
Inter-procedural Analysis
Lecture 6: CPEN 400P

Karthik Pattabiraman, UBC

Copyright 2011, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make
copies of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Outline

Why do we need inter-procedural(IP) analysis ?

Challenges in IP analysis

Call Graph construction

Interprocedural Constant Propagation

3

Motivation

Why consider analysis & optimization of whole programs?

1. To produce better code around call sites

● Avoid saves & restores

● Understand cross-call data flow

2. To produce tailored copies of procedures

● Often, full generality is unneeded

● Constant-valued parameters & globals, aliases

3. To provide sharper global analysis

● Improve on conservative assumptions

● Particularly true for global variables

Inter-procedural Analysis

Consider the following program. Let’s say we want to perform const propagation.

int x = 5;

foo(&x);

y = x + 2;

Without knowing anything about what foo does, it’s not possible to conclude
whether or not y is a constant.

Function calls can also have side-effects (affecting global vars) and return values

What’s Interprocedural Analysis ?

Analyzing the program across procedure boundaries and functions

Running analysis on the whole program - more precise analysis results

Why not just create a single large graph and analyze it all ?

- Too expensive to do in practice
- Too many low-level details
- Doesn’t work where we don’t know calls in advance (e.g., recursive functions)
- Can be effective for some special cases though

Outline

Why do we need inter-procedural(IP) analysis ?

Challenges in IP analysis

Call Graph construction

Interprocedural Constant Propagation

Challenges in IP analysis

What happens at a procedure call?

• Use worst case assumptions about side effects

• Leads to imprecise intraprocedural information

• Leads to explosion in intraprocedural def-use chains

8

What are the problems?

procedure joe(i,j,k)
l ← 2 * k
if (j = 100)

then m ← 10 * j
else m ← i

call ralph(l,m,k)
o ← m * 2
q ← 2
call ralph(o,q,k)
write q, m, o, l

procedure main
call joe(10, 100, 1000)

procedure ralph(a,b,c)
b ← a * c / 2000

What value is printed for q?
Did ralph() change it?

Since j = 100 this
always executes the
then clause

and always m has the value 1000

With perfect knowledge, the compiler could
replace this with write 1000, 1000, 2000,
2000, and the rest is dead !

*

9

Interprocedural Analysis

The compiler needs to understand call sites

• Limit loss of information at calls

• Shrink intraprocedural data structures
● Def-use chains in PFC

• Solve simple intraprocedural problems

Interprocedural effects limit intraprocedural analysis

• Grove & Torczon showed major impact of call sites on SCCP
● Each call site killed many potential constants

• Knowledge about modifications eliminated most of it

10

Interprocedural Analysis

Definitions

• May problems describe events that might happen in a call

● May Modify sets include any name the call might define
● May Reference sets include any name the call might use

• Must problems describe events that always happen in a call

● Must Modify set describes KILLs

*

Outline

Why do we need inter-procedural(IP) analysis ?

Challenges in IP analysis

Sensitivity of Analysis

Call Graph construction

Interprocedural Constant Propagation

Different Kinds of Sensitivity

Analysis can trade-off precision for cost depending on the types of sensitivity

1. Flow-sensitive
2. Path sensitive
3. Context sensitive

Flow-Sensitive Analysis

Takes into account the order of execution of program statements. Consider:

x = 1;

…

x = 2;

Is the value of x a constant (assume non-SSA form) ?

It depends on the analysis. Flow-sensitive: Yes (it can be 1 or 2)

Flow-insensitive: No (Meet of 1 and 2 is BOT)

Path-Sensitive Analysis

Path-sensitive: Takes into account specific paths in the CFG for analysis. Consider

If (...)

x = 1;

else

x = 2;

Is x a constant ? Path-sensitive analysis will say ‘Yes’, Path-insensitive says ‘No’

Number of paths in CFG can be exponential with no. of conditional branches

Context-Sensitive Analysis

Context-sensitive: Takes individual call-sites into account separately. Consider

x = foo(1)

x = foo(2)

int foo(x) { return x; }

Is x a constant ? It depends. Context-sensitive: yes, context-insensitive: no

- Context-sensitive will consider each call-site separately
- Context-sensitive will need to reanalyze the caller for each site (expensive !)

Class Activity

Consider the program below. What’d be the set of paths in the program
considered by a context-sensitive analysis Vs a context insensitive analysis ?
main() {

1: p(7);
2: p(42);

}

p(int n) {
3: q(n);

}

q(int k) {
return k;

}

Class Activity

Consider the program below. What’d be the set of paths in the program
considered by a context-sensitive analysis Vs a context insensitive analysis ?
main() {

1: p(7);
2: p(42);

}

p(int n) {
3: q(n);

}

q(int k) {
return k;

}

Context-sensitive Context-insensitive

main:1 main:2

p1 p2

q1 q2

main

 p

 q

Outline

Why do we need inter-procedural(IP) analysis ?

Challenges in IP analysis

Sensitivity of Analysis

Call Graph construction

Interprocedural Constant Propagation

Call Graph

Represents the call of functions in the program

- Nodes are the functions in the program
- Edges go from call sites to functions
- If multiple calls are possible, they’re represented as parallel edges
- Recursive calls are represented as self-loops
- Typically flow-insensitive (no execution order)

Static call graph has all possible function calls in the program (Conservative)

- May lead to false-positives and over-approximations in the analysis

Call graph Example (Java)

Source: GraphEvo: Characterizing and Understanding Software Evolution using Call Graphs

https://www.researchgate.net/publication/337402685_GraphEvo_Characterizing_and_Understanding_Software_Evolution_using_Call_Graphs

21

Constructing the Call Graph
Solution: Ryder, 1979 (non-recursive Fortran)

• Build subgraph described by literal constants

• Propagate sets of values for procedure variables

• Complexity is linear in size of call graph

Procedure-valued variables complicate the process

• Must track values of variables (constant propagation)
● Typically (& fortunately) no arithmetic

• Results can be approximate (overestimate) or precise

22

Constructing the Call Graph

procedure main
call compose(a,c)
call compose(b,d)

procedure compose(x,y)
call x(y)

procedure a(z)
call z()

procedure b(z)
call z()

procedure c()
…

procedure d()
...

main

a b

c d

Precise call graphImprecise call graph

compose

Class Activity: Draw the call-graph for the code below

f() {
 1: g();
 2: g();
 3: h();
}

g() {
 4: h();
 5: i();
}

h() {
 6: f();
 7: i();
}

 i() { … }

Class Activity: Draw the call-graph for the code below

f() {
 1: g();
 2: g();
 3: h();
}

g() {
 4: h();
 5: i();
}

h() {
 6: f();
 7: i();
}

 i() { … }

f

g
h

i

Outline

Why do we need inter-procedural(IP) analysis ?

Challenges in IP analysis

Sensitivity of Analysis

Call Graph construction

Interprocedural Constant Propagation

What’s the main idea ?

Need to track whether or not something is a constant across function calls

Strawman approach:

- Duplicate the CFG of the called function inside the calling function (inlining)
- Too expensive in practice; doesn’t work with recursive functions

Instead, we construct the call graph of the program and use jump and support
functions to abstract the effect of each function call on its formal parameters

- Simply apply the jump function rather than reanalyze the function each time
- May require multiple passes through the call graph for it to converge

Formal definition of Jump function

Jump function models the set of formal parameters passed to a function and
whether they are constant (i.e., their value in the Const lattice): Js

X

At each call site, there’s a vector of support functions mapping each argument to a
formal parameter of the callee, say (a, b, c, ..)

Js = [Js
a Js

b Js
c]

Support functions are used to denote the mapping of the formal parameters to the
variables of the function containing s: Support(Js

X)

Support(Js
X) = Τ if Value(y) = Τ for any y 𝝐 Support(Js

X)

Algorithm Sketch

Keep track of the value of each formal parameter x of a procedure p in Value(x)

Initialization Phase

- Set the values of all fields to Τ
- Iterate over each actual parameter a at each call-site
- Update the Value field of the a’s formal parameter f by Value(f) ∧ Js

F

- Add f to the Worklist

Second Phase

- Repeatedly select a formal parameter from the worklist ‘x’ and propagate it
- If there’s any change in Value(x) then add x to the Worklist

Algorithm

Outline

Why do we need inter-procedural(IP) analysis ?

Challenges in IP analysis

Sensitivity of Analysis

Call Graph construction

Interprocedural Constant Propagation

