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Notes for Lecture 2∗

February 17, 2022

1 Functionals

The branch of mathematics which is custom-made for treating field theories in physics is functional
calculus. This is a generalization of multivariable calculus i.e. calculus of a discrete finite number
of variables to the case when the number of variables become infinite (i.e. a field). First we need
to define what a functional is. To this end we recall that in calculus, a function, f(x) of a real
variable x is defined to be a map from R to R,

f : R→ R,

or a map from C to C for a function f(z) of a complex variable, z.

A functional is defined to be a map from the set of real (or complex) function(s) to the R (or C
if it is a complex functional). Let’s say if f(x) is a function of a single variable, then a functional
of f(x), denote it by F [f ] or F [f(x)] is map from all possible functions, f(x) to real numbers:

F : {f(x)} → R.

An example of a functional is F [f(x)] =
´ 1
0
dx f(x). As is evident from Table 1, the functional

F [f ] inputs a function from the left column and outputs a real number.

Just as one can generalize from a function of a single real (complex) variable to a function of
several real (complex) variables say f (x1, x2, . . . , xN), one can easily generalize this concept to a
functional of several real (complex) functions, say F [f1(x), f2(x), f3(x), . . . fN(x)], which is a map
from the “space of N real (complex) functions” to the real line R (or the complex plane, C).

Although one necessarily needs to introduce functionals for field theory, the fact is that func-
tionals can be used even for discrete number of degrees of freedom, e.g. a single particle as we will
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f(x) F [f(x)]

x+ 2x2 1.166 . . .
ex 1.718 . . .

sinx 0.459...
lnx −1

Table 1: F [f ] is a functional of the function f(x)

see in the following. However for discrete degrees of freedom using functional calculus is overkill,
so we usually omit discussing functionals in the context of particle classical mechanics. Consider
the action for a non-relativistic free point particle of mass m (for simplicity moving in one space
dimension), described by the well known action,

IPP [q(t)] =

ˆ
dt
(m

2
q̇2
)

(1)

Clearly, the action is a (real) functional of the trajectory function q(t) - for every trajectory
function, q(t) the action integral generates some real number. If the particle is allowed to move
in three space dimensions the action becomes a functional of three real functions representing the
trajectory, x(t), y(t) and z(t), namely,

I [x(t), y(t), z(t)] =

ˆ
dt

m

2

(
ẋ2 + ẏ2 + ż2

)
.

or using 3-vector notation,

I [x(t)] =

ˆ
dt
(m

2
ẋ2
)
.

Comment:

Can we regard a functional as a “function of a function”? The answer is, yes in some ways, but
it is not a good way to think about functionals because usually in math a function of a func-
tion is something which is known as a composite map or composite function e.g.for two functions
f(x) and g(x) one can define composite maps (function of a function), f ◦ g(x) ≡ f (g(x)) and
g ◦ f(x) ≡ g (f(x)) which are new functions but not functionals.

1.1 Functional Differentiation

Now the next thing one learns in usual multivariable calculus after defining functions is the concept
of a derivative of a function. Analogously one can define in functional calculus, the functional
derivative , namely,

δF [f ]

δf(x)
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which measures how the functional, F responds to changes in the function, f(x) on which it
depends. We will learn how to take (define) functional derivatives of a functional from analogy
with multivariable calculus and then passing over to continuum limit i.e.infinite variables or a field.
First note if we have N real variables, qi, where i = 1, . . . , N , one has the rule (definition),

∂qi
∂qj

= δij. (2)

Now when the number of variables becomes infinite and get labeled by a continuous parameter,
say x instead of discrete index label, i, we have to replace

qi → ϕ(x)

and also,
qj → ϕ(y).

Then the partial derivative on the LHS of (2) becomes converted to the functional derivative,

∂qi
∂qj
→ δϕ(x)

δϕ(y)
.

As one can naturally guess the Kronecker delta, δij on the RHS of (2) will get converted to a Dirac
delta, δ(x− y)! Thus we have the first rule for functional derivatives,

δϕ(x)

δϕ(y)
= δ(x− y) (3)

The second rule is the Leibniz rule for differentiation, namely, functional derivative of a product
of several quantities splits up into a sum,

δ

δϕ(x)
(A B C . . .) =

δA

δϕ(x)
B C . . .+ A

δB

δϕ(x)
C . . .+ A B

δC

δϕ(x)
. . .+ . . . . (4)

The third rule is the analog of the chain rule of multivariable calculus, namely,

∂f(qi)

∂qj
=
∂f(qi)

∂qi

∂qi
∂qj

,

We have a similar rule for functional derivatives of a function

δf (ϕ(x))

δϕ(y)
=
∂f (ϕ(x))

∂ϕ(x)

δϕ(x)

δϕ(y)
(5)

Be careful about this chain rule since it contains both partial derivatives and functional derivatives
on the RHS!.
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The fourth and final rule we will need to take functional derivatives is the (perhaps obvious)
one where we state that functional derivatives commute with normal partial spacetime derivatives
and space or time integrals:

δ

δϕ(y)

∂

∂x
(. . .) =

∂

∂x

δ

δϕ(x)
(. . .) ,

δ

δϕ(y)

ˆ
dt dx (. . .) =

ˆ
dt dx

δ

δϕ(y)
(. . .) . (6)

1.2 Functional Euler-Lagrange equations for a field theory

Here we generalize the Euler-Lagrange (EL) equations for a physical system with discrete number
of degrees of freedom, say qi, i = 1, . . . , N to field theory. For discrete number of degrees of
freedom, the EL equations read,

∂

∂t

(
∂L

∂q̇i

)
=
∂L

∂qi
∀i = 1, . . . , N.

To write down the analogous equations for field theory we make the following replacement (the
discrete index i to a continuous label, x),

qi → ϕ(x),

q̇i → ϕ̇(x),

and

∂

∂qi
→ δ

δϕ(x)
,

∂

∂q̇i
→ δ

δϕ̇(x)
,

and get,
∂

∂t

(
δL

δϕ̇(x)

)
=

δL

δϕ(x)
, ∀x. (7)

Comments:

Throughout this subsection we have suppressed the time-dependence of the generalized coordinates,
i.e. we have used qi instead of qi(t), and analogously suppressed the time-dependence of the field
ϕ, i.e. we have used the notation ϕ(x) instead ϕ(x, t). This has been done to reduce the clutter of
notation and no information is lost while suppressing the time-dependence in this notation. This is
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what is traditionally done even in classical mechanics of a point particle (or mechanics of a single
d.o.f.), where the equation of motion is stated in the form,

∂L

∂q
=

∂

∂t

(
∂L

∂q̇

)
,

instead of the more cumbersome
∂L

∂q(t)
=

∂

∂t

(
∂L

∂q̇(t)

)
.

1.3 Check: Reproducing the EOM for the harmonic chain field theory
using the functional EL equations

The field theory lagrangian in this case is,

L =

ˆ
dx

(
µ

2
ϕ̇2(x)− Y

2
(ϕ′(x))

2

)
. (8)

Then, we have,

δL

δϕ̇(y)
=

δ

δϕ̇(y)

ˆ
dx

(
µ

2
ϕ̇2(x)− Y

2
(ϕ′(x))

2

)
=

ˆ
dx

δ

δϕ̇(y)

(
µ

2
ϕ̇2(x)− Y

2
(ϕ′(x))

2

)
=

ˆ
dx

(
µ

2

δϕ̇2(x)

δϕ̇(y)
− Y

2���
���

���:0δ

δϕ̇(y)
(ϕ′(x))

2

)

=

ˆ
dx

µ

2
2ϕ̇(x)

δϕ̇(x)

δϕ̇(y)︸ ︷︷ ︸
=δ(x−y)

= µ

ˆ
dx ϕ̇(x) δ(x− y)

= µ ϕ̇(y). (9)

So the LHS of the EL equation (7) is,

∂

∂t

(
δL

δϕ̇(y)

)
=

∂

∂t
(µ ϕ̇(y)) = µ ϕ̈(y) (10)

***************************************************************************
This is where the lecture ended. This rest of the ssubection will be covered in lec.. 3
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*************************************************************************

Next we compute the RHS of the EL equation (7)

δL

δϕ(y)
=

δ

δϕ(y)

ˆ
dx

(
µ

2
ϕ̇2(x)− Y

2
(ϕ′(x))

2

)
=

ˆ
dx

δ

δϕ(y)

(
µ

2
ϕ̇2(x)− Y

2
(ϕ′(x))

2

)

=

ˆ
dx

µ
2�
�
�
��>

0
δϕ̇2(x)

δϕ(y)
− Y

2

δ (ϕ′(x))2

δϕ(y)


=

ˆ
dx

(
−Y

2

)
2 ϕ′(x)

δϕ′(x)

δϕ(y)

= −Y
ˆ
dx ϕ′(x)

δ

δϕ(y)

∂

∂x
ϕ(x)

= −Y
ˆ
dx ϕ′(x)

∂

∂x

δ

δϕ(y)
ϕ(x)︸ ︷︷ ︸

=δ(x−y)

= −Y
ˆ
dx ϕ′(x)

∂

∂x
δ(x− y)

= Y

ˆ
dx

∂

∂x
ϕ′(x) δ(x− y)

= Y
∂2ϕ(y)

∂y2
. (11)

Now that we have computed both sides of the EL equation (7) for this, we can just write it down,

µϕ̈ = Y ϕ′′,

⇒ ϕ′′ − 1

v2
ϕ̈ = 0, v =

√
Y

µ
. (12)

This familiar equation of motion is of course what we expected to get.

Comments:

• Observe that we have take the lagrangian (density) to be a function of the field and its first
derivative, i.e. ϕ̇, ϕ′. Can we take a more general lagrangian which depends not only on the
field and its first space-time derivatives but higher order spacetime derivatives? The answer
is if one considers more general lagrangian which depend on higher order time derivatives of
the field, the physical system develops instabilities, a phenomenon which was uncovered by
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M. Ostrogradsky and goes by his name, the Ostrogradsky instability.

• For the sake of simplicity we have discussed a field theory with one space dimension. However
our entire discussion can be straightforwardly generalized to three space dimensions (or
arbitrary d dimensions). In that case the Lagrangian density will be a function of all spatial
derivatives,

L = L(ϕ, ϕ̇,∇ϕ),

and the lagrangian will be volume integral of the density,

L =

ˆ
d3x L(ϕ, ϕ̇,∇ϕ).

For example one can easily generalize the harmonic chain field theory to three dimensions,

L =
ρ

2
ϕ̇2 − B

2
(∇ϕ) · (∇ϕ)

where ρ is now the volume mass-density and B is the bulk modulus.
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