
1 © Nokia 2016

Static Analysis-Based Approaches for

Enhancing Security of Smart Contracts

Asem Ghaleb
aghaleb@ece.ubc.ca

April 5th, 2022

2 © Nokia 2016

2

Smart contracts

Transaction

Regular account

Small programs
 running on blockchain

Executed on incoming calls

Interact with each other

3 © Nokia 2016

3

 High-level Turing-complete languages (e.g., Solidity) EVM Bytecode

Smart contracts

Compiled

4

● Cannot be updated

● Transactions are immutable

● Financial nature (incentive for attackers)

Smart contracts

(2016) The DAO
Attacked: Code
Issue Leads to $60
Million Ether Theft

(2019) Ethereum
Classic's '51%
Attack,' $1 Million
Loss, Raise
Concerns About
Security

(2017) Yes, this kid
really just deleted
$300 MILLION by
messing around
with Ethereum’s
smart contracts

5 © Nokia 2016

1 contract MyWallet {

2 address owner;

3 constructor public {
4 owner = msg.sender;
5 }

6 function sendTo(address receiver, uint amount)

7 {

8 require(tx.origin == owner);

9 receiver.send(amount);

10 }

11 }

Ethereum Smart Contract Best Practices: https://consensys.github.io/smart-contract-best-practices

Wrong
Authentication

Unhandled
Exceptions

5

Reentrancy

DoS

Overflow
 Underflow

Locked Ether

 Uncheck
 Send

Smart contracts: Example Other known bugs

6 © Nokia 2016

Code vulnerabilities are
reported frequently

No evaluation methodology
 of analyzers

False positives False negatives

SolidiFI

Misidentification
of dugs

Overview

7 © Nokia 2016

How Effective Are Smart Contract Analysis
Tools? Evaluating Smart Contract Analysis

Tools using Bug Injection

Asem Ghaleb and Karthik Pattabiraman

8

Our goal

A systematic approach for evaluating efficacy of smart contract static

analysis tools on detecting bugs

9 © Nokia 2016

Approach: SolidiFI

10

● Injecting code snippets which lead to vulnerabilities

● Injecting bugs claimed to be detected

● Playing the role of developers rather attackers

● Injecting distinct bugs as possible

Bug model

1

2

11

Bug injection

Code transformation

Security weakening

code snippet injection

Ethereum Smart Contract Best Practices: https://consensys.github.io/smart-contract-best-practices

//

1

2

3

12

● Proposed SolidiFI approach

● Implemented in an automated tool

● Injected 9,369 distinct bugs

● Evaluated 6 well-known static tools

Source code: https://github.com/DependableSystemsLab/SolidiFI

Contributions

Bug Class

O
ye

nt
e

Se
cu

rif
y

M
yt

hr
il

Sm
ar

tC
he

ck

M
an

tic
or

e

Sl
ith

er

Re-entrancy * * * * * *

Timestamp dependency * * * *

Unchecked send * *

Unhandled exceptions * * * * *

TOD * *

Integer over/underflow * * * *

Use of tx.origin * * *

https://github.com/DependableSystemsLab/SolidiFI

13

● None of the tools detected all bugs

● Many undetected corner cases

● Misidentification of bugs is high as well

● All tools reported false positives (2 to 801)

● High false positives for tools with low false negatives

Findings summary

	Slide Number 1
	Smart contracts
	Smart contracts
	Smart contracts
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Our goal
	Slide Number 9
	Bug model
	Bug injection
	Contributions
	Findings summary

