
Fault Injection
Lecture 13: CPEN 400P

Karthik Pattabiraman, UBC

(Some Slides based on Wes Weimer’s course at U. Mich. and the
Netflix Technical Blog - https://netflixtechblog.com/)

Outline

Resilience Engineering

Fault Injection

Software Fault Injection

LLFI: LLVM-based Fault Injector

Fault Injection in Cloud Applications

Resilience: Definition

Property of a system to “bounce back” after a failure or disruption

- Treats failures as common occurrence rather than exceptions
- Need to have (sufficient) redundancy to recover from failure
- Closely related to the notion of availability
- Availability - Fraction of time the system is up for service

Availability

Readiness of system for service - probability that the system is up for service

MTTF: Mean Time to Failure

MTTR: Mean Time to Recovery

Availability = MTTF / (MTTF + MTTR)
Time

Failed FailedRecovered Recovered

Resilience

Resilience engineering attempts to maximize availability by decreasing the MTTR

Bug-finding approaches via static and dynamic analysis attempt to reduce MTTF

Need a systematic way to evaluate the resilience of the system

- Many bugs are often found in error-detection and recovery code [IBM study]
- Hidden dependencies in the system may prevent (Fast) recovery
- Eliminate need for manual problem identification and fixing

Outline

Resilience Engineering

Fault Injection

Software Fault Injection

LLFI: LLVM-based Fault Injector

Fault Injection in Cloud Applications

Fault Injection

● Fault-injection (or fault-insertion) is the act of deliberately
introducing faults into the system in a controlled and scientific
manner, in order to study the system’s response to the fault

○ Can be used to estimate resilience (e.g., detection, recovery)

○ Also used to understand inherent fault tolerance of the system

○ To obtain reliability estimates of the system prior to deployment
(requires statistical projection)

Why fault-injection ?

● Versus Model-based
○ More realistic, as it evaluates actual system
○ No need to worry about mathematical feasibility
○ No need to supply input parameters

● Versus operational measurements
○ Failures take a *long* time to occur and when they do,

are often not reproducible or analyzable
○ Failures provide limited insight into what *can* go wrong
○ Need to wait until the system is deployed - often too late

Example of Real-world Fault-Injection: ChaosMonkey

Invented in 2011 by Netflix to test the resilience of its IT infrastructure

“Imagine a monkey entering a "data center", these "farms" of servers that host all
the critical functions of our online activities. The monkey randomly rips cables,
destroys devices and returns everything that passes by the hand. The challenge
for IT managers is to design the information system they are responsible for so
that it can work despite these monkeys, which no one ever knows when they
arrive and what they will destroy.” – Antonio Martinez, Chaos Monkey

Fault-injection Steps

Identify
fault-injection

points and
times

Choose
workload and

platform to
inject

Start workload
on platform with
instrumentation

Inject fault at
the appropriate
time and point

Collect the
outcome of the

expt.

Compare the
outcome with

the correct one

Measures to Compute

● What fraction of injected faults are activated ?
● What fraction of activated faults manifest as failures ?
● What are the average activation and failure latencies ?

Fault
injected

Fault
Activated

Fault
manifested

Activation
Latency

Failure Latency

Assumptions/Requirements

● A representative set of faults must be injected

○ Need to include enough faults to give confidence in the measures being studies

● Only one or controlled no. of faults injected

○ Ability to map the outcome to a set of faults

● Need to have a specification of correct behavior to distinguish incorrect outcomes

○ May need to determine golden run ahead of time

Outline

Resilience Engineering

Fault Injection

Software Fault Injection

LLFI: LLVM-based Fault Injector

Fault Injection in Cloud Applications

Software-based Fault-Injection (SWiFI)

Pros
● Do not require expensive

hardware modifications

● Can target applications and OS
errors

● Many hardware faults do not
require probes, e.g, register data
corruption

Cons
● Restricted to inject only faults

that S/W can see

● May perturb the workload that is
running on the system, resulting
in missing many heisenbugs

● Coarser-grained time resolution
than h/w

SWiFI: Types

Compile-time
● Modify source code or machine code

of the program prior to execution

● Can be used to model software
defects

● Requires going through the
compile-run cycle each time

Runtime
● Modify the program or its data

during runtime

● Can be done through the
debugger, kernel or with support
from compiler

● No need to go through
compile-run cycle each time

Compile-time Injection

● Modify program’s code prior to execution

○ Model hardware transient faults in machine code

○ Model software errors that are deterministic (Bohrbugs) on specific code paths

○ Typically only inject into the first dynamic instance of an instruction

● Main advantage: Take advantage of static analysis of the code to customize injection

Runtime Injection

● Advantages

○ Can inject faults without recompiling - speed

○ Faults can occur deeper in the execution. e.g., one-millionth iteration of a loop

○ Some of the errors can be non-deterministic (e.g., Mandelbugs)

○ Fault can depend on runtime conditions. e.g., if memory usage exceeds a threshold, inject fault (includes
aging-related bugs)

Compile-time Injector Example: GSWFIT

G-SWFIT: Developed at U. Coimbra by Henrique Madiera and others

● First tool to inject representative software faults based on Orthogonal Defect classification (ODC)

● Injection into the machine code of the program - no need for source code (for the most part)

● For more details, see the following paper

Duraes, Joao & Madeira, Henrique. (2006).

Emulation of Software Faults: A Field Data Study and a Practical Approach. Software Engineering, IEEE Transactions
on. 32. 849-867. 10.1109/TSE.2006.113.

G-SWFIT: Main Idea
Injects compile-time faults in the machine code of the program under test

● Search patterns: Patterns of machine code that represent common
high-level programming constructs
○ Mutations based on ODC classification

● Low-level Faults: Faults in a single machine code instruction
○ Mutation based on flipping bits of instructions

G-SWFIT: Approach

Added mutation operators for top ‘N’ fault types in extended ODC - covers
67.6%

Overall Methodology of G-SWFIT:
Mutation library based on ODC

Identification mutation operators:
Based on bug-reports and field data

G-SWFIT: Examples of Faults Injected

Missing Function Call (search
pattern)

● Look through the machine
code for pattern corresponding
to function call and replace it
with No-Ops

● Need to replace return value
with prior value

Missing Variable
Initialization (low-level)

● Find the instruction that
assigns a constant to a
variable and replace it by
No-Ops, or randomly
perturb it contents

Runtime Injector Example: NFTAPE

Developed at the University of Illinois at Urbana Champaign (since 2000)

- Successor of FI tools such as FTAPE, DEPEND etc.
- Long line of runtime fault injection tools such as Xception, Ferrari etc.
- Common architecture and interface of multiple fault injectors

Paper describing NFTAPE (Tool has evolved considerably since then):

Stott, David & Floering, B. & Burke, Daniel & Iyer, Ravishankar. (2000). NFTAPE: A Framework for
Assessing Dependability in Distributed Systems with Lightweight Fault Injectors. Proceedings -IEEE
International Computer Performance and Dependability Symposium, IPDS.

23

Injection Targets and Outcome Categories

Any location in application memory space Memory range
General purpose registersCPU Registers
Data on an application stackStack
Static data and dynamically allocated memory (heap)Data

Functions: e.g., main
Instructions: any or selected subset (e.g., branch, load, store)

Code
User spaceTarget

24

NFTAPE Framework Configuration

Campaign
Script

Log

Control
Host

Process
Manager

Injector
Process

Application
Process

Process
Manager

Injector
Process

Application
Process

Network

Error Injection Targets
Control Host

Outline

Resilience Engineering

Fault Injection

Software Fault Injection

LLFI: LLVM-based Fault Injector

Fault Injection in Cloud Applications

Why yet another fault injector?
● Difficult to customize existing injectors

○ Inject into specific instructions

○ Inject into a specific variable

○ Inject into specific code constructs

● Difficult to understand the results
○ Difficulty in fault injection customization

○ Difficult to study the propagation of errors

○ Difficult to map result back to source code
26

LLFI

● A fault injector based on LLVM (http://llvm.org)
○ Intermediate representation (IR) level injection

○ Hybrid compile-time and runtime injection

● Features
○ Easy to customize the fault injection

○ Easy to analyze fault propagation

○ Accurate compared to assembly level injection 27

LLFI: Hybrid Compile/Runtime Injection
● Source-level instrumentation of programs

○ Integrated with a compiler framework, LLVM
○ Precise targeting of selected code constructs

● Fault-injection is done at program runtime
○ Avoid going through the compile-cycle every time
○ Ability to use run-time information to inject faults

● Tracing of faults after injecting them
○ Map the fault back to the source code and data

28

LLFI: Workflow

29

Why LLVM Compiler ?

● Supports wide variety of front- and back-ends
● Provides high-level features in the IR code

30

How does LLFI work?

Start
Fault injection

instruction/register
selector

Instrument IR code of
the program with

function calls

Profiling
executable

Fault injection
executable

Fault injector

Inject?

Next
instruction

Compile time

Runtime

Yes No

31

How does LLFI work?

Start
Fault injection

instruction/register
selector

Instrument IR code of
the program with

function calls

Profiling
executable

Fault injection
executable

Fault injector

Inject?

Next
instruction

Compile time

Runtime

Yes No

32

LLFI: Injection – Example
char* buf = “Hello World”; char* p;
void foo(int size) {

p = (char*)malloc(size);
 memcpy(p, buf, size);
}
void goo() {

 free(p);
}

33

LLFI: Injection – Buffer Overflow
char* buf = “Hello World”; char* p; int count = 0;
void foo(int size) {

p = (char*)malloc(perturbData(size, count++));
 memcpy(p, buf, size);
}
void goo() {

 free(p);
}

34

LLFI: More complex cases
● Can inject into data of specific types/structures

○ Example: Code that manipulates linked list nodes
○ Example: Arguments of certain function calls

● Can inject faults at specific execution points in the
program – based on the program’s state

○ Example: 100th iteration of a loop
○ Example: Call to a function when arg=some_value
○ Example: when the size of the heap > 100 KB

35

How does LLFI work?

Start
Fault injection

instruction/register
selector

Instrument IR code of
the program with

function calls

Profiling
executable

Fault injection
executable

Fault injector

Inject?

Next
instruction

Compile time

Runtime

Yes No

Tracing
executable

36

LLFI: Tracing Example
char* buf = “Hello World”; char* p; int count = 0;
void foo(int size) {

p = (char*)malloc(perturbData(size, count++));
 memcpy(p, buf, size);
}
void goo() {

 free(p);
}

37

LLFI: Tracing Example
char* buf = “Hello World”; char* p; int count = 0;
void foo(int size) {

p = (char*)malloc(perturbData(size, count++));
 memcpy(trace(p), buf, trace(size));
}
void goo() {

 free(trace(p));
}

38

LLFI: Tracing

● Graphical output of trace differences as dot file

39

Data
difference

Control
difference

Control and
data
difference

LLFI: Easy to Use (Java GUI)

40

LLFI Architecture

● Integrated with LLVM Pass Manager

○ A pass performs an analysis or transformation

○ LLFI passes identify and instrument selected instructions and registers

● Runtime libraries are simple and portable

● Unified Yaml config file for configuring both

41

Example YAML file

compileOption:
 instSelMethod:
 - customInstselector:
 include:
 - BufferOverflowMalloc(Data)
 - funcname:
 include:
 - all
 exclude:

 - main

 regSelMethod: customregselector
 customRegSelector: Automatic

42

Function selector

Instruction selector (Related to your fault)

LLFI Software Faults

• Examples of Supported Faults
• Data Corruption
• File I/O Buffer Overflow
• Buffer Overflow Malloc
• Function Call Corruption
• Invalid Pointer
• Race Condition

43

Implementation: LLFI
❖Mapping investigated fault model attributes to LLFI framework

❖ Instrumentation pass development
� A pool of 38 instruction selectors

� A pool of 38 register selectors

❖ Run-time library development
� More than 20 software fault injectors

❖ Capabilities added by Software Fault Injection
❖ Automatic register selection

❖ Automatic fault injection

44

Outline

Resilience Engineering

Fault Injection

Software Fault Injection

LLFI: LLVM-based Fault Injector

Fault Injection in Cloud Applications

Cloud Applications

Depend on many different components and services - any of these could fail

Distributed across many nodes, and even across data-centers

Failures are the norm, not the exception

Need to introduce failures systematically, in a controlled manner, in production

- Get engineers to think about failures from the get go during development
- Practice failure drills and ensure that playbook for failure handling is solid

ChaosMonkey: Philosophy

Learn about the system via injecting actual failures and watching what happens

Prove or disprove hypothesis about failures by observing what happens

“We have created Chaos Monkey, a program that randomly chooses a server and disables it
during its usual hours of activity. Some will find that crazy, but we could not depend on the
random occurrence of an event to test our behavior in the face of the very consequences of this
event. Knowing that this would happen frequently has created a strong alignment among
engineers to build redundancy and process automation to survive such incidents, without
impacting the millions of Netflix users. Chaos Monkey is one of our most effective tools to
improve the quality of our services.”

- Greg Orzell, Netflix Chaos Monkey Upgraded

ChaosMonkey Arsenal: Simian Army Examples

1. Latency Monkey induces artificial delays in RESTful client-server
communication layer to simulate service degradation

2. Conformity Monkey finds instances that don’t adhere to best practices and
shuts them down (e.g., instances that don’t belong to an auto-scaling group

3. Doctor Monkey taps into health checks that run on each instance as well as
monitors other external signs of health (e.g. CPU load) to detect unhealthy
instances and remove them

4. 10–18 Monkey (short for Localization-Internationalization) detects
configuration and run time problems in instances serving customers in
multiple geographic regions, using different languages and character sets

Challenge - 1

Limit the “blast radius” of the failure, while breaking things in realistic ways

One solution: Treat fault injection as a service and isolate it to a specific set of
servers or accounts

- Netflix implemented this via Failure Injection Testing (FIT)
- User writes the Failure Injection service
- Zuul executes the FIT service at the appropriate points and ensures that only

the expected accounts/devices are in fact impacted

Example of FIT

Source:
https://netflixtechblog.com/fit-failure-injection-testing-35d8e2a9bb2

Zuul inspects all requests that are sent by the FIT service

- Checks local store of FIT metadata to check if request should
be impacted

- If so, decorates the request with a failure context, which is
propagated to all dependent services

Use Zuul to isolate impacted requests to only specific accounts or
devices, and then gradually dial up the amount of chaos to 100%

Each layer determines how to emulate the failure in a realistic way
e.g., sleep for a delay period, return a 500, throw an exception etc.

Challenge - 2

Characterize the normal behavior of the system via metrics

Compare with behavior after failure is injected to find anomalies

Challenge: How to find normal behavior, especially if it’s time varying ?

SPS Metric variation over time at Netflix (Source:
https://www.oreilly.com/content/chaos-engineering/

Types of Failures Injected

● Hardware failures
● Functional bugs
● State transmission errors (e.g., inconsistency of states between sender and receiver nodes)
● Network latency and partition
● Large fluctuations in input (up or down) and retry storms
● Resource exhaustion
● Unusual or unpredictable combinations of interservice communication
● Byzantine failures (e.g., a node believing it has the most current data when it actually does not)
● Race conditions
● Downstream dependencies malfunction

Combination of the above events - this is important as many corner cases occur

Steps in Chaos Engineering
(https://www.oreilly.com/content/chaos-engineering/)

1. Pick a hypothesis

2. Choose the scope of the experiment

3. Identify the metrics you’re going to watch

4. Notify the organization

5. Run the experiment

6. Analyze the results

7. Increase the scope

8. Automate

https://www.oreilly.com/content/chaos-engineering/

Results of Chaos Engineering

Significant benefits in real systems (see articles on Piazza)

Used by all the big cloud companies to test their infrastructure (Gameday)

AWS introduced AWS Fault Injection Service in 2021

Curated list of resources for fault injection:

https://github.com/dastergon/awesome-chaos-engineering

https://github.com/dastergon/awesome-chaos-engineering

Outline

Resilience Engineering

Fault Injection

Software Fault Injection

LLFI: LLVM-based Fault Injector

Fault Injection in Cloud Applications

