Pointer/Alias Analysis

Lecture 7: CPEN 400P

Karthik Pattabiraman, UBC

(Based on Stephen Chong's lecture at Harvard Univ., CS252, and Vikram Adve's CS526 at the Univ. of Illinois)

Outline

What is pointer analysis ?

Types of pointer analysis

Anderson's analysis

Steensgard analysis

What's pointer analysis ?

Pointer analysis: What memory locations can a pointer expression refer to?

Alias analysis: When do two pointer expressions refer to the same location?

int x;

p = &x;

q = p;

What locations alias each other ?

*p and *q alias, as do x and *p, and x and *q

What causes Aliasing ?

Pointers, Pointer arithmetic etc.

- See previous slide

Call by reference

Array indexing, e.g., a[i], i = j; $a[j] \rightarrow a[i]$ and a[j] alias

Virtual functions in C++ (use of vtable)

Many other cases

What's the use of pointer analysis ?

Useful in many analysis

- Live-out: Can lead to variables being killed

p = &x;

- Constant propagation: can lead to spurious constants

Challenges of pointer analysis

- 1. Pointers to pointers, which can occur in many ways:
 - Take address of pointer
 - Pointer to structure containing pointer
 - Pass a pointer to a procedure by reference
- 2. Aggregate objects: structures and arrays containing pointers
- 3. Recursive data structures (lists, trees, graphs, etc.)

closely related problem: anonymous heap locations

4. Control-flow: analyzing different data paths

5. Inter-procedural analysis is crucial

Common Simplifying Assumptions

- 1. Aggregate objects: arrays (and perhaps structures) containing pointers
 - Simple solution: treat as a single big object!
 - Pointer arithmetic is only legal for traversing an array:

 $q = p \pm i$ and q = &p[i] are handled the same as q = p

- 2. Recursive data structures (lists, trees, graphs, etc.)
 - Compute aliases, not "shape"
 - Use simplified naming schemes for heap objects (later slide)
- 3. Control-flow: analyzing different data paths
 - Flow-insensitive, path insensitive analysis

Outline

What is pointer analysis ?

Types of pointer analysis

Anderson's analysis

Steensgard analysis

Flow-sensitivity

- Flow-sensitive analysis is one that computes a distinct result for each program point

- Flow-insensitive analysis generally computes a single result for an entire procedure or an entire program

- Flow-sensitive is too expensive in practice and rarely used
 - All the pointer analysis we'll consider in this class are **flow-insensitive**
 - SSA provides a limited form of flow-sensitivity within a procedure

Context Sensitivity

A context-sensitive interprocedural analysis computes results that may hold only for realizable paths through a program.

Needed for scaling up to 1000s of lines of code especially for security & reliability

Need to consider many parameters

- Heap cloning vs. no cloning: Cloning gives greater context-sensitivity
- Bottom-up vs. top-down: Does final result for a procedure include only "realizable" behavior from all contexts?
- Handling of recursive functions: Does analysis retain context-sensitivity within SCCs in the call graph?

Modeling memory locations example

```
T* newObj = new T;
```

// Many distinct objects allocated here

```
newObj->next = (--len == 0)?
```

```
NULL : makelist(len);
```

return newObj;

}

return new T(n);

goo(int n) {

 $T^* q = qoo();$

How do we model memory locations ?

Global variables - Use a single node

Local variables - use a single node *per context*

Dynamically allocated memory - potentially *unbounded* locations at runtime

- One node for entire heap (too imprecise)
- One node for each type (requires type analysis
- One node per calling site (can lead to conflation across calling context)
- One node per calling context, i.e., for each allocation statement

"May" versus "Must" Analysis

May analysis: Aliasing that may occur during execution

Must analysis: Aliasing that *must* occur during execution

Consider liveness analysis: *p = *q + 4;

What's the VarKill set for the statement ? What about the UEVar set ?

- May analysis: if *q may alias y, then y is in the UEVar set
- Must analysis: if *p must alias x, then x is in the VarKill set

Problem Statement

Flow-insensitive, May analysis

Assume program consists of only statements of the forms

- p = &a;
- p = q;
- *p = q;
- p = *q;

Assume pointers, q and address-taken variables are disjoint

We want to compute the points-to pairs, i.e., which pointer points to which variable

Outline

What is pointer analysis ?

Types of pointer analysis

Anderson's analysis

Steensgard analysis

Andersen-style pointer analysis

- View pointer assignments as subset constraints
- Use constraints to propagate points-to information
- Takes O(N^3) time in the general case

Constraint type	Assignment	Constraint	Meaning
Base	a = &b	a ⊇ {b}	$loc(b) \in pts(a)$
Simple	a = b	a⊇b	$pts(a) \supseteq pts(b)$
Complex	a = *b	a⊇*b	$\forall v \in pts(b). pts(a) \supseteq pts(v)$
Complex	*a = b	*a⊇b	$\forall v \in pts(a). pts(v) \supseteq pts(b)$

Andersen-style pointer analysis

• Can solve these constraints directly on sets pts(p)

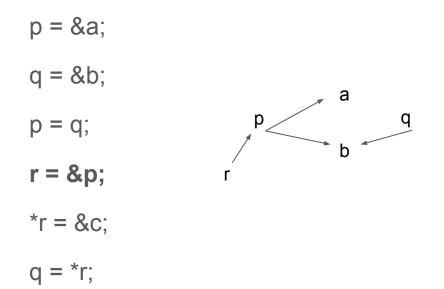
p = &a; q = &b; p = q; r = &p; *r = &c; q = *r;

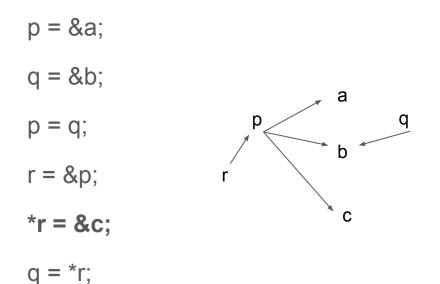
 $\rightarrow a$

$$p = \&a p \to a$$

 $q = \&b q \to b$
 $p = q;$
 $r = \&p$
* $r = \&c$
 $q = *r;$

p = &a; q = &b;а q р **p** = q; b r = &p; *r = &c; q = *r;

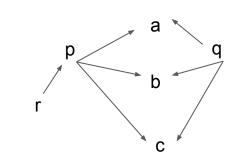




p = &a; q = &b;

- p = q;
- r = &p;

*r = &c;



Points-to	Set
р	{a, b, c}
q	{ <mark>a</mark> , b, c}
r	{p}
а	{}
b	{}
С	{}

q = *r;

Class Activity: Anderson's analysis

p = &a	p → a
q = &b	$p \longrightarrow a$ $q \longrightarrow b$
*p = q;	$p \xrightarrow{p} a \xrightarrow{q} b$
r = &c	$p \xrightarrow{q} a \xrightarrow{r} b r \xrightarrow{r} c$
s = p;	$p_{s} \xrightarrow{q} b r \xrightarrow{c} c$
t = *p;	$p \xrightarrow{p} a \xrightarrow{r} c$ $t \xrightarrow{q} b$
*s = r;	$p_s = a + r + c$ t = q = b

Points-to	Set
р	{a}
q	{b}
r	{C}
S	{a}
t	{b, c}
а	{b, c}
b	{}
С	{}

Andersen-style as graph closure

- Can be cast as a graph closure problem
- One node for each pts(p), pts(a)

Assgmt.	Constraint	Meaning	Edge
a = &b	a ⊇ {b}	$b \in pts(a)$	no edge
a = b	a⊇ b	$pts(a) \supseteq pts(b)$	$b \rightarrow a$
a = *b	a⊇*b	$\forall v \in pts(b). pts(a) \supseteq pts(v)$	no edge
*a = b	*a⊇b	$\forall v \in pts(a). pts(v) \supseteq pts(b)$	no edge

- Each node has an associated points-to set
- Compute transitive closure of graph, and add edges according to complex constraints: O(N³)

Anderson's algorithm: O(N^3)

Let W = { v | $pts(v) \neq \emptyset$ } (all nodes with non-empty points to sets) While W not empty

> $v \leftarrow \text{select from W}$ for each $a \in pts(v)$ do for each constraint $p \supseteq^* v$ add edge $a \rightarrow p$, and add a to W if edge is new for each constraint $v \supseteq q$ add edge $q \rightarrow a$, and add q to W if edge is new for each edge $v \rightarrow q$ do $pts(q) = pts(q) \cup pts(v)$, and add q to W if pts(q) changed

Outline

What is pointer analysis ?

Types of pointer analysis

Anderson's analysis

Steensgard analysis

Steensgaard-style analysis

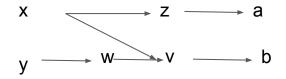
- Also a constraint-based analysis
- Uses equality constraints instead of subset constraints
- Less precise than Andersen-style, thus more scalable
 Almost linear time compared to O(N^3)

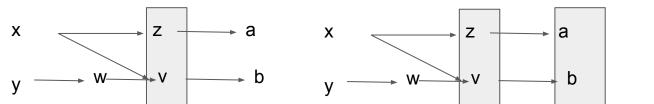
Constraint type	Assignment	Constraint	Meaning
Base	a = &b	a ⊇ {b}	$loc(b) \in pts(a)$
Simple	a = b	a = b	pts(a) = pts(b)
Complex	a = *b	a = *b	$\forall v \in pts(b)$. $pts(a) = pts(v)$
Complex	*a = b	*a = b	$\forall v \in pts(a). pts(v) = pts(b)$

Implementing Steensgaard-style analysis

- Conceptually: restrict every node to only one outgoing edge
 If p → x and p → y, merge x and y ("Unify")
 ⇒ All objects "pointed to" by p are a single equivalence class
- Can be efficiently implemented using Union-Find algorithm
 Nearly linear time: O(n): Tarjan's data-structure
 Each statement needs to be processed just once

Example: Steensgard's algorithm

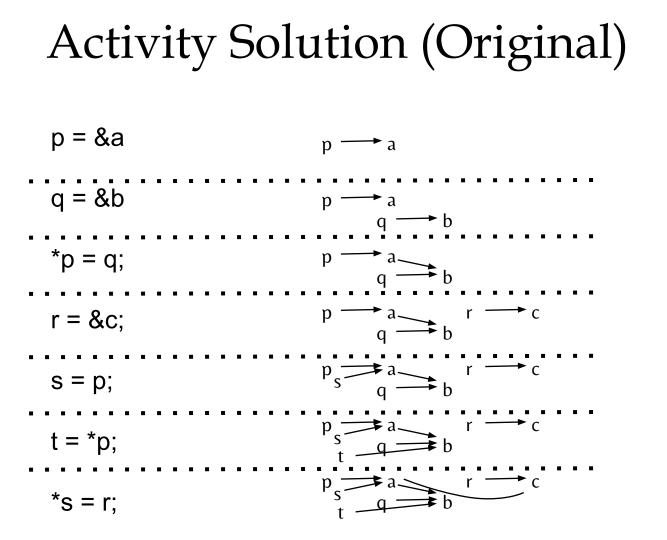




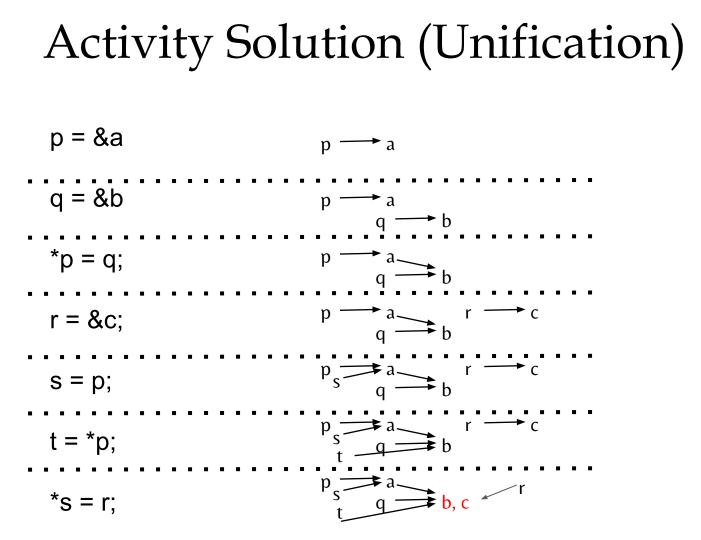
What's the precision ?

Class Activity

Can you analyze the same example we used for Anserson's analysis with Steensgard-style analysis ?



Points-to	Set
р	{a}
q	{b}
r	{c}
S	{a}
t	{b, c}
а	{b, c}
b	{}
С	{}



Points-to	Set
р	{a}
q	{b, c}
r	{b, c}
S	{a}
t	{b, c}
а	{b, c}
b	{}
С	{}

Outline

What is pointer analysis ?

Types of pointer analysis

Anderson's analysis

Steensgard analysis