
Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Database Management Systems
Database Recovery

Malay Bhattacharyya

Assistant Professor

Machine Intelligence Unit
and

Centre for Artificial Intelligence and Machine Learning
Indian Statistical Institute, Kolkata

May, 2022

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

1 Introduction
Basics

2 Recovery with atomicity
Basics
Log-based recovery
Shadow paging

3 Recovery with concurrent transactions
Basics
Interaction with concurrency control
Transaction rollback
Checkpoints
Restart recovery

4 Other schemes
Buffer management
Remote backup systems
Advanced recovery techniques

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Basics

Why database recovery?
– To overcome the loss of information in case of any system crash
or failure.
– To ensure that the atomicity and durability properties of
transactions are preserved.

How?
By applying a recovery scheme.

What does a recovery scheme do?
– Restores the database to a consistent state that existed before
the failure.
– Provides high availability (i.e. minimizes the time of unusability
after a crash) of the database.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Types of failures

1 Transaction failure: A transaction might fail due to the
following reasons –

Logical errors: Transaction cannot complete due to some
internal error condition (e.g., bad input, data not found,
overflow, shortage of resource limit, etc.)
System errors: An active transaction is terminated by the
database system due to an error condition (e.g., deadlock).

2 System crash: A power failure or other hardware/software
failure causes the loss of the volatile storage content.

3 Disk failure: A head crash or similar disk failure destroys all
or part of disk storage. Destruction is assumed to be
detectable and disk drives use checksums to detect failures.

Note: It is assumed that non-volatile storage contents will not
corrupt due to system crash (known as fail-stop assumption)
because integrity checks make a safeguard.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Working principle of recovery algorithms

Consider a transaction that transfers some PCs from the account
ISIPC to account IIScPC .
– A failure may occur between one of these modifications have
been made and both of them are made.
– Modifying the database without ensuring that the transaction
will commit may leave the database in an inconsistent state.
– Not modifying the database may result in lost updates if failure
occurs just after transaction commits.

Recovery algorithms work in two ways:

1 Actions are taken during transaction processing to ensure that
enough information exists to recover from failures (precaution)

2 Actions are taken post-failure to recover database contents to
a state ensuring atomicity, consistency and durability (remedy)

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Types of storage

Volatile storage: This type of storage does not survive from
system crashes. E.g., main memory, cache memory, etc.

Nonvolatile storage: These storages survive from system
crashes, however, are subject to failure from head crash that
may result in loss of information. E.g., disk, tape, flash
memory, etc.

Stable storage: This is a form of storage, although
theoretically impossible to obtain, that survives from all
failures by maintaining multiple copies on distinct nonvolatile
media.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Implementation of stable storage

Maintain multiple copies of each data block on separate disks (may be at
remote sites)

Partial/total failure during data transfer can still result in inconsistent
copies. For this, we need to detect the data-transfer failure and
accordingly restore the block to a consistent state. This is done as follows:
– Keep multiple copies of logical database blocks (not like RAID where
everything is local)
– System maintains two physical blocks for each logical database block
– For mirrored disks, both blocks are kept at the same location and for
remote backup one block is local and the other one is remotely hosted
– While operating, first write the information onto the first physical
block, and when the first write successfully completes, write the same
information onto the second physical block, and finally the output is
considered as complete only after the second write successfully happens.
– During recovery, the two physical blocks are compared and updated
accordingly

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Access to data block

Operations on block storage

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Basics

Consider a transaction Ti that transfers 10 PCs from the account
ISIPC to account IIScPC having initial stocks of 50 and 200,
respectively. Now, if the system crashes before IIScPC gets updated
but after the write on ISIPC , we could do the following for recovery:

1 Execute nothing: This will result into an inconsistent state
by writing the values of ISIPC and IIScPC as 40 and 200,
respectively.

2 Re-execute Ti : This will result into an inconsistent state by
writing the values of ISIPC and IIScPC as 30 and 210,
respectively.

Then, how to preserve the atomicity despite the failures?
We must first report the information describing the modifications
to stable storage, instead of modifying the database itself.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Log-based recovery – Working principle

The log, which is kept on stable storage, is a sequence of log
records that maintains a record of all types of update activities on
the database to support efficient recovery.

The log records can be of the following types:

Start log record: <Ti start>, where Ti is the transaction identifier

Update log reord: <Ti ,Dk ,V ,V ′ > or <Ti ,Dk ,V
′ >, where

Ti ,Dk ,V ,V ′ are the transaction identifier, data item identifier, old value
of the data item and new value of the data item, respectively

Abort log record: <Ti abort>, where Ti is the transaction identifier

Commit log record: <Ti commit>, where Ti is the transaction identifier

Note: We assume that the transactions are executing serially.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Log-based recovery – Deferred database modification

This ensures transaction atomicity by recording all the database
modifications in the log, but deferring the execution of all write
operations pertaining to a transaction until it partially commits. In
this scheme, the update record log appears as <Ti ,Dk ,V

′>.

For recovery, we call redo(Ti ) that sets the value of all data items
to the new values as updated by transaction Ti . Transaction Ti

needs to be redone iff the log contains both the log records <Ti

start> and the record <Ti commit>. This redo() should be
idempotent, i.e. single execution must be logically equivalent to
repeated executions.

Drawback: Overhead of storing local copies.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Log-based recovery – Deferred database modification

An example scenario: Assume ISIPC = 50 and IIScPC = 200.

Transactions Entry to the Write to Steps of recovery
(T1,T2) log record database on failure

read(ISIPC ) <T1 start> X(T1)
ISIPC ← ISIPC - 10 <T1, ISIPC , 40> X(T1)

write(ISIPC ) X(T1)
read(IIScPC ) X(T1)

IIScPC ← IIScPC + 10 < T1, IIScPC , 210> X(T1)
write(IIScPC ) <T1 commit> X(T1)

Yes redo(T1)
read(ISIPC ) <T2 start> redo(T1), X(T2)

ISIPC ← ISIPC * 2 <T2, ISIPC , 80> redo(T1), X(T2)
write(ISIPC ) <T2 commit> redo(T1), X(T2)

Yes redo(T1), redo(T2)

Note: X(Ti ) denotes the removal of log records corresponding to
the transaction Ti in execution.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Log-based recovery – Immediate database modification

This ensures transaction atomicity by updating an uncommitted
transaction to the buffer, or to the disk itself before the transaction
commits. In this scheme, the update record log appears as
<Ti ,Dk ,V ,V ′>.

For recovery, we call either undo(Ti ) that restores the value of all
data items updated by transaction Ti to the old values, or
redo(Ti ) that sets the value of all data items to the new values as
updated by transaction Ti . Transaction Ti needs to be undone if
the log contains the log record <Ti start>, but does not contain
<Ti commit>. Again, transaction Ti needs to be redone if the log
contains both the log records <Ti start> and <Ti commit>. Here
also, the redo() and undo() should be idempotent.

Note: A transaction is said to have committed when its commit
log record is sent to the stable storage.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Log-based recovery – Immediate database modification

An example scenario: Assume ISIPC = 50 and IIScPC = 200.

Transactions Entry to the Write to Steps of recovery
(T1,T2) log record database on failure

read(ISIPC ) <T1 start> undo(T1)
ISIPC ← ISIPC - 10 <T1, ISIPC , 50, 40> undo(T1)

write(ISIPC ) Yes undo(T1)
read(IIScPC ) undo(T1)

IIScPC ← IIScPC + 10 <T1, IIScPC , 200, 210> undo(T1)
write(IIScPC ) <T1 commit> undo(T1)

Yes redo(T1)
read(ISIPC ) <T2 start> redo(T1), undo(T2)

ISIPC ← ISIPC * 2 <T2, ISIPC , 40, 80> redo(T1), undo(T2)
write(ISIPC ) <T2 commit> redo(T1), undo(T2)

Yes redo(T1), redo(T2)

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Log-based recovery – Checkpoints

While recovering from the log record, we need to browse the entire
log for undoing or redoing transactions.

This causes two problems:
– the search process becomes time consuming
– Some transactions that are required to be redone might have
already written their updates to the database.

What is the solution then?
The system periodically performs checkpoints that involves –
sending all log records from main memory to stable storage, output
all modified buffer blocks to the disk and write a log record <
checkpoint > to the stable storage.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Shadow paging – Working principle

Initialize identically and then maintain a shadow page table (never
changed) and a current page table (changed when a transaction
performs a write) during the transaction lifetime.

A view of the shadow and current page table

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Basics

To take up recovery, in case of multiple concurrent transactions,
we can use the log-based recovery scheme in a modified and
extended form where –

1 the system should have a single disk buffer and a single log,

2 all transactions should share the buffer blocks, and

3 we have to allow immediate modification and permit a buffer
block to have data items updated by one or more transactions.

Note: The assumption of stable storage also applies here.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Interaction with concurrency control

The recovery scheme should have a close interaction with the
concurrency control.

We need to ensure that if a transaction Ti has updated a data
item, no other transaction may update the same data item until Ti

has committed or been rolled back. This means, updates on
uncommitted transactions should not be visible to the other
transactions.

What is the solution then?
We can use the strict two-phase locking protocol, i.e., two-phase
locking with exclusive locks held until the end of the transaction.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Transaction rollback

A failed transaction Ti is rolled back by the recovery manager
using log records as stated below.

1 Scan the log backward from the end

2 For each log record of the form <Ti ,Dk ,V ,V ′> do the
following:

Restore the data item Dk to its old value V
Write a log record <Ti ,Dk ,V>
On getting the log record <Ti start>, stop the scan and write
the log record <Ti abort>

Note: Scanning the log backward is important, since a transaction
may have updated a data item more than once.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Checkpoints

In a concurrent transaction-processing environment, several
transactions might be active at the same time during the most
recent checkpoint.

We can handle this by using the log record <checkpoint S>, where
S is a set of transactions active at the time of the checkpoint. We
assume that transactions do not perform updates either on the
buffer blocks or on the log while the checkpoint is in progress.

Drawback: The requirement that transactions must not perform
any updates to buffer blocks or to the log during checkpointing
can be troublesome, since transaction processing will have to halt
while a checkpoint is in progress.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Restart recovery – Primary steps

When the system recovers from a crash, it constructs two lists –
The undo-list (consists of transactions to be undone) and the
redo-list (consists of transactions to be redone).

Construction of the undo-list and redo-list:
1 Initialize both the undo-list and redo-list as empty.

2 Scan the log backward, examining each record, until it finds the first
<checkpoint> record.

3 For each record found of the form <Ti commit>, add Ti to the redo-list.

4 For each record found of the form <Ti start>, if Ti is not in the redo-list
then add Ti to the undo-list.

5 For each transaction Ti in the set S belonging to the checkpoint record,
if Ti is not in the redo-list then add Ti to the undo-list.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Restart recovery – Steps for recovery

On preparing the redo-list and undo-list, the recovery scheme
works as follows:

1 Rescan the log from the most recent record backward, and perform an
undo for each log record that belongs transaction Ti on the undo-list.
Log records of transactions on the redo-list are ignored in this phase. The
scan stops when the <Ti start> records have been found for every
transaction Ti in the undo-list.

2 Locate the most recent <checkpoint S> record on the log (this step may
involve scanning the log forward, if the checkpoint record was passed in
step 1).

3 Scan the log forward from the most recent <checkpoint S> record, and
performs redo for each log record that belongs to a transaction Ti that is
on the redo-list. It ignores log records of transactions on the undo-list in
this phase.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Buffer management – Basics

Managing the buffer properly is required for the implementation of
a crash-recovery scheme that ensures:

data consistency

imposes a minimal amount of overhead on interactions with
the database.

A buffer manager is responsible for fetching data from disk storage
into the main memory and deciding what data to cache in main
memory. The involvement of buffer manager is important because
it enables the database to handle data sizes that are much larger
than the size of main memory.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Buffer management – Log-record buffering

Sending every log record to the stable storage might impose high
overhead to the system.

What is the solution then?
Log records are buffered in main memory and are sent to the stable
storage when a block of log records in the buffer is full, or a log
force operation (commit a transaction by forcing all its log records)
is executed.

Rules for log-record buffering:
1 Log records are output to stable storage in the order of their creation.

2 Transaction Ti enters the commit state only when the log record <Ti

commit> has been output to stable storage.

3 Before a block of data in main memory is output to the database, all log
records pertaining to data in that block must have been output to stable
storage (known as write-ahead logging or WAL rule).

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Buffer management – Database buffering

Database maintains an in-memory buffer of data blocks. When a
new block is needed, an existing block is removed from the buffer
if it is full. If the block chosen for removal has been updated, it
must be output to the disk.

The rules for the output of log records limit the freedom of the
system to output blocks of data. If the input of block B causes
block B ′ to be chosen for output, all log records pertaining to data
in B ′ must be output to the stable storage before B ′ is output.
Thus, the sequence of actions by the system would be:

1 Output log records to stable storage until all log records pertaining to
block B ′ have been output.

2 Output block B ′ to disk

3 Input block B from disk to main memory.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Buffer management – Role of OS

The buffer management can be managed by the operating system
(OS) or by the database system itself.

In the former case – The database system implements its buffer within
the virtual memory provided by the OS. Since the OS knows about the
entire memory requirements in the system, ideally it should be in charge
of deciding what buffer blocks must be force-output to disk and when.
But, to ensure the write-ahead logging requirements, the OS should
request the database system to force-output the buffer blocks. The OS
reserves swap space on disk for storing virtual memory pages that are not
currently in main memory. This approach may result in extra output of
data to disk (by the database besides the OS).

In the latter case – The database system reserves part of main memory to
serve as a buffer. This approach has the drawback of limiting flexibility in
the use of main memory. The buffer must be kept small enough that
other applications have sufficient main memory available for their needs.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Remote backup systems

Architecture of a remote backup system

When the primary site fails, the remote backup site takes over
processing. In the beginning, it performs recovery based on the
copy of the data and log records received from the primary site.
Once recovery has been performed, the remote backup site starts
processing transactions.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Advanced recovery techniques – Logical undo logging

To ensure recovery with concurrent transactions, we often use
strict two-phase locking. But it can cause a significant decrease in
concurrency when applied to certain specialized structures like
B+-tree index pages. To increase the concurrency, we can allow
locks to be released early and use logical logging to manage undo
operations efficiently.

In logical logging, if the operation inserted an entry in a B+-tree,
the undo information would indicate that a deletion operation is to
be performed, and would identify the B+-tree and what to delete
from the tree.

Before any logical operation begins, it writes a log record ⟨Ti , Oj ,
operation-begin⟩, where Oj is the unique identifier for the
operation.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Advanced recovery techniques – Fuzzy checkpointing

Checkpointing in concurrent environment requires that all updates
to the database be temporarily suspended while the checkpoint is
in progress. For large number of pages in the buffer, a checkpoint
may take a long time to finish. Fuzzy checkpoints are used to relax
this.

Fuzzy checkpointing allows updates to start once the checkpoint
record has been written, but before the modified buffer blocks are
written to disk.

Here, the location of the last completed checkpoint is stored in a
fixed position (known as last-checkpoint) on disk. The system
does not update this information when it writes the checkpoint
record. Instead, it creates a list of all modified buffer blocks and
update the last-checkpoint information only after all buffer blocks
in the list of modified buffer blocks have been output to disk.

Malay Bhattacharyya Database Management Systems



Outline Introduction Recovery with atomicity Recovery with concurrent transactions Other schemes

Advanced recovery techniques – ARIES

This is a complex recovery scheme that is widely used in industry.
It uses a log sequence number (LSN) to identify log records and a
dirty page table to minimize unnecessary redos during recovery,
employs fuzzy checkpointing, and supports physiological redo
operations. It also incorporates a number of optimizations to
minimize the recovery time.

Key features of ARIES:

Physical and operation logging

Page oriented redo and logical undo

WAL and in-place updates

Transaction rollback

Fine-grain concurrency control

Malay Bhattacharyya Database Management Systems


	Outline
	Introduction
	Basics

	Recovery with atomicity
	Basics
	Log-based recovery
	Shadow paging

	Recovery with concurrent transactions
	Basics
	Interaction with concurrency control
	Transaction rollback
	Checkpoints
	Restart recovery

	Other schemes
	Buffer management
	Remote backup systems
	Advanced recovery techniques


