
Quantum Field Theory: PH6418/EP4618 (Spring 2022)

Lecture 3 notes∗

February 24, 2022

1 Functionals II: Functional Euler-Lagrange equations for

a field theory

Here we generalize the Euler-Lagrange (EL) equations for a physical system with discrete number
of degrees of freedom, say qi, i = 1, . . . , N to field theory. For discrete number of degrees of
freedom, the EL equations read,

∂

∂t

(
∂L

∂q̇i

)
=
∂L

∂qi
∀i = 1, . . . , N.

To write down the analogous equations for field theory we make the following replacement (the
discrete index i to a continuous label, x),

qi → ϕ(x),

q̇i → ϕ̇(x),

and

∂

∂qi
→ δ

δϕ(x)
,

∂

∂q̇i
→ δ

δϕ̇(x)
,

and get,
∂

∂t

(
δL

δϕ̇(x)

)
=

δL

δϕ(x)
, ∀x. (1)

1.1 Check: Reproducing the EOM for the harmonic chain field theory
using the functional EL equations

The field theory lagrangian in this case is,

L =

ˆ
dx

(
µ

2
ϕ̇2(x)− Y

2
(ϕ′(x))

2

)
. (2)

∗Typos and errors should be emailed to the Instructor: Shubho Roy (email: sroy@phy.iith.ac.in)
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Then, we have,

δL

δϕ̇(y)
=

δ

δϕ̇(y)

ˆ
dx

(
µ

2
ϕ̇2(x)− Y

2

(
ϕ′(x)

)2)
=

ˆ
dx

δ

δϕ̇(y)

(
µ

2
ϕ̇2(x)− Y

2

(
ϕ′(x)

)2)
=

ˆ
dx

(
µ

2

δϕ̇2(x)

δϕ̇(y)
− Y

2���
��

���:
0δ

δϕ̇(y)

(
ϕ′(x)

)2)

=

ˆ
dx

µ

2
2ϕ̇(x)

δϕ̇(x)

δϕ̇(y)︸ ︷︷ ︸
=δ(x−y)

= µ

ˆ
dx ϕ̇(x) δ(x− y)

= µ ϕ̇(y). (3)

So the LHS of the EL equation (1) is,

∂

∂t

(
δL

δϕ̇(y)

)
=

∂

∂t
(µ ϕ̇(y)) = µ ϕ̈(y) (4)

Next we compute the RHS of the EL equation (1)

δL

δϕ(y)
=

δ

δϕ(y)

ˆ
dx

(
µ

2
ϕ̇2(x)− Y

2

(
ϕ′(x)

)2)
=

ˆ
dx

δ

δϕ(y)

(
µ

2
ϕ̇2(x)− Y

2

(
ϕ′(x)

)2)

=

ˆ
dx

µ
2�
�
�
�>
0

δϕ̇2(x)

δϕ(y)
− Y

2

δ (ϕ′(x))2

δϕ(y)


=

ˆ
dx

(
−Y

2

)
2 ϕ′(x)

δϕ′(x)

δϕ(y)

= −Y
ˆ
dx ϕ′(x)

δ

δϕ(y)

∂

∂x
ϕ(x)

= −Y
ˆ
dx ϕ′(x)

∂

∂x

δ

δϕ(y)
ϕ(x)︸ ︷︷ ︸

=δ(x−y)

= −Y
ˆ
dx ϕ′(x)

∂

∂x
δ(x− y)

= Y

ˆ
dx

∂

∂x
ϕ′(x) δ(x− y)

= Y
∂2ϕ(y)

∂y2
. (5)
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Now that we have computed both sides of the EL equation (1) for this, we can just write it down,

µϕ̈ = Y ϕ′′,

⇒ ϕ′′ − 1

v2
ϕ̈ = 0, v =

√
Y

µ
. (6)

This familiar equation of motion is of course what we expected to get.

Comments:

• Observe that we have take the lagrangian (density) to be a function of the field and its first
derivative, i.e. ϕ̇, ϕ′. Can we take a more general lagrangian which depends not only on the
field and its first space-time derivatives but higher order spacetime derivatives? The answer
is if one considers more general lagrangian which depend on higher order time derivatives of
the field, the physical system develops instabilities, a phenomenon which was uncovered by
M. Ostrogradsky and goes by his name, the Ostrogradsky instability.

• For the sake of simplicity we have discussed a field theory with one space dimension. However
our entire discussion can be straightforwardly generalized to three space dimensions (or
arbitrary d dimensions). In that case the Lagrangian density will be a function of all spatial
derivatives,

L = L(ϕ, ϕ̇,∇ϕ),

and the lagrangian will be volume integral of the density,

L =

ˆ
d3x L(ϕ, ϕ̇,∇ϕ).

For example one can easily generalize the harmonic chain field theory to three dimensions,

L =
ρ

2
ϕ̇2 − B

2
(∇ϕ) · (∇ϕ)

where ρ is now the volume mass-density and B is the bulk modulus.

• For a generic lagrangian,

L =

ˆ
dx L(ϕ, ϕ′, ϕ̇)

the functional Euler-Lagrange equation (1), after evaluating the functional derivatives, read
as

∂L
∂ϕ
− ∂

∂t

(
∂L
∂ϕ̇

)
− ∂

∂x

(
∂L
∂ϕ′

)
= 0, (7)

i.e. the same form as the one we derived by varying the action.

3



2 Hamiltonian description of field theory: Canonical mo-

mentum, Hamiltonian (density) and Hamilton’s equa-

tions

For the discrete case, the generalized momentum is defined as,

πi =
∂L

∂q̇i

To obtain the analogous quantity for the continuum case, replace the discrete index, i, by contin-
uum label x,

i→ x,

q̇ → ϕ̇(x),

and as a result we need to replace the partial derivative by functional derivative,

∂

∂q̇i
→ δ

δϕ̇(x)
.

Thus we have the canonical momentum for the continuum case,

π(x) =
δL

δϕ̇(x)
. (8)

Since a field theory Lagrangian is the integral of a density, i.e. L =
´
dx L(ϕ, ϕ̇, ϕ′), one can check

that working out the functional derivative using chain rule of functional differentiation that,

π(x) =
δL

δϕ̇(x)
=

∂L
∂ϕ̇(x)

. (9)

This gives a nice expression for the momentum in a field theory in terms of partial derivatives
(instead of functional derivatives).

The Hamiltonian for a discrete system is defined via the multivariable Legendre transform,

H =
∑
i

pi q̇i − L.

To obtain the corresponding expression for the field theory (continuum system) we replace,∑
i

→
ˆ

dx,

pi → π(x),

q̇i → ϕ̇(x),

and thus we have,

H =

ˆ
dx π(x) ϕ̇(x)− L, (10)
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but since for a field theory the lagrangian itself is the integral of a density, L =
´
dx L, we have

the Hamiltonian to be an integral of a density as well,

H =

ˆ
dxH, (11)

H (π(x), ϕ(x)) = π(x) ϕ̇(x)− L (ϕ(x), ϕ̇(x), ϕ′(x)) , (12)

where, as usual, in the final expression one has to invert (9) to express the generalized velocity in
terms of momentum and field, ϕ̇(x) = ϕ̇ (π(x), ϕ(x), ϕ′(x)).

On applying the variational principle to the action (this is the pq form of the action)

I =

ˆ
dt [piq̇i −H(pi, qi)]

one can obtain Hamilton’s equations of evolution for a system of several discrete degrees of freedom:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

The Hamilton’s equations can be immediately generalized to continuum case (field theory), by
replacing all discrete indices, i by the continuum label, x,

qi → ϕ(x), pi → π(x)

as well as replacing the partial derivatives by functional derivatives,

∂

∂qi
→ δ

δϕ(x)
,

∂

∂pi
→ δ

δπ(x)
.

The Hamilton’s equations are,

ϕ̇(x) =
δH

δπ(x)
, π̇(x) = − δH

δϕ(x)
(13)

Using chain rule for functional differentiation for the RHS of the Hamilton’s equations (13), we
get the Hamilton’s equations involving just partial derivatives, instead of functional derivatives,

ϕ̇(x) =
∂H
∂π(x)

, π̇(x) = − ∂H
∂ϕ(x)

+
∂

∂x

(
∂H

∂ϕ′(x)

)
. (14)

Comments:

• For the case of three space dimensions one just need to replace x → x, and ∂
∂x
→ ∇ in all

equations, e.g.

ϕ̇(x) =
∂H
∂π(x)

, π̇(x) = − ∂H
∂ϕ(x)

+ ∇ ·
(

∂H
∂ (∇ϕ(x))

)
.

5



2.1 Example: Momentum, Hamiltonian (density) and Hamilton’s equa-
tions for harmonic chain field theory

Consider the field theory given the lagrangian (2). The momentum for this system (using (3)) is,

π(x) =
δL

δϕ̇(x)
= µ ϕ̇(x).

This gives,

ϕ̇(x) =
π(x)

µ
.

The Hamiltonian density is then

H = π ϕ̇− L

= π ϕ̇−
(
µ

2
ϕ̇2 − Y

2
ϕ′2
)

= π
π

µ
−

(
µ

2

(
π

µ

)2

− Y

2
ϕ′2

)

=
π2

2µ
+
Y

2
ϕ′2.

Now that we have the Hamiltonian, we can work out the Hamilton’s equations. The first Hamilton’s
equation gives,

ϕ̇(y) =
δH

δπ(y)

=
δ

δπ(y)

ˆ
dx

(
π2(x)

2µ
+
Y

2
ϕ′2(x)

)
=

ˆ
dx

δ

δπ(y)

(
π2(x)

2µ
+
Y

2
ϕ′2(x)

)
=

ˆ
dx

δ

δπ(y)

(
π2(x)

2µ

)
=

1

2µ

ˆ
dx

δπ2(x)

δπ(y)

=
1

2µ

ˆ
dx 2π(x)

δπ(x)

δπ(y)︸ ︷︷ ︸
=δ(x−y)

=
1

µ
π(y).
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The second Hamilton’s equation gives,

π̇(y) = − δH

δϕ(y)

= − δ

δϕ(y)

ˆ
dx

(
π2(x)

2µ
+
Y

2
ϕ′2(x)

)
= −
ˆ
dx

δ

δϕ(y)

(
π2(x)

2µ
+
Y

2
ϕ′2(x)

)
= −
ˆ
dx

δ

δϕ(y)

(
Y

2
ϕ′2(x)

)
= −Y

2

ˆ
dx

δϕ′2(x)

δϕ(y)

= −Y
2

ˆ
dx 2ϕ′(x)

δϕ′(x)

δϕ(y)

= −Y
ˆ
dx ϕ′(x)

(
δϕ(x)

δϕ(y)

)′

= −Y
ˆ
dx ϕ′(x) δ′(x− y)

= Y

ˆ
dx ϕ′′(x) δ(x− y)

= Y ϕ′′(y).

Thus the two Hamilton’s equations are

ϕ̇ =
π

µ
, π̇ = Y ϕ′′

Using the first in the second (eliminating π), we get,

ϕ′′ − µ

Y
ϕ̈ = 0.

Indeed this is the correct equation of motion for the harmonic chain field theory.

3 Poisson Brackets

A Hamiltonian field theory is physical system of infinite degrees of freedom, namely canonically
conjugate pairs of fields ϕ(x), π(x) specified by a Hamiltonian function which is the integral of a
density,

H =

ˆ
d3x H (π(x), ϕ(x)) .

For a physical system with discrete number of degrees of freedom, say qi, pi, i = 1, . . . , N , one can
express the time evolution of a physical quantity, f(qi, pi, t) as,

df

dt
= {f,H}PB +

∂f

∂t
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where {f,H}PB is the Poisson bracket of f with the Hamiltonian. The Poisson bracket of two
quantities, say A(qi, pi) and B(qi, pi) is,

{A,B}PB =
∑
i

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
. (15)

For a field theory, the Poisson bracket (15) can be easily generalized by replacing∑
i

→
ˆ
d3x

∂

∂qi
→ δ

δϕ(x)

∂

∂pi
→ δ

δπ(x)

and we have for a field theory,

{A,B}PB =

ˆ
d3x

(
δA

δϕ(x)

δB

δπ(x)
− δA

δπ(x)

δB

δϕ(x)

)
. (16)

Thus the time evolution equation for any physical quantity, F which could be either a function or
a functional of the canonically conjugate fields, ϕ(x), π(x), is

dF

dt
= {F,H}PB +

∂F

∂t
, (17)

where now,

{F,H}PB =

ˆ
d3x

(
δF

δϕ(x)

δH

δπ(x)
− δF

δπ(x)

δH

δϕ(x)

)
.

Comment:

• If there is a conserved quantity (charge) in a physical system, i.e if there exists a special
functional,

Q = Q [ϕ(x), π(x), t]

such that dQ
dt

= 0. This implies,

{Q,H}PB = −∂Q
∂t
.

If there is no explicit time dependence in Q and it is purely a function or functional of
ϕ(x), π(x), then further one has for a conserved charge,

{Q,H}PB = 0. (18)

When we discuss Noether’s theorem and conservation laws in field theory, we will make
extensive use of this condition (18). Note that this condition is in correspondence with the
analogous conservation condition in quantum mechanics,

[Q,H] = 0.
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Homework

Problem 1. Rederive the equation of motion (7) for a generic theory of a field ϕ
from the functional Euler-:Lagrange equation (1) using the chain rule for functional
differentiation.

Problem 2. Derive the Hamilton’s equations (14) for a generic theory of a field ϕ from
the functional Hamilton’s equations (13) using chain rule for functional differentiation.
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