Database Management Systems
Distributed Databases, Graph Databases

Malay Bhattacharyya

Assistant Professor

Machine Intelligence Unit
and
Centre for Artificial Intelligence and Machine Learning
Indian Statistical Institute, Kolkata

May, 2022

Malay Bhattacharyya Database Management Systems

Distributed Databases

m Basics

m Data Distribution

m Transaction Management
m Concurrency Control

Graph Databases

m Basics

m Property Graph Model
m Neod;j

Malay Bhattacharyya

Database Management Systems

Distributed Databases
©00000000000000000000

Basics

Server

ol T g

——————— N O —

User 1 User 2 User 3
Centralized client-server architecture

Malay Bhattacharyya Database Management Systems

Graph Databases
000000000000

Distributed Databases
[1}

Basics
]
l Server

User 1 User 2 User 3

Centralized client-server architecture

A distributed database system consists of loosely coupled sites that
share no physical component. Database systems that run on each
site are independent of each other. Transactions may access data
at one or more sites.

Malay Bhattacharyya Database Management Systems

Distributed Databases
oe

Homogeneous and heterogeneous databases

In a homogeneous distributed database
— all sites have identical software
— all are aware of each other and agree to cooperate in processing

user requests
— each site surrenders part of its autonomy in terms of right to

change schemas or software
— the entire system appears as a single system to the user

Malay Bhattacharyya Database Management Systems

Distributed Databases
oe

Homogeneous and heterogeneous databases

In a homogeneous distributed database
— all sites have identical software
— all are aware of each other and agree to cooperate in processing

user requests
— each site surrenders part of its autonomy in terms of right to

change schemas or software
— the entire system appears as a single system to the user

In a heterogeneous distributed database

— different sites may use different schemas and software

— difference in schema is a major problem for query processing
— difference in software is a major problem for transaction
processing

Malay Bhattacharyya Database Management Systems

Distributed Databases
©000000

Data distribution

Data can be distributed in two ways:

m Replication — The system maintains several identical replicas
(copies) of the relation, and stores each replica at a different
site. The alternative to replication is to store only one copy of
a relation.

m Fragmentation — The system partitions the relation into
several fragments, and stores each fragment at a different site.

Malay Bhattacharyya Database Management Systems

Distributed Databases
©000000

Data distribution

Data can be distributed in two ways:

m Replication — The system maintains several identical replicas
(copies) of the relation, and stores each replica at a different
site. The alternative to replication is to store only one copy of
a relation.

m Fragmentation — The system partitions the relation into
several fragments, and stores each fragment at a different site.

Note: The fragmentation can be lossless (original relation can be
restored from the partitions) or lossy (original relation can not be
restored from the partitions).

Malay Bhattacharyya Database Management Systems

Distributed Databases
0®00000

Data distribution

Replication

Fragmentation

Advantageous in terms of
high availability

Might not be
readily available

Advantageous in terms of
time complexity but not
space complexity

Maintains a balance
between the time and
space complexity

Disadvantageous in view
of the redundancy and
for updating

Malay Bhattacharyya

No redundancy or
problem in updating

Database Management Systems

Distributed Databases
00®0000

Data transparency

Data transparency denotes the degree to which a system user may
remain unaware of the details of how and where the data items are
stored in a distributed system.

Malay Bhattacharyya Database Management Systems

Distributed Databases
00®0000

Data transparency

Data transparency denotes the degree to which a system user may
remain unaware of the details of how and where the data items are
stored in a distributed system.

It can be of the following types:

Replication transparency — Users are not required to know
what data objects have been replicated, or where replicas have
been placed.

Fragmentation transparency — Users do not have to be
concerned with how a relation has been fragmented.

Location transparency — Users are not required to know the
physical location of the data.

Malay Bhattacharyya Database Management Systems

Distributed Databases
000®000

Horizontal fragmentation

Name ‘ Age ‘ Area

Malay 38 Crowdsourcing
Ansuman | 44 | High Performance Architectures

Name \ Age \ Area

Sasthi | 47 Wireless Networks
Sourav | 40 | Theoretical Computer Science

Malay Bhattacharyya Database Management Systems

Distributed Databases
000®000

Horizontal fragmentation

Name ‘ Age ‘ Area

Malay 38 Crowdsourcing
Ansuman | 44 | High Performance Architectures

Name \ Age \ Area

Sasthi | 47 Wireless Networks
Sourav | 40 | Theoretical Computer Science

Note: Horizontal fragmentation is lossless when union of the
fragments produces the original relation.

Malay Bhattacharyya Database Management Systems

Distributed Databases
0000®00

Vertical fragmentation

Name ‘ Age

Malay 38

Ansuman | 44

Sasthi 47

Sourav 40
Area

Crowdsourcing
High Performance Architectures
Wireless Networks
Theoretical Computer Science

Malay Bhattacharyya Database Management Systems

Distributed Databases
0000®00

Vertical fragmentation

Name ‘ Age

Malay 38

Ansuman | 44

Sasthi 47

Sourav 40
Area

Crowdsourcing
High Performance Architectures
Wireless Networks
Theoretical Computer Science

Note: Vertical fragmentation is lossless when natural join of the
fragments produces the original relation.

Malay Bhattacharyya Database Management Systems

Distributed Databases
00000e®0

Advantages of horizontal and vertical fragmentation

Horizontal:
m It allows parallel processing on fragments of a relation.

m It allows a relation to be split so that tuples are located where
they are most frequently accessed.

Malay Bhattacharyya Database Management Systems

Distributed Databases
00000e®0

Advantages of horizontal and vertical fragmentation

Horizontal:
m It allows parallel processing on fragments of a relation.

m It allows a relation to be split so that tuples are located where
they are most frequently accessed.

Vertical:

m It allows tuples to be split so that each part of the tuple is
stored where it is most frequently accessed.

m Here tuple-id attribute allows efficient joining of vertical
fragments.

m It allows parallel processing on a relation.

Malay Bhattacharyya Database Management Systems

Distributed Databases
00000e®0

Advantages of horizontal and vertical fragmentation

Horizontal:
m It allows parallel processing on fragments of a relation.

m It allows a relation to be split so that tuples are located where
they are most frequently accessed.

Vertical:

m It allows tuples to be split so that each part of the tuple is
stored where it is most frequently accessed.

m Here tuple-id attribute allows efficient joining of vertical
fragments.

m It allows parallel processing on a relation.

Vertical and horizontal fragmentation can be mixed (hybrid
fragmentation) and the advantage is that fragments may be
successively fragmented to an arbitrary depth.

Malay Bhattacharyya Database Management Systems

Distributed Databases
000000

Hybrid fragmentation

A hybrid fragment neither include all the tuples for an attribute
(likewise vertical fragmentation) nor all the attributes for a tuple
(likewise horizontal fragmentation).

Name ‘ Age
Malay 38
Ansuman | 44
Sourav 40

Malay Bhattacharyya Database Management Systems

Distributed Databases
[Ie}

Distributed transaction management

m Transaction may access data at several sites.

Malay Bhattacharyya Database Management Systems

Distributed Databases
[Ie}

Distributed transaction management

m Transaction may access data at several sites.
m Each site has a local transaction manager responsible for:

Maintaining a log for recovery purposes
Participating in coordinating the concurrent execution of the
transactions executing at that site.

Malay Bhattacharyya Database Management Systems

Distributed Databases
[Ie}

Distributed transaction management

m Transaction may access data at several sites.
m Each site has a local transaction manager responsible for:
Maintaining a log for recovery purposes
Participating in coordinating the concurrent execution of the
transactions executing at that site.
m Each site has a transaction coordinator, which is responsible
for:
Starting the execution of transactions that originate at the site.
Distributing subtransactions at appropriate sites for execution.
Coordinating the termination of each transaction that
originates at the site, which may result in the transaction being
committed at all sites or aborted at all sites.

Malay Bhattacharyya Database Management Systems

Distributed Databases
oe

Distributed transaction management

@ @ transaction
coordinator

Vel M .
@ . o o @ transaction
manager

computer 1 computer n

Distributed system architecture for transaction management

Malay Bhattacharyya Database Management Systems

Distributed Databases
©000000000

Locking protocols — Basics

The standard locking protocols used in a centralized system can
also be used in a distributed environment. The only change that
needs to be made is in the way the lock manager deals with
replicated data.

We will consider the existence of shared and exclusive locking
modes here.

Malay Bhattacharyya Database Management Systems

Distributed Databases

O®00000000

Locking protocols — Single lock-manager

It works as follows.

The system maintains a single lock-manager residing in a
single chosen site (say S;). All the lock and unlock requests
are made to S;.

For locking a data item, a transaction sends a lock request to
S;. If the lock-manager grants the request immediately, it
sends a message to the site at which the lock request was
initiated. Otherwise, the request is delayed until it can be
granted.

The transaction can read the data item from any one of the
sites at which a replica of the data item resides. In the case of
a write, all the sites where a replica of the data item resides
must be involved in the writing.

Malay Bhattacharyya Database Management Systems

Distributed Databases
00®0000000

Locking protocols — Single lock-manager

Advantages:

m The implementation is simple because it requires two
messages for handling lock requests, and only one message for
handling unlock requests.

m Since all the lock and unlock requests are made at one site,
the standard deadlock-handling techniques can directly be
applied.

Disadvantages:

m Since all the lock and unlock requests are processed on S;, the
site becomes a bottleneck.

m If the site S; fails, the concurrency controller is lost.

Malay Bhattacharyya Database Management Systems

Distributed Databases
000®000000

Locking protocols — Distributed lock-manager

It works as follows.

Each site maintains a local lock-manager whose function is to
administer the lock and unlock requests for those data items
that are stored in that site.

When a transaction wishes to lock a data item @, which is
not replicated and resides at site S;, a message is sent to the
lock manager at site S; requesting a lock (in a particular lock
mode). If data item Q is locked in an incompatible mode,
then the request is delayed until it can be granted. Once it
has determined that the lock request can be granted, the lock
manager sends a message back to the initiator indicating that
it has granted the lock request.

Malay Bhattacharyya Database Management Systems

Distributed Databases
0000®00000

Locking protocols — Primary copy

When a system uses data replication, we can choose one of the
replicas as the primary copy. Thus, for each data item Q, the
primary copy of @ must reside in precisely one site, which we call
the primary site of Q.

When a transaction needs to lock a data item Q, it requests a lock
at the primary site of Q. As before, the response to the request is
delayed until it can be granted.

Malay Bhattacharyya Database Management Systems

Distributed Databases
00000@0000

Locking protocols — Majority protocol

It works as follows.

If a data item Q is replicated in n different sites, then a
lock-request message must be sent to more than one-half of
the n sites in which @ is stored. Each lock manager
determines whether the lock can be granted immediately (as
far as it is concerned).

he response is delayed until the request can be granted. The
transaction does not operate on @ until it has successfully
obtained a lock on a majority of the replicas of Q.

Malay Bhattacharyya Database Management Systems

Distributed Databases
000000@000

Locking protocols — Biased protocol

It works as follows.

When a transaction needs to lock data item @, it simply
requests a lock on @ from the lock manager at one site that
contains a replica of Q.

When a transaction needs to lock data item @, it requests a
lock on @ from the lock manager at all sites that contain a
replica of Q.

Malay Bhattacharyya Database Management Systems

Distributed Databases
0000000e00

Locking protocols — Quorum consensus protocol

The quorum consensus protocol is a generalization of the majority
protocol. It works as follows.

The quorum consensus protocol assigns each site a
nonnegative weight. It assigns a pair of integers, called read
quorum @, and write quorum Q,, for read and write
operations on a data item Q such that they satisfy the
following conditions: (i) Q, + Qw > S and (ii) 2Q,, > S.
Here, S is the total weight of all sites at which Q resides.

To execute a read operation, enough replicas must be read
that their total weight is no less than Q,.

To execute a write operation, enough replicas must be written
so that their total weight is no less than Q,,.

Malay Bhattacharyya Database Management Systems

Distributed Databases
0000000080

Locking protocols — Timestamping

There are two primary methods for generating unique timestamps,
one centralized and one distributed.

m In the centralized scheme, a single site distributes the
timestamps. The site can use a logical counter or its own
local clock for this purpose.

m In the distributed scheme, each site generates a unique local
timestamp by using either a logical counter or the local clock.
We obtain the unique global timestamp by concatenating the
unique local timestamp with the site identifier, which also
must be unique. Note that, the order of concatenation is
important.

Malay Bhattacharyya Database Management Systems

Distributed Databases
000000000e

Distributed deadlock handling

| /n n\ T5 |
I VS W—> T4 !
! Site S1 Site S2 !

| /n\ T5 |
|12 > 13 > T4 !

Global view

Local and global wait-for graphs

Malay Bhattacharyya Database Management Systems

Graph Databases
°

Basics

Graph databases use graph structures for semantic queries with
nodes, edges, and properties to represent and store data.

Malay Bhattacharyya Database Management Systems

Graph Databases
°

Basics

Graph databases use graph structures for semantic queries with
nodes, edges, and properties to represent and store data.

Graph databases are part of the NoSQL databases created to
address the limitations of the existing relational databases.

Malay Bhattacharyya Database Management Systems

Graph Databases
°

Basics

Graph databases use graph structures for semantic queries with
nodes, edges, and properties to represent and store data.

Graph databases are part of the NoSQL databases created to
address the limitations of the existing relational databases.

Querying relationships within a graph database is fast because they
are perpetually stored within the database itself.

Malay Bhattacharyya Database Management Systems

Graph Databases
®0

Property Graph Model

Property Graph Model is a key concept in Graph Databases. In
this model, data is organized as nodes, relationships, and
properties (data stored on the nodes or relationships).

Malay Bhattacharyya Database Management Systems

Graph Databases
®0

Property Graph Model

Property Graph Model is a key concept in Graph Databases. In
this model, data is organized as nodes, relationships, and
properties (data stored on the nodes or relationships).

m Nodes are the entities in the graph. They can hold any
number of attributes (key-value pairs) called properties. Nodes
can be tagged with labels, representing their different roles in
your domain. Node labels may also serve to attach metadata
(such as index or constraint information) to certain nodes.

m Relationships provide directed, named,
semantically-relevant connections between a pair of node
entities. A relationship always has a direction, a type, a start
node, and an end node. Like nodes, relationships can also
have properties. In most cases, relationships have quantitative
properties (e.g., weights, costs, ratings, time intervals, etc.).

Malay Bhattacharyya Database Management Systems

Distributed Databases
000000000000000000000

Graph Databases

Property Graph Model — An example

Relationships can have
properties (name/value pairs)
—_—

:HAS_CEO
start_date: 2008-01-20

Company

name: Amy Peters

date_of birth: 1984-03-01

employee ID:1
-—

Nodes can have

properties (name/value pairs)

0O0®000000000

Relationships are directional

—_—

:LOCATED_IN 5
= City

PE——
Relationships connect nodes
and represent actions (verbs)

s

Nodes represent
objects (nouns)

Malay Bhattacharyya Database Management Systems

Graph Databases
©00000000

Neo4;j

Neo4j is an open-source, NoSQL based, native graph database that
provides an ACID-compliant transactional back-end for various
applications.

Neo4j efficiently implements the Property Graph Model down to

the physical level (i.e., the data is stored exactly as you connect it),
and the database uses pointers to navigate and traverse the graph.

Malay Bhattacharyya Database Management Systems

Graph Databases
0®0000000

Property graphs in Neo4j — Nodes

Nodes are often used to represent entities. The simplest
possible graph is a single node.

The following property graph consists of a single node.

(Person w

name = '"Tom Hanks'
born = 1956

Malay Bhattacharyya Database Management Systems

Graph Databases
00®000000

Property graphs in Neo4j — Labels

Labels are used to shape the domain by grouping nodes into sets
where all nodes that have a certain label belongs to the same set.
A node can have zero to many labels.

In the following example, by including additional labels to the
nodes having the labels Person (one possible way of describing the
data), we express different dimensions of the data.

Person - Person
(Actor \} (Movie \ (Director W

name = '"Tom Hanks' UgllZase'g(irrle Stgfumpj name = 'Robert Zemeckis'
born = 1956 born = 1951

Malay Bhattacharyya Database Management Systems

Graph Databases
000®00000

Property graphs in Neo4j — Relationships

A relationship connects two nodes. Relationships organize nodes
into structures, allowing a graph to resemble a list, a tree, a map,
or a compound entity — any of which may be combined into yet
more complex, richly inter-connected structures.

name = 'Tom Hanks' name = 'Robert Zemeckis'
born = 1956 born = 1951

ACTED IN
roles = ['Forrest']

DIRECTED

title = 'Forrest Gump'
released = 1994

Malay Bhattacharyya Database Management Systems

Graph Databases
0000®0000

Property graphs in Neo4j — Relationship types

A relationship must have exactly one relationship type.
Relationships always have a direction. However, you only have to
pay attention to the direction where it is useful. This means that
there is no need to add duplicate relationships in the opposite
direction unless it is needed in order to properly describe your use

case.
ACTED_IN
name = '"Tom Hanks'\ roles = ['Forrest'] title = 'Forrest Gump'
born = 1956) released = 1994

Note that, a node can have relationships to itself as shown below.
name = 'Tom Hanks'
G)orn ~ 1956)PKNOWS

Malay Bhattacharyya Database Management Systems

Graph Databases
00000000

Property graphs in Neo4j — Properties

Properties are name-value pairs that are used to add qualities to
nodes and relationships.

In the following example, we have used the properties name and
born on Person nodes, title and released on Movie nodes,
and the property roles on the : ACTED_IN relationship.

name = 'Tom Hanks' name = 'Robert Zemeckis'
born = 1956 born = 1951

ACTED IN
roles = ['Forrest']

DIRECTED

title = 'Forrest Gump'
released = 1994

Malay Bhattacharyya Database Management Systems

Graph Databases
00000000

Property graphs in Neo4j — Paths

A traversal (visiting nodes by following relationships) is how you
query a graph in order to find answers to questions. The traversal
result is generally returned as a path. Note that, the shortest
possible path has length zero and it contains a single node and no
relationships.

For finding out which movies Tom Hanks acted in the example
shown earlier, the traversal would start from the ‘Tom Hanks'
node, follow any :ACTED_IN relationships connected to the node,
and end up with ‘Forrest Gump’ as the result as shown below.

ACTED IN

Person | Dame = '"Tom Hanks'\ roles = ['Forrest'] J M
born = 1956) 'k

ovie

title = 'Forrest Gump'
released = 1994

Malay Bhattacharyya Database Management Systems

Property graphs in Neo4j — Naming conventions

Graph Entity

Recommended Style

Node label

Camel case, beginning with an
uppercase character

Relationship type

Upper case, using underscore to
separate words

Property

Lower camel case, beginning
with a lower-case character

Malay Bhattacharyya Database Management Systems

Graph Databases
000000080

Graph Databases
00000000e

More on Neo4;j

Look into the Neo4j documentation:

https://neodj.com/docs

Malay Bhattacharyya Database Management Systems

	Outline
	Distributed Databases
	Basics
	Data Distribution
	Transaction Management
	Concurrency Control

	Graph Databases
	Basics
	Property Graph Model
	Neo4j

