
Outline Background Search Trees Hashing Cost Analysis

Database Management Systems
Database Indexing

Malay Bhattacharyya

Assistant Professor

Machine Intelligence Unit
and

Centre for Artificial Intelligence and Machine Learning
Indian Statistical Institute, Kolkata

March, 2022

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

1 Background

2 Search Trees
Basics
B-Trees
B+-Trees
R∗-Trees

3 Hashing

4 Cost Analysis

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Motivation

Table: Bhatnagar

ID Year Category Recipients
1 2017 Mathematical Sciences 0

2 2017 Chemical Sciences 1

3 2017 Engineering Sciences 2

4 2018 Mathematical Sciences 1

5 2018 Chemical Sciences 1

6 2018 Engineering Sciences 1

7 2019 Mathematical Sciences 2

8 2019 Chemical Sciences 2

9 2019 Engineering Sciences 1

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Motivation

Bhatnagar.ID = 7

Bhatnagar.Category = ‘Mathematical Sciences’

Bhatnagar.Recipients >= 1

Bhatnagar.ID = 7 and Bhatnagar.Category = ‘Mathematical
Sciences’ and Bhatnagar.Recipients >= 1

Note: Indexing helps if we can differentiate between full table
scans and immediate location of tuple.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Motivation

Bhatnagar.ID = 7

Bhatnagar.Category = ‘Mathematical Sciences’

Bhatnagar.Recipients >= 1

Bhatnagar.ID = 7 and Bhatnagar.Category = ‘Mathematical
Sciences’ and Bhatnagar.Recipients >= 1

Note: Indexing helps if we can differentiate between full table
scans and immediate location of tuple.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Motivation

Bhatnagar.ID = 7

Bhatnagar.Category = ‘Mathematical Sciences’

Bhatnagar.Recipients >= 1

Bhatnagar.ID = 7 and Bhatnagar.Category = ‘Mathematical
Sciences’ and Bhatnagar.Recipients >= 1

Note: Indexing helps if we can differentiate between full table
scans and immediate location of tuple.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Motivation

Bhatnagar.ID = 7

Bhatnagar.Category = ‘Mathematical Sciences’

Bhatnagar.Recipients >= 1

Bhatnagar.ID = 7 and Bhatnagar.Category = ‘Mathematical
Sciences’ and Bhatnagar.Recipients >= 1

Note: Indexing helps if we can differentiate between full table
scans and immediate location of tuple.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Motivation

Bhatnagar.ID = 7

Bhatnagar.Category = ‘Mathematical Sciences’

Bhatnagar.Recipients >= 1

Bhatnagar.ID = 7 and Bhatnagar.Category = ‘Mathematical
Sciences’ and Bhatnagar.Recipients >= 1

Note: Indexing helps if we can differentiate between full table
scans and immediate location of tuple.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Database functionalities

These are the functionalities we need to support for a database
access.

Scan

Point Search (Searching for equality of elements)

Range Search (Searching for elements within a range)

Insert

Delete

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Access methods

1 Heap file: Unordered, typically implemented as a linked list
of pages.

2 Sorted file: ordered records, expensive to maintain.

3 Index file: data + additional structures around to quickly
access data.

It might contain data (primary index)
It might contain pointers to the data (often stored in a heap
file or secondary index)
It might be clustered (data sorted in the same order of the
field as a clustered index)

Type of indexes:

Search Trees

Hash Table

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Search trees

A majority of the tree operations (search, insert, delete, etc.) will
require O(log2 n) disk accesses where n is the number of data
items in the search tree.

The main challenge is to reduce the number of disk accesses for
processing per data item.

An m-ary search tree allows m-way branching. As branching
increases, the depth decreases. A complete binary tree has a height
of ⌈log2 n⌉ but a complete m-ary tree has a height of ⌈logmn⌉.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Characteristics of B-Trees

B-Tree is a low-depth self-balancing tree. The height of a B-Tree is
kept low by putting maximum possible keys in a B-Tree node.

The B-Trees have a higher branching factor (also termed as the
order) to reduce the depth.

Note: Generally, the node size of a B-Tree is kept equal to the
disk block size.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Characteristics of B-Trees

B-Tree is a low-depth self-balancing tree. The height of a B-Tree is
kept low by putting maximum possible keys in a B-Tree node.

The B-Trees have a higher branching factor (also termed as the
order) to reduce the depth.

Note: Generally, the node size of a B-Tree is kept equal to the
disk block size.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

B-Trees

Definition (B-Tree)

A B-Tree of order m is an m-ary tree with the following properties:

1 The data items are stored at leaves.

2 The non-leaf nodes store up to m − 1 keys to guide the
searching; The key i represents the smallest key in subtree
i + 1.

3 The root is either a leaf or has between 2 and m children.

4 All non-leaf nodes (except the root) have between ⌈m/2⌉ and
m children.

5 All leaves are at the same depth and have between ⌈k/2⌉ and
k data items, for some k .

Note: The properties 3 and 5 are relaxed for the first k insertions.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

B-Trees

Definition (B-Tree)

A B-Tree of order m is an m-ary tree with the following properties:

1 The data items are stored at leaves.

2 The non-leaf nodes store up to m − 1 keys to guide the
searching; The key i represents the smallest key in subtree
i + 1.

3 The root is either a leaf or has between 2 and m children.

4 All non-leaf nodes (except the root) have between ⌈m/2⌉ and
m children.

5 All leaves are at the same depth and have between ⌈k/2⌉ and
k data items, for some k .

Note: The properties 3 and 5 are relaxed for the first k insertions.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

B-Trees

A B-Tree of order 5 and depth 3 that contains 59 data items.

Note: Here, m = k = 5.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Searching into B-Trees

Searching 44 in the following B-Tree:

Note: The lookup (traversal shown in red) is over the disk.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Insertion into B-Trees

Inserting 56 into the following B-Tree:

Note: Insertion requires shifting of a few data items.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Insertion into B-Trees

Inserting 62 into the following B-Tree:

Note: Insertion requires breaking a leaf node into a pair of nodes.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Insertion into B-Trees

Inserting 35 into the following B-Tree:

Note: Insertion requires breaking a leaf node into a pair of nodes
and the inclusion of a new non-leaf node.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Deletion from B-Trees

Deleting 96 from the following B-Tree:

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Deletion from B-Trees

Note: Deletion requires merging of a leaf node with another node.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Characteristics of B+-Trees

Unlike the B-Trees, a B+-tree does not have data items in the
internal (non-leaf) nodes.

Interestingly, more number of keys can be fit on a page of memory
in B+-Trees (because no data is associated with internal nodes),
resulting into fewer cache misses in order to access data that is on
a leaf node.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

B+-Trees

Definition (B+-Tree)

A B+-Tree of order m is an m-ary tree with the following
properties:

The data items are stored at leaves.

The non-leaf nodes store up to m − 1 keys to guide the
searching; The key i represents the smallest key in subtree
i + 1.

The root is either a leaf or has between 2 and m children.

All leaves are at the same depth and have up to k data items,
for some k .

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

B+-Trees

A B+-Tree of order 5 and depth 3 that contains 59 data items.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

B-Trees vs B+-Trees

B-Trees B+-Trees
1. Data are stored on leaf nodes
as well as in internal nodes

1. Data are stored on the leaf
nodes only

2. Redundant search keys are
not allowed

2. Redundant search keys are
allowed

3. Leaf nodes are not linked to-
gether

3. Leaf nodes are linked to-
gether

4. Only direct access is possible 4. Both sequential and direct
access are possible

5. Searching is slower 5. Searching is faster
6. Deletion of internal nodes are
complicated

6. Deletion of internal nodes are
easy

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

R∗-Trees

R∗-Trees are tree data structures used for spatial access methods,
i.e., for indexing multi-dimensional information such as
geographical coordinates, rectangles or polygons.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Database indexing with hash table

Point Searching can be done in a hash table by the primary key.
This is faster than indexing with a tree algorithm.

Point Searching with hash table takes O(1) time but on trees takes
log n time.

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Disadvantages of indexing with hash table

Range Searching is inefficient with hash tables. Tree
algorithms support this in log n time whereas hash indexes can
result in a full table scan incurring O(n) time.

Constant overhead of hash indexes is usually bigger (which is
no factor in theta notation, but it still exists).

Tree algorithms are usually easier to maintain, grow with
data, scale, etc. However, hash indexes work with pre-defined
hash sizes.

Note: There are scalable hashing algorithms like RUSH
(Replication Under Scalable Hashing).

Malay Bhattacharyya Database Management Systems



Outline Background Search Trees Hashing Cost Analysis

Cost analysis of different access methods

Scan Point Search Range Search Insert Delete

Heap BD 0.5BD BD 2D Search
+ D

Sorted BD Dlog B Dlog B + #M Search +
BD

Search
+ BD

Clustered 1.5BD Dlog 1.5B Dlog 1.5B +
#M

Search +
D

Search
+ D

Unclustered
tree index

BD(R +
0.15)

D(1 +
log 0.15B)

Dlog 0.15B +
#M

D(3 +
log 0.15B)

Search
+ 2D

Unclustered
hash index

BD(R +
0.125)

2D BD 4D Search
+ 2D

B denotes the number of data pages

R denotes the number of records per page

D denotes the average time to read/write from disk

C denotes the average time to process a record (e.g., equality
check)

#M denotes the number of matches
Malay Bhattacharyya Database Management Systems


	Outline
	Background
	Search Trees
	Basics
	B-Trees
	B+-Trees
	R*-Trees

	Hashing
	Cost Analysis

