Copyright 2011, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make
copies of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Using SSA Form

Lecture 5: CPEN 400P

Karthik Pattabiraman, UBC

Outline

Constant Propagation
Traditional Data-flow: without SSA

Sparse Simple Constant Propagation (SCCP)

Constant Propagation
Lot of program statements result in constant values - these must be propagated
along the DEF-USE chains

Leads to less computation, exposes optimization opportunities

Many branches may also become redundant or unidirectional due to constants,
thereby simplifying control-flow, and further optimizations

Simple Examples: What'’s the Value of | ?

J=1; | = 1

if (J > 0) while (...) {
=1 J=1

else I =1(...);
| =2;

Simple Examples: What'’s the Value of | ?

J:‘]’ =1
if (J > 0) while (...) {
|=1: J=1
I =1(...)
else
| =2;
| =J;

Needs both constant propagation and
conditional branch evaluation to get |

. Needs “Optimistic” Initial Assumption (Focus of
(We’ll not cover this - needs SCCP) our class - SSCP)

Outline

Constant Propagation
Traditional Data-flow: without SSA

Sparse Simple Constant Propagation (SSCP)

Constant Lattice

T Don’t know

A7 INN

-2 - 0 l, g

ANV

J_ Not a constant

We represent the constants as a Lattice, with special elements

- T (Top): Represents as yet “unknown” values
- 1 (Bottom): Represents values that are not constants for sure

Meet Operator

Represented as A, and has the following rules: T Do LR

* c,Ac,=c,ifc,=c,else L // \\
* c,ANT=c,

N7

_L Not a constant

e TAl=1

Intuition: When you do a meet of two elements x and y, you descend the
lattice to find a “greatest lower bound” of them

- Represents facts about what is known and unknown in the program

- -2 -1 0 1 2 =

Constant Propagation as traditional Data-flow - 1

Domain is the set of pairs <v,,c> where v. is a variable and c. € C

CONSTANTS(b) = /\ (CONSTANTS(p))

p € preds(b) fp
e A performs a pairwise meet on two sets of pairs

* fp(x) is a block specific function that models the effects of block p on
the <v,c.> pairs in x

Constant propagation is a forward flow problem

Constant Propagation as traditional Data-flow - 2

* |If p has one statement then

X — y with CONSTANTS(p) = {...<x,,>,...<y,l,>...}
then f (CONSTANTS(p)) = CONSTANTS(p) - <x,|,> + <x,\,>

X — y opz with CONSTANTS(p) = {...<x,l,>,...<y,l>... >,...<z,l>...}
then f (CONSTANTS(p)) = CONSTANTS(p) - <x,|,> + <x,l, op |.>

* |f p has n statements then

fp(CONSTANTS(p)) =f (f _(f (.. T,(f(CONSTANTS(p)))...)))
where f, is the function generated by the i statement in p

Constant Propagation over DEF-USE Chains
Complexity

* Initial step takes O(1) time per operation

* Propagation takes

|USES(v,i)| for each i pulled from Worklist

Summing over all ops, becomes |edges in DEF-USE graph|
A definition can be on the worklist twice (lattice height)

O(|operations| + |edges in DU graph|)

vV VvV Vv

V

Can we do better?
* Not on the def-use chains ...

* Would like to compute A when new values are “born”
> Where control flow brings chains together ...

11

How does SSA help ?

Only update a variable when any of its operands change in the lattice

X « 17 - 4
There are four birth points for x

Valueisborn:17-4 ANy-z AN 13 A a+b

* Need to identify birth points

* SSA form allows easy identification of
birth points and following their edges

S « W — X

Outline

Constant Propagation
Traditional Data-flow: without SSA

Sparse Simple Constant Propagation (SSCP)

Main ldea

Only propagate constant information on edges of vars that have been modified

- Use SSA form to easily find all the uses of a variable
- Keep adding edges to a worklist until you run out of edges

Variables assigned to constants are initially marked to a constant value
When you come to a Phi-Node, perform a meet operation over the operands
For all other nodes, it depends on how complex are the semantics we implement

- Need to encode simple arithmetic rules (e.g., const + const = const)
- Can be quite complex to capture all possible permuations

Using SSA — Sparse Constant Propagation

Value(e)

WorkList @ Ci

if its value is known

V expression, e { TOP if its value is unknown

V SSA edge s = <u,v>
if Value(u) = TOP then
add s to WorkList

BOT if its value is known to vary (e.g., 1/O ops)

i.e., ois “a<—b op v’ or “a <—v op b”

while (WorkList # 9)
remW
let o be the operation that uses v

if Value(o) # BOT then

t — result of evaluating o
if t # Value(o) then

Value(0) — t

vV SSA edge <o,x>

15

add <o,x> to WorkList

Example of SSCP Algorithm

iy— 12
Time i0 i1
while (...) Step
i, — O iyi,)
X—i,*17
i, :
I2<—
1
iy —J 5

WorkList: []

- Initial

i2

Example of SSCP Algorithm: Time Step O

iy— 12
Time i0 i X i
while (...) Step
I, — .6(10,13)
X—i,*17
] 1 0 12
iy ...
1
iy —J)

WorkList: [i1]

Example of SSCP Algorithm: Time Step O

iy— 12
Time i0 i X i
while (...) Step
I, — .6(10,13)
X—i,*17
] 1 0 12 12
iy ...
1
iy —J)

WorkList: [X, j]

i2

Example of SSCP Algorithm: Time Step O

iy— 12
Time i0 i X i
while (...) Step
I, — .6(10,13)
X—i,*17
J—1 0 12 12 204
iy ...
1
iy —J)

WorkList: []

i2

Example of SSCP Algorithm: Time Step O

iy— 12
Time i0 i X i
while (...) Step
I, — .6(10,13)
X—i,*17
J—1 0 12 12 204 12
iy ...
1
iy —J)

WorkList: [i3]

i2

Example of SSCP Algorithm: Time Step O

iy— 12
Time i0 i X i
while (...) Step
I, — .6(10,13)
X—i,*17
J—1 0 12 12 204 12
iy ...
1
iy —J)

WorkList: [i1]

i2

12

Example of SSCP Algorithm: Time Step 1

iy— 12
Time | i0 i1 X j i2
while (...) Step
I, — .6(10,13)
X—i,*17
J—1 0 12 12 204 12
I, <— ...
2
1 12
iy —J 5

WorkList: [] — Empty worklist (converged !)

12

What'd happen if we had this code instead?

i0<— 12

while (...)
i, — D(i,i,)
X—i,*17
i

I2<—

iy—Jj*2

Time
Step

i0

12

WorkList: [i3]

i1

12

204

12

i2

Example of SSCP Algorithm: Time Step O

iy— 12
Time i0 i X i

while (...) Step

I, — .6(10,13)

X—i,*17

J—1 0 12 12 204 12

iy ...

1

iy—Jj*2 5

WorkList: [i1]

i2

24

Example of SSCP Algorithm: Time Step 1

iy— 12
Time i0 i X i

while (...) Step

I, — .6(10,13)

X—i,*17

=1 0 12 12 204 12

i, ...

2

1 BOT

iy—Jj*2 5

WorkList: [X, j]

i2

24

Example of SSCP Algorithm: Time Step 1

iy— 12
Time i0 i X i

while (...) Step

I, — .6(10,13)

X—i,*17

=1 0 12 12 204 12

iy ...

1 BOT BOT

iy—Jj*2 5

WorkList: []

i2

24

Example of SSCP Algorithm: Time Step 1

iy— 12
Time i0 i X i

while (...) Step

I, — .6(10,13)

X—i,*17

=1 0 12 12 204 12

iy ...

1 BOT BOT BOT

iy—Jj*2 5

WorkList: [i3]

i2

24

Example of SSCP Algorithm: Time Step 1

iy— 12
Time 0 i1 X j i2

while (...) Step

I, — .6(10,13)

X—i,*17

=1 0 12 12 204 12

I, <— ...

.. 1 BOT | BOT | BOT

iy—Jj*2 5

WorkList: [] — i1 is already BOT, so stop

24

BOT

B1

B6

Class Activity

X0 5
y0 «— 8
a0 —y0-2
b0 «— 6
If (x0>= a0) goto B6

X1+ Phi(x0, x4)
y1 < Phi(y0, y4)
If (y1<x1) goto B3

x5 «— Phi(x0, x4)
y5 «— Phi(y0, y4)

return

x4« Phi(x2, x3)
y4 «— Phi(y2, y3)
If (x4>=a0) goto B6

Outline

Constant Propagation
Traditional Data-flow: without SSA

Sparse Simple Constant Propagation (SSCP)

