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Constant Propagation
Lot of program statements result in constant values - these must be propagated
along the DEF-USE chains

Leads to less computation, exposes optimization opportunities

Many branches may also become redundant or unidirectional due to constants,
thereby simplifying control-flow, and further optimizations



Simple Examples: What'’s the Value of | ?

J=1; | = 1

if (J > 0) while (...) {
=1 J=1

else I =1(...);
| =2;



Simple Examples: What'’s the Value of | ?

J:‘]’ =1
if (J > 0) while (...) {
|=1: J=1
I =1(...)
else
| =2;
| =J;

Needs both constant propagation and
conditional branch evaluation to get |

. Needs “Optimistic” Initial Assumption (Focus of
(We’ll not cover this - needs SCCP) our class - SSCP)
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Constant Lattice

T Don’t know

A7 INN

-2 - 0 l, g

ANV

J_ Not a constant

We represent the constants as a Lattice, with special elements

- T (Top): Represents as yet “unknown” values
- 1 (Bottom): Represents values that are not constants for sure



Meet Operator

Represented as A, and has the following rules: T Do LR

* c,Ac,=c,ifc,=c,else L // \\
* c,ANT=c,

N7

_L Not a constant

e TAl=1

Intuition: When you do a meet of two elements x and y, you descend the
lattice to find a “greatest lower bound” of them

- Represents facts about what is known and unknown in the program

- -2 -1 0 1 2 =



Constant Propagation as traditional Data-flow - 1

Domain is the set of pairs <v,,c> where v. is a variable and c. € C

CONSTANTS(b) = /\ (CONSTANTS(p))

p € preds(b) fp
e A performs a pairwise meet on two sets of pairs

* fp(x) is a block specific function that models the effects of block p on
the <v,c.> pairs in x

Constant propagation is a forward flow problem



Constant Propagation as traditional Data-flow - 2

* |If p has one statement then

X — y with CONSTANTS(p) = {...<x,,>,...<y,l,>...}
then f (CONSTANTS(p)) = CONSTANTS(p) - <x,|,> + <x,\,>

X — y opz with CONSTANTS(p) = {...<x,l,>,...<y,l>... >,...<z,l>...}
then f (CONSTANTS(p)) = CONSTANTS(p) - <x,|,> + <x,l, op |.>

* |f p has n statements then

fp(CONSTANTS(p)) =f (f _(f (.. T,(f(CONSTANTS(p)))...)))
where f, is the function generated by the i statement in p



Constant Propagation over DEF-USE Chains
Complexity

* Initial step takes O(1) time per operation

* Propagation takes

|USES(v,i )| for each i pulled from Worklist

Summing over all ops, becomes |edges in DEF-USE graph|
A definition can be on the worklist twice (lattice height)

O(|operations| + |edges in DU graph|)

vV VvV Vv

V

Can we do better?
* Not on the def-use chains ...

* Would like to compute A when new values are “born”
> Where control flow brings chains together ...

11



How does SSA help ?

Only update a variable when any of its operands change in the lattice

X « 17 - 4
There are four birth points for x

Valueisborn:17-4 ANy-z AN 13 A a+b

* Need to identify birth points

* SSA form allows easy identification of
birth points and following their edges

S « W — X
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Main ldea

Only propagate constant information on edges of vars that have been modified

- Use SSA form to easily find all the uses of a variable
- Keep adding edges to a worklist until you run out of edges

Variables assigned to constants are initially marked to a constant value
When you come to a Phi-Node, perform a meet operation over the operands
For all other nodes, it depends on how complex are the semantics we implement

- Need to encode simple arithmetic rules (e.g., const + const = const)
- Can be quite complex to capture all possible permuations



Using SSA — Sparse Constant Propagation

Value(e)

WorkList @ Ci

if its value is known

V expression, e { TOP if its value is unknown

V SSA edge s = <u,v>
if Value(u) = TOP then
add s to WorkList

BOT if its value is known to vary (e.g., 1/O ops)

i.e., ois “a<—b op v’ or “a <—v op b”

while (WorkList # 9)
remW
let o be the operation that uses v

if Value(o) # BOT then

t — result of evaluating o
if t # Value(o) then

Value(0) — t

vV SSA edge <o,x>

15

add <o,x> to WorkList




Example of SSCP Algorithm

iy— 12
Time i0 i1
while ( ... ) Step
i, — O iyi,)
X—i,*17
i, :
I2<—
1
iy —J 5

WorkList: [ ]

- Initial

i2



Example of SSCP Algorithm: Time Step O

iy— 12
Time i0 i X i
while ( ... ) Step
I, — .6(10,13)
X—i,*17
] 1 0 12
iy ...
1
iy —J )

WorkList: [ i1 ]



Example of SSCP Algorithm: Time Step O

iy— 12
Time i0 i X i
while ( ... ) Step
I, — .6(10,13)
X—i,*17
] 1 0 12 12
iy ...
1
iy —J )

WorkList: [ X, j ]

i2



Example of SSCP Algorithm: Time Step O

iy— 12
Time i0 i X i
while ( ... ) Step
I, — .6(10,13)
X—i,*17
J—1 0 12 12 204
iy ...
1
iy —J )

WorkList: [ ]

i2



Example of SSCP Algorithm: Time Step O

iy— 12
Time i0 i X i
while ( ... ) Step
I, — .6(10,13)
X—i,*17
J—1 0 12 12 204 12
iy ...
1
iy —J )

WorkList: [ i3 ]

i2



Example of SSCP Algorithm: Time Step O

iy— 12
Time i0 i X i
while ( ... ) Step
I, — .6(10,13)
X—i,*17
J—1 0 12 12 204 12
iy ...
1
iy —J )

WorkList: [ i1 ]

i2

12



Example of SSCP Algorithm: Time Step 1

iy— 12
Time | i0 i1 X j i2
while (... ) Step
I, — .6(10,13)
X—i,*17
J—1 0 12 12 204 12
I, <— ...
2
1 12
iy —J 5

WorkList: [ ] — Empty worklist (converged !)

12



What'd happen if we had this code instead?

i0<— 12

while (... )
i, — D(i,i,)
X—i,*17
i

I2<—

iy—Jj*2

Time
Step

i0

12

WorkList: [ i3 ]

i1

12

204

12

i2



Example of SSCP Algorithm: Time Step O

iy— 12
Time i0 i X i

while ( ... ) Step

I, — .6(10,13)

X—i,*17

J—1 0 12 12 204 12

iy ...

1

iy—Jj*2 5

WorkList: [ i1 ]

i2

24



Example of SSCP Algorithm: Time Step 1

iy— 12
Time i0 i X i

while ( ... ) Step

I, — .6(10,13)

X—i,*17

=1 0 12 12 204 12

i, ...

2

1 BOT

iy—Jj*2 5

WorkList: [ X, j ]

i2

24



Example of SSCP Algorithm: Time Step 1

iy— 12
Time i0 i X i

while ( ... ) Step

I, — .6(10,13)

X—i,*17

=1 0 12 12 204 12

iy ...

1 BOT BOT

iy—Jj*2 5

WorkList: [ ]

i2

24



Example of SSCP Algorithm: Time Step 1

iy— 12
Time i0 i X i

while ( ... ) Step

I, — .6(10,13)

X—i,*17

=1 0 12 12 204 12

iy ...

1 BOT BOT BOT

iy—Jj*2 5

WorkList: [ i3 ]

i2

24



Example of SSCP Algorithm: Time Step 1

iy— 12
Time 0 i1 X j i2

while (... ) Step

I, — .6(10,13)

X—i,*17

=1 0 12 12 204 12

I, <— ...

.. 1 BOT | BOT | BOT

iy—Jj*2 5

WorkList: [ ] — i1 is already BOT, so stop

24

BOT



B1

B6

Class Activity

X0 5
y0 «— 8
a0 —y0-2
b0 «— 6
If (x0>= a0) goto B6

X1+ Phi(x0, x4)
y1 < Phi(y0, y4)
If (y1<x1) goto B3

x5 «— Phi(x0, x4)
y5 «— Phi(y0, y4)

return

x4« Phi(x2, x3)
y4 «— Phi(y2, y3)
If (x4>=a0) goto B6
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