Static Analysis-Based Approaches for
Enhancing Security of Smart Contracts

Asem Ghaleb

aghaleb@ece.ubc.ca

April 5th, 2022

Smart contracts

Interact with each other
Executed on incoming calls ‘
‘—v

Small programs
running on blockchain

)
|

< IS

Regular account

Smart contracts
High-level Turing-complete languages (e.g., Solidity) EVM Bytecode

PUSH1 ©x80
PUSH1 ©x40
MSTORE
CALLVALUE
DUP1
ISZERO
PUSHZ 0x10
JUMPI
PUSH1 0x0
DUP1

address o
uint balance;

1
5
Account [] accounts;

function applyinterest () public returns (uint) {

for (uint h; i++) {

REVERT
JUMPDEST
POP

PUSHZ 0Ox289
DUP1

PUSHZ 0x20

accounts[i].balance * 1085 /160;

return accounts.length

1
J

function openAccount () payable public returns (uint) {
accounts.push(msg.sender, msg.value);

Smart contracts

e Cannot be updated
e Transactions are immutable

e Financial nature (incentive for attackers)
(2016) The DAO (2017) Yes, this kid || (2019) Ethereum
Attacked: Code | really just deleted || Classic's '51%

Issue Leads to $60 || $300 MILLION by || Attack,' $1 Million
messing around Loss, Raise
Concerns About

Million Ether Theft
with Ethereum’s
| __smart contracts | Securit“ |

Other known bugs

Smart contracts: Example

1 contract MyWallet {

2 address owner;

» constructor public {

4 owner = msg.sender;
5}

#function sendTo(address receiver, uint amount)

7 A

require(tx.origin == owner);

receiver.send(amount);

10)

11}

Ethereum Smart Contract Best Practices: https://consensys.github.io/smart-contract-best-practices

Overview

Oyente [HSERF] wyiie -

Code vulnerabillities are
reported Irequently

No evaluation methodology
of analyzers

|

SolidiFl
False negatives False positives Misidentification

of dugs

How Effective Are Smart Contract Analysis
ools? Evaluating Smart Contract Analysis
Tools using Bug Injection

Asem Ghaleb and Karthik Pattabiraman

Our goal

A systematic approach for evaluating efficacy of smart contract static
analysis tools on detecting bugs

I
8

Approach: SolidiFl

Smart contract

code

|

AST .
B p _ Bug Locations
ugs " arset | Ideatifier
BIP l
FNs+FPs Buggy
+ code .
Misidentified 4+—— Tool Evaluator ——— Bug Injector
Buglog
bugs

Bug model

e Injecting code snippets which lead to vulnerabilities
e Injecting bugs claimed to be detected
e Playing the role of developers rather attackers

e |njecting distinct bugs as possible

if (startTime+5 == block.timestamp)
{ //code }

uint vtime = block.timestamp;
if (startTime+5 == vtime)
{ //code }

10

Bug injection

3+ contract MyWallet {

4

5 address owner;

[mapping(address => uint256) balances;

7

8- constructor () public {

9 owner = msg.sender;

10 1

11

12 function sendTo(address payable receiver, uint8 amount) public
13 -
- ¢ reguire(msg.sender== owner);

15 (bool success) = receiver.send(amount);

16 if({!success)

/| revert();

T8 T
L

20 function bug_reEntrancy (uint256 Amt) public {
21 require({balances [msg.sender] »>= _Amt);

22 (bool success,) = msg.sender.call.value(_Amt)({"");
23 require(success);

24 balances [msg.sender] -= _Amt ;

25 1

75T

Code transformation

a Security weakening

e| code snippet injection

Ethereum Smart Contract Best Practices: https://consensys.github.io/smart-contract-best-practices

11

Contributions

4
(&)
0| o
2 ol S
e Proposed approach Bug Class 2lE|E| 2|85
> e I =
e |mplemented in an automated tool
Re-entrancy * * * * * *
. .. Timestamp dependenc * * * *
e Injected 9,369 distinct bugs P EEPEntenty
Unchecked send * *
. Unhandled exceptions * * * * *
e Evaluated 6 well-known static tools
TOD * *
Integer over/underflow * * * *
Use of tx.origin * * *

Source code: https://github.com/DependableSystemsLab/SolidiFlI

12

https://github.com/DependableSystemsLab/SolidiFI

Findings summary

e None of the tools detected all bugs

e Many undetected corner cases

e Misidentification of bugs is high as well

e All tools reported false positives (2 to 801)

e High false positives for tools with low false negatives

13

	Slide Number 1
	Smart contracts
	Smart contracts
	Smart contracts
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Our goal
	Slide Number 9
	Bug model
	Bug injection
	Contributions
	Findings summary

