 5 {1
BS 5 {1

28



BO

B2

BS

B8

~.

B7

B3

B4

Basic Block | IDOM DF
BO {1}
B1 0 {1
B2 1 {1
B3 1 {1}
B4 3 {3
B5 1 {1
B6 5 ()
B7 5 {3
BS 5 {1

29



BO

B2

BS

B8

~.

B7

B3

B4

Basic Block | IDOM DF
BO {}
B1 0 {1}
B2 1 {1
B3 1 {1}
B4 3 {1
B5 1 {1
B6 5 {3
B7 5 {1
BS 5 {1

30



BO

B3

Basic Block | IDOM DF
BO {}
B1 0 {1}
B2 1 {1
B3 1 {1}
B4 3 {1
B5 1 {1
B6 5 {3
B7 5 {1
BS 5 {1

B4

31



Basic Block | IDOM DF
BO {}
B1 0 {1}
B2 1 {3}
B3 1 {1}
B4 3 {1
B5 1 {1
B6 5 {3
B7 5 {1
BS 5 {1

32



Basic Block | IDOM DF
BO {}
B1 0 {1}
B2 1 {3}
B3 1 {1}
B4 3 {1
B5 1 {1
B6 5 {3
B7 5 {3}
BS 5 {1

33



Basic Block | IDOM DF
BO {}
B1 0 {1}
B2 1 {3}
B3 1 {1}
B4 3 {1
B5 1 (3}
B6 5 {3
B7 5 {3}
BS 5 {1

34



BO

B6

B8

~.

B7

Basic Block | IDOM DF
BO {}
B1 0 {1}
B2 1 {3}
B3 1 {1}
B4 3 {1
B5 1 (3}
B6 5 {3
B7 5 {3}
BS 5 {1

35



BO

B6

B8

~.

B7

Basic Block | IDOM DF
BO {}
B1 0 {1}
B2 1 {3}
B3 1 {1}
B4 3 {1
B5 1 (3}
B6 5 {3
B7 5 {3}
BS 5 {1

36



BO

Basic Block | IDOM DF
BO {}
B1 0 {1}
B2 1 {3}
B3 1 {1}
B4 3 {1
B5 1 (3}
B6 5 {3
B7 5 {3}
BS 5 {1

37



BO

Basic Block | IDOM DF
BO {}
B1 0 {1}
B2 1 {3}
B3 1 {1}
B4 3 {1
B5 1 (3}
B6 5 {3
B7 5 {3}
BS 5 {1

38



BO

Basic Block | IDOM DF
BO {}
B1 0 {1}
B2 1 {3}
B3 1 {1}
B4 3 {1
B5 1 (3}
B6 5 (7}
B7 5 {3}
BS 5 {1

39



BO

Basic Block | IDOM DF
BO {}
B1 0 {1}
B2 1 {3}
B3 1 {1}
B4 3 {1
B5 1 (3}
B6 5 (7}
B7 5 {3}
B8 5 (7}

40



Basic Block | IDOM DF

BO {}

B1 0 {1}
B2 1 {3}
B3 1 {1}
B4 3 {1

B5 1 (3}
B6 5 (7}
B7 5 {3}
B8 5 (7}

41



Class Activity

Calculate the DF for each node in the CFG below using the DF algorithm.

B1

\

B2

N

B3

Block

DOM

IDOM

DF

B1

B4

B6

B2

\/

BS

B3

B4

BS

B6




Class Activity: Solution

Calculate the DF for each node in the CFG below using the DF algorithm.

B1

\

B2

B3

B6

\/

N

Block

DOM

IDOM

DF

B1

{}

B4

B2

{1,2}

BS

B3

{1,2,3}

B4

{1,2,4}

BS

{1,2,5}

B6

{1,6}




Class Activity: Solution

Calculate the DF for each node in the CFG below using the DF algorithm.

B1

\

B2

B3

B6

\/

N

B4

BS

Block DOM IDOM DF
B1 {} {
B2 (1,2} 1

B3 {1,2,3} 2

B4 {1,2,4} 2

B5 {1,2,5} @ 2

B6 (1,6} 1




Class Activity: Solution

Calculate the DF for each node in the CFG below using the DF algorithm.

B1
\Bz Block DOM IDOM DF
/\ B1 {} - {}
B2 (1,2} 1 (2,6}
B3 B4 53
{1,2,3} | 2 {5}
\/
B4 {1,2,4} 2 {5}
B5
B5 {1,2,5} | 2 (2,6}
- B6 {1,6} 1 {}




Outline

Def-Use Chains

Why do we need SSA form ?

Dominator Trees and Dominance Frontiers
Inserting Phi-Nodes

Renaming Variables

Converting Out of SSA form



Now that we have DFs, how do we insert the Phi-Nodes ?

Insert phi nodes in all blocks that are in the DF(b), where b is the block in which
the variable X’ is defined

DF(b) represents the first join-point in the CFG in which ‘x’ does NOT
dominate any downstream uses of ‘X’.

Phi-node ensures that the invariant of SSA is preserved, every def dominates
all its uses

Can be pruned if the variable ‘X’ is not Live across multiple basic blocks (any
variable that is live across multiple blocks is added to Globals)

Variables that are live across basic blocks can be computed as UEVar(b)



Pseudo-code for algorithm

For each name x in Globals:

WorkList «— Blocks(x) // Set of Basic Blocks in which X’ is defined

For each block b in the WorkList:
For each block din DF(b):
If d has no ¢ for x in d then:
Insert a ¢ function for x in d

WorkList < WorkList U {d }

// Why do we need this ?



By

Running Example (Same as Class Activity in DFA lecture)

i o« 1
— B By: return
L.. <« .. d < ...
(8 < ¢) = B2.Bs (a < d) — Bs.Bs
b+ - By i
37, - B;
; .B‘ B',u‘: D € ...
3 — B3
Zz «— Cc+d Bg: € €.-e
i i+ 1 = By

(i < 100) — By.Bs

(a) Code for the Basic Blocks

(b) Control-Flow Graph

Bo B, B B3 Bs

UEVAR i v %)
VARKILL {i} {a.c} [{b.c.d}

{a.b,c,d,i} @
{y.z.i} @A

Bs Bs By Bs

¥ ¥ @ ?
{a.d} {d} (b} ({c}

(c) Initial Information

Block

BO

B1

B2

B3

B4

BS

B6

B7

B8

IDOM | DF
- {}
0 {1}
1 {3}
1 {1}
3 {}
1 {3}
5 {7}
5 {3}

5 {7}

Variables def

{i}
{ac}
{b,c d}
{y.z,i}
{}
{ad}
{d}
{b}
{c}



Algorithm for inserting Phi Nodes

Globals ={a, b, c,d,i}

Blocks

Var

a

b

C

d

i
WorkList: [ ]

Blocks
11,5}
12,7}
{1,2,8}
{2,5,6}

{0,3}

Phi Nodes

Block | IDOM
BO

B1 0

B2 1

B3 1

B4 3

BS 1

B6 5

B7 5

B8 5

DF

{}

{1}
{3}
{1}
{}

{3}
{7}
{3}
{7}

Variables def

{i}
{ac}
{b,c d}
{y.z,i}
{}
{ad}
{d}
{b}
{c}



Algorithm for inserting Phi Nodes

Globals ={a, b, c,d,i}

Blocks
Var

a

b

Blocks
11,5}
12,7}
{1,2,8}
{2,5,6}

{0,3}

WorkList: [ 1,5 ]

Phi Nodes

Block | IDOM
BO

B1 0

B2 1

B3 1

B4 3

BS 1

B6 5

B7 5

B8 5

DF

{}

{1}
{3}
{1}
{}

{3}
{7}
{3}
{7}

Variables def

{i}
{ac}
{b,c d}
{y.z,i}
{}
{ad}
{d}
{b}
{c}



Algorithm for inserting Phi Nodes

Globals ={a, b, c,d,i}

Blocks
Var

a

b

Blocks
11,5}
12,7}
{1,2,8}
{2,5,6}

{0,3}

WorkList: [ 5,1 ]

Phi Nodes

{1}

Block | IDOM
BO

B1 0

B2 1

B3 1

B4 3

BS 1

B6 5

B7 5

B8 5

DF

{}

{1}
{3}
{1}
{}

{3}
{7}
{3}
{7}

Variables def

{i}
{ac}
{b,c d}
{y.z,i}
{}
{ad}
{d}
{b}
{c}



Algorithm for inserting Phi Nodes

Globals ={a, b, c,d,i}

Blocks Var | Blocks Phi Nodes
a {15} {1,3}
b {27}
c {1,228}
d {256}
i 1{0,3}

WorkList: [ 1,3 ]

Block | IDOM
BO

B1 0

B2 1

B3 1

B4 3

BS 1

B6 5

B7 5

B8 5

DF

{}

{1}
{3}
{1}
{}

{3}
{7}
{3}
{7}

Variables def

{i}
{ac}
{b,c d}
{y.z,i}
{}
{ad}
{d}
{b}
{c}



Algorithm for inserting Phi Nodes

Globals ={a, b, c,d,i}

Blocks Var | Blocks Phi Nodes
a {1,5} {1,3}
b {27}
c | {1,28}
d {256}
i {0,3}
WorkList: [ ]

Block | IDOM
BO

B1 0

B2 1

B3 1

B4 3

BS 1

B6 5

B7 5

B8 5

DF

{}

{1}
{3}
{1}
{}

{3}
{7}
{3}
{7}

Variables def

{i}
{ac}
{b,c d}
{y.z,i}
{}
{ad}
{d}
{b}
{c}



Algorithm for inserting Phi Nodes

Globals ={a, b, c,d,i}

Blocks Var | Blocks Phi Nodes
a {1,5} {1,3}
b {27}
c {1,228}
d {256}
i 1{0,3}

WorkList: [ 2, 7 ]

Block | IDOM
BO

B1 0

B2 1

B3 1

B4 3

BS 1

B6 5

B7 5

B8 5

DF

{}

{1}
{3}
{1}
{}

{3}
{7}
{3}
{7}

Variables def

{i}
{ac}
{b,c d}
{y.z,i}
{}
{ad}
{d}
{b}
{c}



Algorithm for inserting Phi Nodes

Globals ={a, b, c,d,i}

Blocks Var | Blocks Phi Nodes
a {1,5} {1,3}
b {27} {1,3}
c {1,228}
d {256}
i 1{0,3}

WorkList: [ 1,2, 81

Block | IDOM
BO

B1 0

B2 1

B3 1

B4 3

BS 1

B6 5

B7 5

B8 5

DF

{}

{1}
{3}
{1}
{}

{3}
{7}
{3}
{7}

Variables def

{i}
{ac}
{b,c d}
{y.z,i}
{}
{ad}
{d}
{b}
{c}



Algorithm for inserting Phi Nodes

Globals ={a, b, c,d,i}

Blocks
Var | Blocks
a {1,5})
b {27}
c {1,238}
d {2,586}
i {0,3}

WorkList: [ 0, 3]

Phi Nodes
{1,3}
{1,3}
{1,3,7}
{1,3,7}

Block | IDOM
BO

B1 0

B2 1

B3 1

B4 3

BS 1

B6 5

B7 5

B8 5

DF

{}

{1}
{3}
{1}
{}

{3}
{7}
{3}
{7}

Variables def

{i}
{ac}
{b,c d}
{y.z,i}
{}
{ad}
{d}
{b}
{c}



Algorithm for inserting Phi Nodes

Globals ={a, b, c,d,i}

Blocks

Var

a

b

C

d

i
WorkList: [ ]

Blocks
{1,5}
12,7}
{1,2,8}
{2,5,6}

{0,3}

Phi Nodes
{1,3}
{1,3}
{1,3,7}
{1,3,7}

{1}

Block | IDOM
BO

B1 0

B2 1

B3 1

B4 3

BS 1

B6 5

B7 5

B8 5

DF

{}

{1}
{3}
{1}
{}

{3}
{7}
{3}
{7}

Variables def

{i}
{ac}
{b,c d}
{y.z,i}
{}
{ad}
{d}
{b}
{c}



Class Activity

Insert the Phi-nodes for the example below by identifying the blocks for each variable
(same example as in the class activity earlier in this lecture, and in lecture 2: SSA form)

BL: x « .. B1
E: )(I)+ 2 — Block IDOM DF
if (x>= a) jump B5 B2 B1 - {}
B2: if (y >= x) jump B4
B3: x—y+1 /\ B2 1 {2,6}
y—b*2
Jump 85 B3 B4 B3 2 {5}
B4: x —y+2
B5: if (x >= a) jump B2 B5
B6:w —x+2 BS 2 {2,6}
z—y*a
y—y+l \ B6 1 0

B6




Class Activity: Solution

Insert the Phi-nodes for the example below by identifying the blocks for each variable
(same example as in the class activity earlier in this lecture, and in lecture 2: SSA form)

Globals ={a, b, x,y, w}

Block IDOM DF
Blocks Blocks Phi-Nodes 81 : )
« B2 1 {2,6}
y B3 2 {5}
a B4 2 {5}
b B5 2 {2,6}
W B6 1 {}




Class Activity: Solution

Insert the Phi-nodes for the example below by identifying the blocks for each variable
(same example as in the class activity earlier in this lecture, and in lecture 2: SSA form)

Globals ={a, b, x,y, w}

Block Block IDOM DF
OCKS Blocks Phi-Nodes B1 i ()
x 1134} B2 1 (2,6}
y {1,346} 53 , (51
a {1} B4 2 (5}
b {1} B5 2 (2,6)
w {6} B6 1 {3




Class Activity: Solution

Insert the Phi-nodes for the example below by identifying the blocks for each variable
(same example as in the class activity earlier in this lecture, and in lecture 2: SSA form)

Globals ={a, b, x,y, w}

Blocks Block IDOM DF
Blocks Phi-Nodes B1 ] 0
x {1,3,4} {2,5,6} - 1 (261
y {1,3,4,6} - , .
L B4 2 {5}
b {1} . ; s
L B6 L ()




Class Activity: Solution

Insert the Phi-nodes for the example below by identifying the blocks for each variable
(same example as in the class activity earlier in this lecture, and in lecture 2: SSA form)

Globals ={a, b, x,y, w}

Socke Block IDOM DF
Blocks Phi-Nodes B1 _ {3
x [{1,3,4} {2,5,6} B2 1 {2,6}
y {1,3,4,6} {2,56} B3 2 {5}
a {1} B4 2 {5}
b {1} B5 2 {2,6}
w | {6} B6 1 {}




Class Activity: Solution

Insert the Phi-nodes for the example below by identifying the blocks for each variable
(same example as in the class activity earlier in this lecture, and in lecture 2: SSA form)

Globals ={a, b, x,y, w}

Socke Block IDOM DF
Blocks Phi-Nodes B1 ) ()
x [{1,3,4} {2,5,6} B2 1 {2,6}
y {1,3,4,6} {2,56} B3 2 {5}
a {1} {} B4 2 {5}
b {1} B5 2 {2,6}
w | {6} B6 1 {}




Class Activity: Solution

Insert the Phi-nodes for the example below by identifying the blocks for each variable
(same example as in the class activity earlier in this lecture, and in lecture 2: SSA form)

Globals ={a, b, x,y, w}

ook Block IDOM DF
Blocks Phi-Nodes B1 ] 0
{1,3,4} {2,5,6} B2 1 {2,6}
{1,3,4,6} {2,56} B3 2 {5}
{1} {} B4 2 {5}
{1} {} B5 2 {2,6}
{6} B6 1 {}




Class Activity: Solution

Insert the Phi-nodes for the example below by identifying the blocks for each variable
(same example as in the class activity earlier in this lecture, and in lecture 2: SSA form)

Globals ={a, b, x,y, w}

Block Block IDOM DF
OCKS Blocks Phi-Nodes B1 - {3
{1,3,4} {2,5,6} B2 1 {2,6}
{1,3,4,6} {2,506} B3 2 {5}
{1} {} B4 2 {5}
{1} {} B5 2 {2,6}
{6) {} B6 1 {}




Outline

Def-Use Chains

Why do we need SSA form ?

Dominator Trees and Dominance Frontiers
Inserting Phi-Nodes

Renaming Variables

Converting Out of SSA form



Intuition behind Renaming Algorithm

Renaming proceeds in a top-down fashion keeping track of variable lifetimes

Use a stack to keep track of the latest name of a variable

Push a new name onto the stack when seeing a new definition

Use the version at the top of the stack in the uses

Pop the name from the stack when exiting block and def goes out of scope



Renaming Variables: Algorithm Sketch

Once the Phi-Nodes have been inserted, we need to rename both Phi-nodes and
regular variables (each def should have a unique index, and dominate its uses)

Keep an array of stacks, one per variable - name at top of stack most recent
Generate unique names for each Phi-function, and push them onto the stack
Rewrite each operation in the block with version from top of stack

Rewrite definition by inventing and pushing a new name

Pop the names generated in block upon exit from the block

Perform the above operations in a recursive manner in a pre-order walk over the
DOM tree (i.e., go from the root node to the children)



Renaming Algorithm: Pseudo-code

Generating new names... Rename(b)
for each ¢-functioninb, x — ¢(...)
for each global name i rename x as NewName(x)
counterfi] - 0 for each operation “x — yop z”’inb
stack[i] - @ rewrite y as top(stack[y])
call Rename(n,) rewrite z as top(stack[z])

rewrite x as NewName(x)
NewName(n)

i — counter[n]

counter[n] —~ counter[n] + 1
push n. onto stack[n] for each successor s of b in dom. tree
return n, Rename(s)

for each successor of b in the CFG
rewrite appropriate ¢ parameters

for each operation “x —« yop z”’inb

pop(stack[x])
70



Outline

Def-Use Chains

Why do we need SSA form ?

Dominator Trees and Dominance Frontiers
Inserting Phi-Nodes

Renaming Variables

Converting Out of SSA form



SSA Deconstruction

At some point, we need executable code

Few machines implement ¢ operations

Need to fix up the flow of values

Basic idea

> Insert copies in ¢-function pred’s

> Simple algorithm

Works in most cases

> Adds lots of copies

Most of them coalesce away

N e

Xi7 < ¢ (X10%44)

e — X17

1

17

10

* 72




Translation Out of SSA Form
The Lost Copy Problem

Y 1 i, < @(1,,1))
i <« 1 + 1 yO il
i, « §, +1
d « v + .. Z, — Yy ot o

Original code In SSA form

Copy folding has nothing to do
with either i or SSA form.

l i, 1
io‘_ 1 .9 1
. I .
l1<—®'(10,12) i, « } + 1
12<—11+ 1 i, 1,
v
7 o« 1 + Z o« 1 +

With copies folded Copies naively
inserted

The assignment to z now

receives the wrong

value.

To fix this problem, the compiler needs to create a
temporary name to hold the penultimate value of i.



Translation Out of SSA Form

The Swap Problem l
l l l i
y «—
X «— .. XO — .. XO — XO -
y T yO < yO < L 0
A yl T yO
t 4 x X, o« P(x,,x,) X, o= $(x,,v,) X 1= v,
X 4y Y, < P(v,rY,) Y, < P(y,rx)) Vi = X
y 4 t tO — Xl
v X2 - yl
y2 - to 1
Original code In SSA Form Copies folded Copies naively
inserted

Code is incorrect

This problem arises when a @-function argument is defined by a @-function
in the same block. Requires one or more copies & temporary names.



Outline

Def-Use Chains

Why do we need SSA form ?

Dominator Trees and Dominance Frontiers
Inserting Phi-Nodes

Renaming Variables

Converting Out of SSA form



