Database Management Systems
 Mathematical Preliminaries

Malay Bhattacharyya

Assistant Professor
Machine Intelligence Unit and

Centre for Artificial Intelligence and Machine Learning Indian Statistical Institute, Kolkata

February, 2022

1 Preliminaries

2 Operations on Sets

3 Unary and Binary Operations

4 Special and Extended Operations

5 Completeness

Preliminaries

Relation: Given the sets $X_{1}, X_{2}, \ldots, X_{n} \subseteq \mathbb{R}$ (the real plane), a relation \mathcal{R} can be defined on $X_{1}, X_{2}, \ldots, X_{n}$ as
$\mathcal{R}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right):\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X_{1} \times X_{2} \times \cdots \times X_{n}\right\}$.
If the sets denote different attributes in a database then a table represents nothing but a relation (subset of the Cartesian product of attributes) between the attributes.

Based on this, we can assume:
A relation is a table
The attributes are the headers of the table A tuple is a row.

Preliminaries

Example of a relation:

Table: MATH_OLYMPIC

Year	Gold	Silver
2008	0	0
2009	0	3
2010	0	2
2011	1	1
2012	2	3
2013	0	2
2014	0	1
2015	0	1
2016	0	1
2017	0	0
2018	0	3
2019	1	4

Preliminaries

Example of another relation:

Table: MATH_OLYMPIC_GOLDEN

Year	Gold	Silver
2011	1	1
2012	2	3
2019	1	4

Preliminaries of relational algebra

Query language: A language for manipulation and retrieval of data from a database.

* Query languages can be - procedural (user provides requirements along with instructions) or non-procedural/declarative (user provides requirements only).

The relational algebra is a procedural query language
The relational algebra works on relations.

Note: Tuple relational calculus and domain relational calculus are non-procedural.

Preliminaries of relational algebra

Relational algebra is closed because every operation in relational algebra returns a relation.

Relational algebra is not "Turing complete". This is inevitably favourable because it manifests that relational algebra is subject to algorithmic analysis (to be precise for query optimization).

Union

Notation: $R_{1} \cup R_{2}$, where R_{1}, R_{2} are relational algebra expressions.
Description: Returns tuples that appear in either or both of the two relations, thereby producing a relation with at most $\mathcal{T}\left(R_{1}\right)+\mathcal{T}\left(R_{2}\right)$ tuples.

Note: Union operation is valid iff the attributes of R_{1} and R_{2} are the same, i.e. $\mathcal{A}\left(R_{1}\right)=\mathcal{A}\left(R_{2}\right)$.

Union

Example: MATH_OLYMPIC U MATH_OLYMPIC_GOLDEN

Year	Gold	Silver
2008	0	0
2009	0	3
2010	0	2
2011	1	1
2012	2	3
2013	0	2
2014	0	1
2015	0	1
2016	0	1
2017	0	0
2018	0	3
2019	1	4

Intersection

Notation: $R_{1} \cap R_{2}$, where R_{1}, R_{2} are relational algebra expressions.

Description: Returns tuples that appear in both the relations, thereby producing a relation with at $\operatorname{most} \min \left(\mathcal{T}\left(R_{1}\right), \mathcal{T}\left(R_{2}\right)\right)$ tuples.

Note: Intersection operation is valid iff the attributes of R_{1} and R_{2} are the same, i.e. $\mathcal{A}\left(R_{1}\right)=\mathcal{A}\left(R_{2}\right)$.

Intersection

Example: MATH_OLYMPIC \cap MATH_OLYMPIC_GOLDEN

Year	Gold	Silver
2011	1	1
2012	2	3
2019	1	4

Difference

Notation: $R_{1}-R_{2}$, where R_{1}, R_{2} are relational algebra expressions.

Description: Returns the tuples that appear in one relation (first one) but not in the other (second one), thereby producing a relation with at most $\mathcal{T}\left(R_{1}\right)$ tuples.

Note: Difference operation is valid iff the attributes of R_{1} and R_{2} are the same, i.e. $\mathcal{A}\left(R_{1}\right)=\mathcal{A}\left(R_{2}\right)$.

Difference

Example: MATH_OLYMPIC - MATH_OLYMPIC_GOLDEN

Year	Gold	Silver
2008	0	0
2009	0	3
2010	0	2
2013	0	2
2014	0	1
2015	0	1
2016	0	1
2017	0	0
2018	0	3

Difference

Lemma

Given a pair of relations R_{1} and R_{2}, the set difference operation $R_{1}-R_{2}$ monotonically increases with respect to R_{1} but monotonically decreases with respect to R_{2}.

Difference

Lemma

Given a pair of relations R_{1} and R_{2}, the set difference operation $R_{1}-R_{2}$ monotonically increases with respect to R_{1} but monotonically decreases with respect to R_{2}.

Proof: Suppose a new tuple t is added to R_{1}, without affecting R_{2}. Then the number of tuples in $R_{1}-R_{2}$ will either remain the same or increase based on whether t was already there in R_{2} or not, respectively. On the other hand, suppose a new tuple t is added to R_{2}, without affecting R_{1}. Then the number of tuples in $R_{1}-R_{2}$ will either decrease or remain the same based on whether t was already there in R_{1} or not, respectively. Hence, the lemma.

Cartesian product / Cross join

Notation: $R_{1} \times R_{2}$, where R_{1}, R_{2} are relational algebra expressions.

Description: Returns the Cartesian product of two relations, thereby producing a relation with attributes $\mathcal{A}\left(R_{1}\right) \cup \mathcal{A}\left(R_{2}\right)$ and $\mathcal{T}\left(R_{1}\right) * \mathcal{T}\left(R_{2}\right)$ number of tuples.

Note: No validity constraint.

Cartesian product / Cross join
Example: MATH_OLYMPIC \times MATH_OLYMPIC_GOLDEN

M.Year	M.Gold	M.Silver	M_G.Year	M_G.Gold	M_G.Silver
2008	0	0	2011	1	1
2008	0	0	2012	2	3
2009	0	3	2011	1	1
2009	0	3	2012	2	3
2010	0	2	2011	1	1
2010	0	2	2012	2	3
2011	1	1	2011	1	1
2011	1	1	2012	2	3
2012	2	3	2011	1	1
2013	2	3	2012	2	3
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
2019	1	4	2011	1	1
2019	1	4	2012	2	3
2019	1	4	2019	1	4

Cartesian product / Cross join

Lemma

Cartesian product monotonically increases with respect to the relations on which they are applied in relational algebra.

Cartesian product / Cross join

Lemma

Cartesian product monotonically increases with respect to the relations on which they are applied in relational algebra.

Proof: Let there be four relations R_{1}, R_{2}, R_{3} and R_{4} such that $R_{1} \subseteq R_{2}$ and $R 3 \subseteq R 4$. Consider any arbitrary element $(x, y) \in R_{1} \times R 3$. Given $R_{1} \subseteq R_{2}$ and $R 3 \subseteq R 4$, we can show $(x, y) \in R_{1} \times R 3 \subseteq R_{2} \times R 3 \subseteq R_{2} \times R 4$.
Hence, for any arbitrary quadruplet of relations R_{1}, R_{2}, R_{3} and R_{4}, we can write

$$
R_{1} \subseteq R_{2} \wedge R_{3} \subseteq R_{4} \Rightarrow R_{1} \times R_{3} \subseteq R_{2} \times R_{4}
$$

This in turn proves the monotonic increase of Cartesian product in relational algebra.

Let us brainstorm!!!

Suppose there exists a pair of relations $R_{1}(X, Y)$ and $R_{2}(X, Y)$ having $t_{1}>0$ and $t_{2}>0$ tuples, respectively. Consider that X and Y take integer values only. Without making any further assumptions, find out the minimum and maximum possible number of tuples that may appear in the resulting relations provided by the following operations.
i) $R_{1} \cup R_{2}$
(i) $R_{1} \cap R_{2}$

开 $R_{1}-R_{2}$
iv. $R_{1} \times R_{2}$

Let us brainstorm!!!

For arbitrary relations, without assumption on keys, tighter bounds are as follows.

Expression	Minimum tuples	Maximum tuples
$R_{1} \cup R_{2}$	$\max \left(t_{1}, t_{2}\right)$	$t_{1}+t_{2}$
$R_{1} \cap R_{2}$	0	$\min \left(t_{1}, t_{2}\right)$
$R_{1}-R_{2}$	0	t_{1}
$R_{1} \times R_{2}$	$t_{1} t_{2}$	$t_{1} t_{2}$

Selection

Notation: $\sigma_{P}(R)$, where P is a predicate on the attributes of the relation R.

Description: Returns the tuples that satisfy a given predicate (extracts a subset of tuples).

Selection

Example: $\sigma_{\text {Gold } \neq 0}($ MATH_OLYMPIC)

Year	Gold	Silver
2011	1	1
2012	2	3
2019	1	4

Example: $\sigma_{\text {Gold } \neq 0 \wedge \text { Silver }>1}($ MATH_OLYMPIC)

Year	Gold	Silver
2012	2	3
2019	1	4

Projection

Notation: $\pi_{S}(R)$, where S is a subset of the attributes in the relation R.

Description: Returns all tuples with the given attributes only (extracts a subset of attributes).

Note: A projection returns the distinct tuples (after removing duplicates) only.

Projection

Example: $\pi_{\text {Gold,Silver }}($ MATH_OLYMPIC)

Gold	Silver
0	0
0	3
0	2
1	1
2	3
0	1
1	4

Example: $\pi_{\text {Year,Silver }}\left(\sigma_{\text {Gold }>1}(\right.$ MATH_OLYMPIC $\left.)\right)$

Year	Silver
2012	3

Rename

Notation: $\rho_{N}(R)$, where N is the new name for the result of R.
Description: Renames a relation in relational algebra.

Rename - A caution

Rename

Example: $\rho_{I M O}$ (MATH_OLYMPIC)

Table: IMO

Year	Gold	Silver
2008	0	0
2009	0	3
2010	0	2
2011	1	1
2012	2	3
2013	0	2
2014	0	1
2015	0	1
2016	0	1
2017	0	0
2018	0	3
2019	1	4

Natural join

Notation: $R_{1} \bowtie R_{2}$, where R_{1}, R_{2} are relations obtained from relational algebra operations.

Description: Cartesian product of two relations followed by the removal of duplicate attributes.

Note: If we consider the pair of relations R_{1} and R_{2}, then the natural join between them $\left(R_{1} \bowtie R_{2}\right)$ is a relation on schema $\mathcal{A}\left(R_{1}\right) \cup \mathcal{A}\left(R_{2}\right)$ such that
$R_{1} \bowtie R_{2}=\pi_{\left.\mathcal{A}\left(R_{1}\right) \cup \mathcal{A}\left(R_{2}\right)\right)}\left(\sigma_{\mathcal{A}_{1}\left(R_{1}\right)=\mathcal{A}_{1}\left(R_{2}\right) \wedge \ldots \wedge \mathcal{A}_{n}\left(R_{1}\right)=\mathcal{A}_{n}\left(R_{2}\right)}\left(R_{1} \times R_{2}\right)\right)$.
The selection is defined on the common set of attributes between R_{1} and R_{2}, i.e., $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n} \in \mathcal{A}\left(R_{1}\right) \cap \mathcal{A}\left(R_{2}\right)$. Hence, natural join reduces to Cartesian product if no attribute is common.

Natural join

Example: $\pi_{\text {Year }}(\mathrm{IMO} \bowtie$ MATH_OLYMPIC_GOLD)

Year
2011
2012
2019

Natural join - A deeper look

Table: SYM | A1 | A2 |
| :---: | :---: |
| 1 | pi |
| 2 | e |

Table: VAL | A2 | A3 |
| :---: | :---: |
| | pi |
| | pi |
| | $333 / 7$ |
| | |

Table: $\sigma_{S Y M . A 2=V A L . A 2}(S Y M \times V A L)$

SYM.A1	SYM.A2	VAL.A2	VAL.A3
1	pi	pi	$22 / 7$
1	pi	pi	$333 / 106$
2	e	pi	$22 / 7$
2	e	pi	$333 / 106$

Table: SYM \bowtie VAL

A1	A2	A3
1	pi	$22 / 7$
1	pi	$333 / 106$

Theta join

Notation: $R_{1} \bowtie_{\theta} R_{2}$, where R_{1}, R_{2} are relations obtained from relational algebra operations.

Description: Cartesian product of two relations followed by selection operation. We can write

$$
R_{1} \bowtie_{\theta} R_{2}=\sigma_{\theta}\left(R_{1} \times R_{2}\right)
$$

Note: The result of theta join is defined only if the attributes of the relations are disjoint.

EQUI join

Notation: $R_{1} \bowtie=R_{2}$, where R_{1}, R_{2} are relations obtained from relational algebra operations.

Description: Cartesian product of two relations followed by selection operation with respect to equity. EQUI join is a special case of theta join where $\theta="="$.

Division

Notation: $R_{1} \div R_{2}$, where R_{1}, R_{2} are relations obtained from relational algebra operations.

Description: Satisfies universal specification.

Note: Division operation is valid iff the attributes of R_{2} is a proper subset of R_{1}, i.e. $\mathcal{A}\left(R_{2}\right) \subset \mathcal{A}\left(R_{1}\right)$. A tuple is said to be in $R_{1} \div R_{2}$ iff the tuple is in $\pi_{\mathcal{A}\left(R_{1}\right)-\mathcal{A}\left(R_{2}\right)}\left(R_{1}\right)$ and its Cartesian product with any arbitrary tuple in R_{2} produces a tuple that belongs to R_{1}. Interestingly, we can represent the division operation as follows

$$
\begin{aligned}
R_{1} \div R_{2}= & \pi_{\mathcal{A}\left(R_{1}\right)-\mathcal{A}\left(R_{2}\right)}\left(R_{1}\right)- \\
& \pi_{\mathcal{A}\left(R_{1}\right)-\mathcal{A}\left(R_{2}\right)}\left(\left(\pi_{\mathcal{A}\left(R_{1}\right)-\mathcal{A}\left(R_{2}\right)}\left(R_{1}\right) \times R_{2}\right)-R_{1}\right) .
\end{aligned}
$$

Division

Example: Let us consider the following pair of relations.

Table: CODE

Roll	Coding	Feature
1	Python	Programming
2	C	Programming
2	R	Programming
3	Python	Programming
3	Python	Visualization
4	C ++	Programming
5	R	Visualization

Table: SKILL
Feature
Programming
Visualization

CODE \div SKILL

Roll	Coding
3	Python

Division - A deeper look

Table: $\pi_{\mathcal{A}(C O D E)-\mathcal{A}(S K I L L)}(C O D E) \times$ SKILL

Roll	Coding	Feature
1	Python	Programming
1	Python	Visualization
2	C	Programming
2	C	Visualization
2	R	Programming
2	R	Visualization
3	Python	Programming
3	Python	Visualization
4	$\mathrm{C}++$	Programming
4	$\mathrm{C}++$	Visualization
5	R	Programming
5	R	Visualization

Note: $\mathcal{A}(C O D E)-\mathcal{A}(S K I L L)$ includes the attributes $\{$ Roll, Coding $\}$.

Division - A deeper look

$$
\text { Table: }\left(\pi_{\mathcal{A}(C O D E)-\mathcal{A}(S K I L L)}(C O D E) \times S K I L L\right)-C O D E
$$

Roll	Coding	Feature
1	Python	Visualization
2	C	Visualization
2	R	Visualization
4	$\mathrm{C}++$	Visualization
5	R	Programming

Table:
$\pi_{\mathcal{A}(C O D E)-\mathcal{A}(S K I L L)}\left(\left(\pi_{\mathcal{A}(C O D E)-\mathcal{A}(S K I L L)}(C O D E) \times S K I L L\right)-C O D E\right)$

Roll	Coding
1	Python
2	C
2	R
4	$\mathrm{C}++$
5	R

Division - A deeper look

Table: $\pi_{\mathcal{A}(C O D E)-\mathcal{A}(S K I L L)}(C O D E)$

Roll	Coding
1	Python
2	C
2	R
3	Python
4	$\mathrm{C}++$
5	R

Table: $\pi_{\mathcal{A}(\text { CODE })-\mathcal{A}(S K I L L)}($ CODE $)-$
$\pi_{\mathcal{A}(C O D E)-\mathcal{A}(S K I L L)}\left(\left(\pi_{\mathcal{A}(C O D E)-\mathcal{A}(S K I L L)}(C O D E) \times S K I L L\right)-C O D E\right)$

Roll	Coding
3	Python

Assignment

Notation: var $\leftarrow R$, where var is a variable and R is a relation obtained from relational algebra operations

Description: Assigns a relational algebra expression to a relational variable

Example: Gold $\leftarrow E$

Inner join - Basics

Inner join is a generalized representation of natural join operation. The following pair of relational algebra expressions are the same.

$$
R_{1} \bowtie R_{2}
$$

* Implicitly uses the common attributes to join

$$
\sigma_{P}\left(R_{1} \times R_{2}\right)
$$

* The common attributes are to be mentioned in P

Outer join - Basics

Outer join has been extended from the natural join operation for avoiding information loss. Let us consider the following pair of relations.

Table: FAC

Name	Unit	Centre
Malay	MIU	Kolkata
Mandar	CVPRU	Kolkata
Ansuman	ACMU	Kolkata
Sandip	ACMU	Kolkata

Table: RES

Name	Area	Level
Malay	CB	Junior
Mandar	IR	Senior
Sasthi	WSN	Senior
Sandip	DM	Senior

Outer join - Motivation

Example: FAC \bowtie RES

Name	Unit	Centre	Area	Level
Malay	MIU	Kolkata	CB	Junior
Mandar	CVPRU	Kolkata	IR	Senior
Sandip	ACMU	Kolkata	DM	Senior

The information about Ansuman and Sasthi are lost.

Outer join - Left outer join / Left join

Notation: $R_{1} \searrow R_{2}$, where R_{1}, R_{2} are relations obtained from relational algebra operations

Description: Makes a natural join but adds extra tuples to the result padded with NULL values to deal with missing information in the first relation

Outer join - Left outer join / Left join

Example: FAC \searrow RES

Name	Unit	Centre	Area	Level
Malay	MIU	Kolkata	CB	Junior
Mandar	CVPRU	Kolkata	IR	Senior
Sandip	ACMU	Kolkata	DM	Senior
Ansuman	ACMU	Kolkata	NULL	NULL

Outer join - Right outer join / Right join

Notation: $R_{1} \bowtie R_{2}$, where R_{1}, R_{2} are relations obtained from relational algebra operations

Description: Makes a natural join but adds extra tuples to the result padded with NULL values to deal with missing information in the second relation

Outer join - Right outer join / Right join

Example: FAC \bowtie RES

Name	Unit	Centre	Area	Level
Malay	MIU	Kolkata	CB	Junior
Mandar	CVPRU	Kolkata	IR	Senior
Sandip	ACMU	Kolkata	DM	Senior
Sasthi	NULL	NULL	WSN	Senior

Outer join - Full outer join / Full join

Notation: $R_{1} \perp \subset R_{2}$, where R_{1}, R_{2} are relations obtained from relational algebra operations

Description: Makes a natural join but adds extra tuples to the result padded with NULL values to deal with missing information in both the relations

Outer join - Full outer join / Full join

Example: FAC $D \subset$ RES

Name	Unit	Centre	Area	Level
Malay	MIU	Kolkata	CB	Junior
Mandar	CVPRU	Kolkata	IR	Senior
Sandip	ACMU	Kolkata	DM	Senior
Ansuman	ACMU	Kolkata	NULL	NULL
Sasthi	NULL	NULL	WSN	Senior

Outer join - A deeper look

Let us show that the intersection of left and outer joins reduces to natural join.

Note that, we can write $R_{1} \searrow R_{2}$ as follows

$$
\begin{aligned}
& \pi_{\left.\mathcal{A}\left(R_{1}\right) \cup \mathcal{A}\left(R_{2}\right)\right)}\left(\sigma_{\mathcal{A}_{1}\left(R_{1}\right)=\mathcal{A}_{1}\left(R_{2}\right) \wedge \ldots \wedge \mathcal{A}_{n}\left(R_{1}\right)=\mathcal{A}_{n}\left(R_{2}\right)}\left(R_{1} \times R_{2}\right)\right) \\
& \cup \pi_{\left.\mathcal{A}\left(R_{1}\right) \cup \mathcal{A}\left(R_{2}\right)\right)}\left(\sigma_{\mathcal{A}_{1}\left(R_{2}\right)=N U L L \wedge \ldots \wedge \mathcal{A}_{n}\left(R_{2}\right)=N U L L}\left(R_{1} \times R_{2}\right)\right) .
\end{aligned}
$$

Similarly, we can write $R_{1} \bowtie R_{2}$ as follows

$$
\begin{aligned}
& \pi_{\left.\mathcal{A}\left(R_{1}\right) \cup \mathcal{A}\left(R_{2}\right)\right)}\left(\sigma_{\mathcal{A}_{1}\left(R_{1}\right)=\mathcal{A}_{1}\left(R_{2}\right) \wedge \ldots \wedge \mathcal{A}_{n}\left(R_{1}\right)=\mathcal{A}_{n}\left(R_{2}\right)}\left(R_{1} \times R_{2}\right)\right) \\
& \cup \pi_{\left.\mathcal{A}\left(R_{1}\right) \cup \mathcal{A}\left(R_{2}\right)\right)}\left(\sigma_{\mathcal{A}_{1}\left(R_{1}\right)=N U L L \wedge \ldots \wedge \mathcal{A}_{n}\left(R_{1}\right)=N U L L}\left(R_{1} \times R_{2}\right)\right) .
\end{aligned}
$$

Hence, by intersecting the two expressions stated above, we obtain the result.

Join operations - The interpretation

Join operations - The interpretation

Let us brainstorm!!!

Suppose there exists a pair of relations $R_{1}(X, Y)$ and $R_{2}(X, Y)$ having $t_{1}>0$ and $t_{2}>0$ tuples, respectively. Consider that X and Y take integer values only. Without making any further assumptions, find out the minimum and maximum possible number of tuples that may appear in the resulting relations provided by the following operations.
il $\pi_{Y}\left(R_{2}\right)$
(1) $R_{1} \div \pi_{Y}\left(R_{2}\right)$

III $\left(R_{1} \bowtie R_{2}\right) \cup\left(R_{2} \bowtie R_{1}\right)$
iv $\left(R_{1}-R_{2}\right) \cup\left(R_{2}-R_{1}\right)$
๗) $R_{1} \bowtie\left(R_{1}-R_{2}\right)$

Let us brainstorm!!!

For arbitrary relations, tighter bounds are as follows.

Expression	Minimum tuples	Maximum tuples
$\pi_{Y}\left(R_{2}\right)$	1	t_{2}
$R_{1} \div \pi_{Y}\left(R_{2}\right)$	0	t_{1}
$\left(R_{1} \bowtie R_{2}\right) \cup\left(R_{2} \bowtie R_{1}\right)$	0	$\min \left(t_{1}, t_{2}\right)$
$\left(R_{1}-R_{2}\right) \cup\left(R_{2}-R_{1}\right)$	0	$t_{1}+t_{2}$
$R_{1} \bowtie\left(R_{1}-R_{2}\right)$	0	t_{1}

Note: The natural join of a relation R with itself will return the original relation R.

Let us brainstorm!!!

Suppose there exists a pair of relations $R_{1}(X, Y)$ and $R_{2}(Y, Z)$ having $t_{1}>0$ and $t_{2}>0$ tuples, respectively. Consider that X and Y take integer values only. Without making any further assumptions, find out the minimum and maximum possible number of tuples that may appear in the resulting relations provided by the following operations.
i) $\pi_{Y}\left(\sigma_{X=0}\left(R_{1}\right)\right)-\pi_{Y} R_{2}$

田 $\pi_{Y} R_{1}-\left(\pi_{Y} R_{1}-\pi_{Y} R_{2}\right)$
IIII $R_{1} \cup \rho_{R_{2}(X, Y)} R_{2}$
iv $\pi_{X, Z}\left(R_{1} \bowtie R_{2}\right)$
v) $R_{1} \bowtie\left(R_{1} \bowtie R_{1}\right)$
vii $\sigma_{X>Y} R_{1} \cup \sigma_{X<Y} R_{1}$

Let us brainstorm!!!

For arbitrary relations, tighter bounds are as follows.

Expression	Minimum tuples	Maximum tuples
$\pi_{Y}\left(\sigma_{X=0}\left(R_{1}\right)\right)-\pi_{Y} R_{2}$	0	t_{1}
$\pi_{Y} R_{1}-\left(\pi_{Y} R_{1}-\pi_{Y} R_{2}\right)$	0	$\min \left(t_{1}, t_{2}\right)$
$R_{1} \cup \rho_{R_{2}}(X, Y) R_{2}$	$\max \left(t_{1}, t_{2}\right)$	$t_{1}+t_{2}$
$\pi_{X, Z}\left(R_{1} \bowtie R_{2}\right)$	0	$\min \left(t_{1}, t_{2}\right)$
$R_{1} \bowtie\left(R_{1} \bowtie R_{1}\right)$	t_{1}	t_{1}
$\sigma_{X>Y} R_{1} \cup \sigma_{X<Y} R_{1}$	0	t_{1}

Semijoin and antijoin

Semijoin and antijoin are two convenient but infrequently used join operations in relational algebra.

Semijoin and antijoin

Semijoin and antijoin are two convenient but infrequently used join operations in relational algebra.

Semijoin (demarcated with \ltimes) is alike natural join with the only exception that attributes in the first relation are returned in the result.

Semijoin and antijoin

Semijoin and antijoin are two convenient but infrequently used join operations in relational algebra.

Semijoin (demarcated with \ltimes) is alike natural join with the only exception that attributes in the first relation are returned in the result.

On the contrary, antijoin (demarcated with \triangleright) returns all tuples in the first relation such that there are no tuples in the second relation with matching values for the shared attributes.

Semijoin and antijoin

The equivalent relational algebra expressions used for semijoin and antijoin are as follows:

$$
\begin{gathered}
R_{1} \ltimes R_{2}=\pi_{A\left(R_{1}\right)}\left(R_{1} \bowtie R_{2}\right) \\
R_{1} \triangleright R_{2}=R_{1}-\left(R_{1} \ltimes R_{2}\right)=R_{1}-\pi_{A\left(R_{1}\right)}\left(R_{1} \bowtie R_{2}\right)
\end{gathered}
$$

Understanding the concepts in a better way

Try this out!!!

RelaX - relational algebra calculator:
https://dbis-uibk.github.io/relax

Completeness

A complete set comprises a subset of relational algebra operations that can express any other relational algebra operations.
E.g., the set $\{\sigma, \pi, \cup,-, \times\}$ is complete.

Completeness - An example

Let us show that the set of operations $\{\sigma, \pi, \rho, \cup,-, \times\}$ is complete.

As the given set already contains selection, projection and rename, it is sufficient to establish that the operations like set intersection, set division, and natural join can be performed from the rest.

Notably, $R_{1} \cap R_{2}=R_{1}-\left(R_{1}-R_{2}\right)$.
Further note that, $R_{1} \div R_{2}=$
$\pi_{\mathcal{A}\left(R_{1}\right)-\mathcal{A}\left(R_{2}\right)}\left(R_{1}\right)-\pi_{\mathcal{A}\left(R_{1}\right)-\mathcal{A}\left(R_{2}\right)}\left(\left(\pi_{\mathcal{A}\left(R_{1}\right)-\mathcal{A}\left(R_{2}\right)}\left(R_{1}\right) \times R_{2}\right)-R_{1}\right)$.
Finally, $R_{1} \bowtie R_{2}=$
$\pi_{\left.\mathcal{A}\left(R_{1}\right) \cup \mathcal{A}\left(R_{2}\right)\right)}\left(\sigma_{\mathcal{A}_{1}\left(R_{1}\right)=\mathcal{A}_{1}\left(R_{2}\right) \wedge \ldots \wedge \mathcal{A}_{n}\left(R_{1}\right)=\mathcal{A}_{n}\left(R_{2}\right)}\left(R_{1} \times R_{2}\right)\right)$.
Hence, the set $\{\sigma, \pi, \rho, \cup,-, \times\}$ is complete.

