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1 Lorentz group and the Poincaré group

By Lorentz group here we mean only the restricted Lorentz group, Λ↑+ , which is the component of the Lorentz
group continuously connected to the identity. The restricted Lorentz group of transformations consists of
rotations and boosts. The Lorentz group elements are defined by the condition,

ΛT ηΛ = η, (1)

where η = diag (1,−1,−1,−1). In 3 + 1-dimensions (i.e. 3 space and 1 time dimensions), the Lorentz
transformation matrices are 4 × 4 matrices and hence contain 4 × 4 = 16 real elements. Then the defining

condition (1), which is a symmetric matrix, leads to 4(4+1)
2 = 10 constraint equations to satisfied by the

Lorentz transformation matrix elements. Thus, the total number of independent elements (parameters) in
the Lorentz matrix are,

16− 10 = 6.

These 6 independent Lorentz matrix parameters are the 3 rotation parameters (angles) and 3 boost param-
eters (velocities or rapidities).

The Poincaré group consists of the group of Lorentz transformations, and the group of translations (shifts
of origin of spacetime origin),

xµ → x′µ = xµ + aµ. (2)

The shift parameters i.e. the aµ’s for µ = 0, 1, 2, 3 can take any real value i.e. they are unconstrained and
hence the group of translations is a 4-parameter group and we will denote the translation group as R4. The
translations are an abelian group with the group operation being simple addition. The identity element
is the zero vector, (0, 0, 0, 0), and the inverse of the element aµ is the element −aµ. Thus, the number of
parameters of the Poincaré group in 3 + 1-dimensions is

6 + 4 = 10.

The Poincaré group is denoted by the notation ISO(1, 3), and a Poincaré group element is denoted by,

P = (Λ, a)

which acts on points on Minkowski space as,

x→ x′ = Λ x+ a. (3)

The Poincaré group composition law can be deduced by looking at two successive transformations,

x→ x′ = Λ1x+ a1,

∗Typos and errors should be reported to sroy@phy.iith.ac.in
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and,

x′ → x′′ = Λ2x
′ + a2

= Λ2 (Λ1x+ a1) + a2

= Λ2Λ1x+ Λ2a1 + a2

= Λx+ a,

where, Λ = Λ2Λ1 and a = Λ2a1 + a2. Thus the group composition rule is,

(Λ2, a2) . (Λ1a1) = (Λ2Λ1, Λ2a1 + a2) .

Since, the translations group, R4 is the normal subgroup1, we conclude that the Poincaré group is a semi-
direct product of R4 and the subgroup of Lorentz transformations:

ISO(1, 3) = R4 oO(1, 3). (4)

Evidently the Poincaré transformation (3) is inhomogeneous because the lhs is linear in x’ while the rhs
is a sum of a term which is linear in x and the zeroth order in x. However one can make the Poincaré
transformation appear homogeneous and linear acting on 5-dimensional vectors, XA = (xµ, 1) i.e. the first
four components are those of the usual 4-vector, xµ and the fifth component is just unity, 1.

X → X ′ =P X(
xµ

1

)
→
(
x′µ

1

)
=

(
Λµ ν aµ

0 1

)(
xν

1

)
. (5)

More generally in d + 1-dimensions (d space and 1 time), the number of Lorentz boosts is d while the

number of rotations is,
(
d
2

)
i.e. total d+ d(d−1)

2 = d(d+1)
2 Lorentz transformations. The number of spacetime

translations is d+ 1. Thus the Poincaré group, ISO(1, d) is d+ d(d+1)
2 .

2 Lie Groups and Lie Algebras

Both the Lorentz group and Poincaré groups are Lie groups. In this section we familiarize ourselves with
some of the key concepts about Lie groups before we delve deeper into the representations of the Lorentz
and Poincaré groups.

• Continuous groups: Groups whose elements are labeled by continuous parameter(s) taking values
on R or a subset of R are called continuous groups i.e. G = {g(θ1, θ2, . . .)} where θi’s are continu-
ous parameters. Clearly the total number of elements in a continuous group is infinite. The number
of continuous parameters which label each element is called the dimension of the group. E.g. in the
case of the group of rotations around some axis say, n̂ is labeled by the angle of rotation, namely, Rn̂(θ).

• Lie Groups: Continuous groups whose elements are analytic functions of the continuous parameters
labeling the elements are called Lie groups. Being analytic functions the group, the group elements
can be expressed as convergent Taylor series in the parameters, namely,

g ({θi}) = g({0}) +
∂

∂θj
g ({θi})

∣∣∣∣
θ=0

θj +
1

2!

∂2

∂θj∂θk
g ({θi})

∣∣∣∣
θ=0

θjθk + . . . . (6)

By convention, we will choose g ({0}) = I i.e. the element at the origin of parameter space to be

1It is easy to verify this. The conjugate of a translation element is

(Λ, a)−1 (I, b) (Λ, a) =
(
Λ−1,−a

)
(I, b) (Λ, a) =

(
Λ−1,−a

)
(Λ, b+ a) =

(
I,Λ−1(b+ a)− a

)
,

which again is a translation subgroup element.
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identity, or to be more precise we will label the identity element as the origin of the coordinate system.
E.g. consider the group U(1) which is the group of phase transformations consisting of elements, eiθ

where the parameter, θ ∈ [0, 2π]2 with the group operation being simple multiplication. Clearly such
an element can be expanded in a convergent power series,

eiθ = 1 + θ +
1

2!
θ2 + . . . .

• Examples of Lie Groups: The most common Lie groups which appear in physics literature are GL(n),
SL(n), U(n), SU(n), O(n), SO(n), Sp(n,R). We define them here: GL(n) is the group of bijective
linear transformations acting on a the a given vector space, V . In particular, if V = Rn i.e. n-
dimensional real vector space, we call the particular group of bijective linear transformations to be
GL(n,R) and if V = Cn, i.e. n-dimensional complex vector space, we call the special case, GL(n,C).
Acting on n-dimensional column vectors, GL(n,R) or GL(n,C) are expressed in the form of n × n
dimensional invertible matrices with the group operation being simple matrix multiplication. If in
addition these n× n matrices, have unit determinant then they form a subgroup (i.e. a group of real
or complex n × n dimensional matrices with unit determinant under matrix multiplication), which is
called SL(n,R) or SL(n,C).

SL(n) ∼= GL(n) ∩ det = 1.

Thus, GL(n,R) or GL(n,C) or SL(n,C) or SL(n,R) are all matrix Lie groups, the group elements
being n × n matrices whose entries are functions of real parameters3. U(n) is the group of unitary
(norm preserving) bijective linear transformations acting on an n-dimensional complex vector space.
Again it can be thought of as a matrix Lie group defined as the group of unitary n× n matrices,

U†U = I

while SU(n) is a subgroup of U(n) whose elements have unit determinant,

SU(n) ∼= U(n) ∩ det = 1.

Similarly, O(n) is defined to be the group of orthogonal(norm preserving) bijective linear transforma-
tions acting on an n-dimensional real vector space and can be thought of as a matrix Lie group defined
as the group of orthogonal n× n matrices,

OTO = I,

and then SO(n) is defined as the subgroup of O(n) with unit determinant,

SO(n) ∼= O(n) ∩ det = 1.

Finally, Sp(n,R) is defined to be the group of n × n matrices, say M which preserve the symplectic
metric (two-form) Ω i.e.,

MT Ω M = Ω

where Ω is a 2n× 2n antisymmetric matrix, defined as,

Ω =

(
0 In
−In 0

)
.

2Here 2π is identified with 0.
3For GL(n,C) there are n2 matrix elements, all of which are complex and hence the total number of real parameters needed

to constitute an element of GL(n,C) is 2n2. Now, an element of SL(n,C) also needs 2n2 real parameters to specify it, but the
matrix has unit determinant, which imposes a complex equation,

|M | = 1 + i.0

i.e. two real constraint equations on the total 2n2 parameters, thus leaving
(
2n2 − 2

)
independent real parameters to specify an

SL(n,C) matrix. Similar considerations lead to the fact that the dimension of GL(n,R) is n2 while the dimension of SL(n,R)
is (n2 − 1).
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• Lie Groups as Riemannian manifolds: It is natural to ask if the parameter space of a Lie group
constitute a manifold, and the answer is yes indeed. The parameter space of Lie groups turn out to be
Riemannian manifolds which can be identified with the respective group. The points on the manifold
are then identified with the group elements. E.g., the group U(1) is identified with its parameter space,
[0, 2π] with the end points identified i.e. the unit circle, S1.

U(1) ∼= S1.

Similarly one can show that SU(2) ∼= S3 while, SO(3) ∼= RP 3.

• Generators of a Lie group: One can formally define the define the generators of a Lie group by the
formula,

Ti = i
∂

∂θi
g ({θj})

∣∣∣∣
{θj}={0}

. (7)

The i is a matter of convention, often omitted in math books on Lie groups. It is evident from the
definition that the generator is an element of the tangent space of the group manifold at the origin,

Ti ∈ TOG,

where the point O is the origin of the parameter space, {θi} = {0} . If the Lie group, G is n-dimensional,
then the tangent space TOG is spanned by a basis made up of the generators, {Tt}, i = 1, . . . , n. E.g.
Consider the rotation group in 3 dimensions, i.e. SO(3). This can be thought as the set of rotation
matrices which leave the length of a 3-vector, (x1, x2, x3) in R3 unchanged. Consider an element of
this group which represents a rotation of the 3-vector around z-axis (3-axis) by an angle θ which is
given the following familiar 3× 3 matrix

R3 (θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

The generator for the rotation around z or 3-axis can then be computed using the definition (7) to be,

T3 = i
∂

∂θ
R3(θ)

∣∣∣∣
θ=0

=

 0 −i 0
i 0 0
0 0 0

 . (8)

Similarly one can work out,

T1 =

 0 0 0
0 0 −i
0 i 0

 , T2 =

 0 0 i
0 0 0
−i 0 0

 . (9)

• The Exponential form (map) of Lie group elements: We limit our discussion to matrix Lie groups
here but the results applies to generally to all Lie groups. Taking the identity element of a Lie group
to be the origin of the parameter space (Riemannian manifold), one can expand an element in a small
(infinitesimal) neighborhood of the identity in a convergent Taylor expansion (6) and restrict it to
linear order in the parameter:

g ({δθi}) ≈ g ({0})︸ ︷︷ ︸
I

+

 ∂

∂θj
g ({θi})

∣∣∣∣
θi=0︸ ︷︷ ︸

−i Tj

 δθj

≈ I− iTj δθj .
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This equation represents a curve connecting the elements g ({δθi}) and the identity element, I. This
curve can be extended to finite (large) values of the parameters i.e. θi instead of δθi using the expo-
nential map,

g {(θi)} = exp (−i Ti θi) (10)

where we have introduced the exponential of a matrix, A to be expA =
∑∞
m=1

Am

m! . Analyticity guar-
antees convergence of this infinite series. This exponential map represents a continuous curve on the
group manifold with starting point being the origin (Identity) and the end point being the element
labeled by the parameters {θi}.This exponential form of a general group element turns out to be of
great utility as will be evident in the following.

• Lie algebra of the generators of a Lie group: The fact that Lie group elements can be expressed
in the exponential form (10), leads to a very important consequence - the tangent space of generators
turns into an algebra (called the Lie algebra). Consider the product of two elements, g1 ({θi}) and
g2 ({φi}) given by two different set of values of the parameters, {θi} and {φi} where the index i runs
over all the parameters, i = 1, ..., n. Since by closure law, the product of any two elements of a group
elements also belongs to the group, we can write:

g1g2 = g3.

Now writing each group element in the exponential form,

exp (−i Ti θi) exp (−i Tj φj) = exp (−i Ti ψi) (11)

where we have expressed g3 also in exponential with the parameters, {ψi} which are functions of
{θi, φj}. Now the product of two exponential of matrices in the LHS can be turned into a single
exponential using the Baker-Campbell-Hausdorff lemma,

exp(A) exp(B) = exp

(
A+B +

1

2
[A,B] +

1

12
[A, [A,B]]− 1

12
[[A,B] , B] + . . .

)
where the . . . represent higher order commutators of the matrices A,B. Thus according to the BCH
lemma, the equation (11) should look something like,

exp

(
−i Ti(θi + φi) +

1

2
θiφj [Ti, Tj ] +

1

12
θiθjφk [Ti, [Tj , Tk]]− 1

12
θiφjφk [[Ti, Tj ] , Tk] + . . .

)
= exp (−i Ti ψi)

or,

−i Ti(θi + φi) +
1

2
θiφj [Ti, Tj ]−

i

12
θiθjφk [Ti, [Tj , Tk]] +

i

12
θiφjφk [[Ti, Tj ] , Tk] + . . . = −i Ti ψi.

This matrix equation or (rather vector equation with Ti’s lying in the tangent space) can only hold
iff if the repeated commutators of generators are all proportional something which is linear in the
generators, i.e.,

[Ti, Tj ] = i fij
k Tk (12)

where, the i on the rhs is again a convention followed in physics and fij
k are real numbers called

the structure constants of a Lie group. This special relation among the generators of a Lie group via
the commutator is called the Lie algebra of the group. The reason we call it an algebra because the
commutator brackets define a product rule in the tangent space, and any vector space with a product
rule is called an algebra. In particular, an algebra is called a Lie algebra if the Lie product satisfies
three criteria, namely
i. antisymmetry

[Ti, Tj ] = − [Tj , Ti] ,

(⇒ fij
k = −fji k)
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ii. Bilinearity

[aTi + bTj , Tk] = a [Ti, Tk] + b [Tj , Tk] ,

[Ti, aTj + bTk] = a [Ti, Tj ] + b [Ti, Tk] ,

and iii. the Jacobi identity

[[Ti, Tj ] , Tk] + [[Tj , Tk] , Ti] + [[Tk, Ti] , Tj ] = 0.

For the generators of the group SO(3) worked out before (8, 9), one can check that the Lie algebra is,

[T1, T2] = iT3, [T2, T3] = iT1, [T3, T1] = iT2,

or,
[Ti, Tj ] = iεijkTk.

So the structure constants for the case of SO(3) are

fij
k = εijk,

antisymmetric in all three indices.

• Representations of a Lie group: Lie groups are abstract objects but they can be realized as linear
operators (tensors) acting on real or complex vector spaces4. Such linear operators (tensors) are called
a representation of the Lie group. In physics contexts this vector space could be some vector or
matrix denoting the state of the physical system, say position vector, momentum vector, electric or
magnetic field vector or some generic tensor, say FABC..., then the group representation is given by the
tensor/matrix D ({θi}) and the action on the physical system (vector space of all FABC...’s) is given
by the linear transformation rule:

F ′ABC... = [D({θ})]ABC... PQR... FPQR... (13)

and the group multiplication rule is realized as,

[D ({θ}) ·D ({φ})]ABC... PQR... = [D({θ})]ABC... LMN... [D({φ})]LMN...
PQR... (14)

The labels ABC . . . could be in general discrete as well as continuous. In the special situation when
the physical field has one index (i.e. FA), the above formulae reduce to,

F ′A = [D({θ})]A P F
P ,

[D ({θ}) ·D ({φ})]A P = [D({θ})]A L [D({φ})]L P .

Thus in this special case we see that the group element is a two-index object or a matrix, i.e. a matrix
representation of the Lie group under discussion. The form of the generators acting on a generic
representation of a Lie group G, say the representation in (13), (14) can be easily extracted by recalling
that group elements can be expressed in the exponential form,

D({θ}) = exp (−i θj Tj) .

Then near {θ} = 0, i.e. for infinitesimal parameters, say {δθ}, one has the expansion to linear order,

[D({δθ})]ABC... PQR... = (I− i δθj Tj)ABC... PQR
= δAP δBQ δCR − i δθj [Tj ]

ABC...
PQR.... (15)

From this linear order expansion around small parameters one can read off the generators, Tj from the
coefficient of the linear term.

4In math lingo, a represenation of a (Lie) group is a homomorphism from a (Lie) group to the set of bijective linear
transformations (operators) of some vector space. Homomorphism is a map which respects the group multiplication rule. Say
D(g1) and D(g2) are two linear operators which are representations of the elements, g1 and g2 of a (Lie) group, then

D(g1)D(g2) = D(g1g2).

6



• An important result from the theory of group representations is that:

Compact Lie groups have finite dimensional unitary representations

which implies one can realize compact Lie group elements as finite dimensional matrices which are
also unitary! In particular, the exponential form (10) then immediately implies that the generators of
the Lie group must be hermitian! This is evident in the example for the compact group SO(3) whose
generators (8,9) are all hermitian. Conversely, if a Lie group is non-compact, then it cannot have finite
dimensional unitary matrix representations, but instead has non-unitary finite matrix representations,
and the generators are given by finite dimensional anti-hermitian matrices. We will see an example of
this for the non-compact Lorentz group.

3 Lorentz group generators and the Lorentz Algebra

The (restricted) Lorentz group is made up of rotations and boosts. Let’s work out the rotation and boost
generators using the formula for Lie group generators,

Ti = i
∂g ({θj})
∂θi

∣∣∣∣
{θj}=0

, (16)

where g ({θj}) is an element of the Lie group for the parameter set {θj}. First consider the rotations, the
Lorentz transformation matrix for rotation by angle θ3 around the z-axis or 3-axis i.e. in the xy-plane (or
12-plane),

R(θ3) =


1 0 0 0
0 cos θ3 − sin θ3 0
0 sin θ3 cos θ3 0
0 0 0 1

 .

The generator for rotation around 3-axis is,

J3 = i
∂R(θ3)

∂θ3

∣∣∣∣
θ3=0

=


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 . (17)

Similarly for rotation around the x-axis or 1-axis by an angle θ1, the group element is

R(θ1) =


1 0 0 0
0 1 0 0
0 0 cos θ1 − sin θ1

0 0 sin θ1 cos θ1

 ,

and the generator,

J1 = i
∂R(θ1)

∂θ1

∣∣∣∣
θ1=0

=


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 . (18)

Finally for the rotation around the y-axis or 2-axis by an angle θ2 the Lorentz group element is,

R(θ2) =


1 0 0 0
0 cos θ2 0 sin θ2

0 0 1 0
0 − sin θ2 0 cos θ2

 ,
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and its generator is,

J2 = i
∂R(θ2)

∂θ2

∣∣∣∣
θ2=0

=


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 . (19)

• Evidently, J1, J2, J3 are all hermitian matrices. This is due to the fact that the rotation group is
compact, since the range of the group parameters angles (θ1, θ2, θ3) is, [0, 2π] is closed.

• One can check by performing matrix multiplications explicitly that these rotation generators, J1, J2, J3

satisfy the SO(3) algebra,

[J1, J2] = iJ3,

[J2, J3] = iJ1,

[J3, J1] = iJ2.

In abstract index notation,
[Ji, Jj ] = iεijkJk. (20)

Next consider the boost transformations, e.g. a boost transformation along the x-direction (1-direction) by
a velocity, v is,

B1(β) =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

 ,

with β = v/c, γ =
(
1− β2

)−1/2
. We will write this in another form, in terms of the rapidity variable, η

defined by, cosh η = γ, sinh η = γβ,

B1(η) =


cosh η sinh η 0 0
sinh η cosh η 0 0

0 0 1 0
0 0 0 1

 .

The generator for this is,

K1 = i
∂B1(η)

∂η

∣∣∣∣
η=0

=


0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 . (21)

Similarly the generators for the y-boost, K2 and z-boost, K3 are,

K2 =


0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , K3 =


0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0

 . (22)

• Notice that these matrices are anti-hermitian,

K†1,2,3 = −K1,2,3.

This is due to the fact that the parameter space of boosts is non-compact, β ∈ [0, 1) or η ∈ [0,∞).
The upper end of the interval is not included boosting by speed of light, v = c.
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• The (Lie) algebra of the boost generators are,

[K1,K2] = −iJ3

[K2,K3] = −iJ1

[K3,K1] = −iJ2

Thus the Lie algebra of the boosts does not close on itself, reminding us that the composition of two
boosts in two different directions is not a boost in a third direction but a mixture of a boost and a
rotation!. In index notation,

[Ki,Kj ] = −iεijkJk. (23)

• Finally the mixed boost-rotation commutators are:

[J1,K1] = [J2,K2] = [J3,K3] = 0,

[J1,K2] = iK3, [J1,K3] = −iK2

[J2,K3] = iK1, [J2,K1] = −iK3,

[J3,K1] = iK2, [J3,K2] = −iK1.

In abstract index notation,
[Ji,Kj ] = iεijkKk. (24)

3.1 Covariant version of the Lorentz generators and the Lorentz algebra

First let’s extract the Lorentz generators acting on the Minkowski space (R1,3) points i.e. position 4-vectors,
xµ, instead of those acting on the space of scalar or vector fields,

x′α = Λα β x
β

≈ (δα β + ωα β)xβ

≈
(
δα β + ωµνδαµηνβ

)
xβ

≈
(
δα β + ωµνδαµηνβ

)
xβ

≈
[
δα β +

1

2
ωµν

(
δαµηνβ − δαν ηµβ

)]
xβ

≈
[
δα β −

i

2
ωµν (Mµν)

α
β

]
xβ , (Mµν)

α
β = i

(
δαµηνβ − δαν ηµβ

)
≈
[
I− i

2
ωµνMµν

]α
β x

β .

Thus, the generator of Lorentz transformation on the vector space, R3,1 is,

(Mµν)
α
β = i

(
δαµηνβ − δαν ηµβ

)
. (25)

Comparing with the forms of the Lorentz transformation matrices, R(θi)’s and Lorentz generators defined
in the previous section, namely, the Ji’s, with the covariant looking formulas (29), (25)we identify,

ω12 = −ω1
2 = θ3, ω23 = −ω2

3 = θ1, ω31 = −ω3
1 = θ2,

and hence,
M12 = J3,M23 = J1,M31 = J2.

In abstract index notation,
Mij = εijkJk. (26)
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Similarly, comparing the boost matrices, Bi’s and boost generators Ki with the respective covariant versions,
(29), (25), we identify,

ω01 = −ω0
1 = η

and, hence
M01 = K1

etc.. So we have in general,
M0i = Ki. (27)

Finally let’s work out the covariant version of the Lorentz algebra,

[Mµν ,Mρσ]
α
β = (Mµν)

α
γ (Mρσ)

γ
β − (µ↔ ρ,ν ↔ σ)

= i
(
δαµηνγ − δαν ηµγ

)
i
(
δγρησβ − δγσηρβ

)
− (µ↔ ρ,ν ↔ σ)

= i2
(
δαµηνγδ

γ
ρησβ − δαν ηµγδγρησβ − δαµηνγδγσηρβ + δαν ηµγδ

γ
σηρβ

)
− (µ↔ ρ,ν ↔ σ)

= i2
(
δαµηνρησβ − δαν ηµρησβ − δαµηνσηρβ + δαν ηµσηρβ

)
− (µ↔ ρ,ν ↔ σ)

= −iηµρi (δαν ησβ)− iηνσi
(
δαµηρβ

)
+ iηνρi

(
δαµησβ

)
+ iηµσi (δαν ηρβ)− (µ↔ ρ,ν ↔ σ)

= −iηµρ i (δαν ησβ − δασηνβ)︸ ︷︷ ︸
=(Mνσ)α β

−iηνσ i
(
δαµηρβ − δαρ ηµβ

)︸ ︷︷ ︸
=(Mµρ)α β

+iηνρ i
(
δαµησβ − δασηµβ

)︸ ︷︷ ︸
=(Mµσ)α β

+iηµσ i
(
δαν ηρβ − δαρ ηνβ

)︸ ︷︷ ︸
=(Mνρ)α β

= (−iηµρMνσ − iηνσMµρ + iηνρMµσ + iηµσMνρ)
α
β .

Thus we have the covariant version of the Lorentz algebra,

[Mµν ,Mρσ] = −iηµρMνσ − iηνσMµρ + iηνρMµσ + iηµσMνρ. (28)

One can check that this covariant form indeed reproduces the Lie algebra of the Lorentz group derived in
the last section. E.g.

[M01,M02] = −iη00M12 − iη12M00 + iη10M02 + iη02M10

⇒ [K1,K2] = −iJ3,

or,

[M12,M23] = −iη12M23 − iη23M12 + iη13M22 + iη22M13

⇒ [J3, J1] = iJ2.

or,

[M23,M02] = −iη20M32 − iη32M20 + iη22M30 + iη30M22

⇒ [J1,K2] = iK3.

3.2 Action of the Lorentz group on physical fields and the Lorentz generators
in the field space

In this section we are interested in more general representations of the Lorentz group other than the spacetime
points, R1,3, namely the scalar and vector fields. Under a proper orthochronous Lorentz transformation,

x→ x′ = Λ.x

a physical field, call it FABC..(x), furnishing a generic representation of the Lorentz group transforms like,

F ′ABC...(x′) = [D (Λ)]
ABC...

PQR...F
PQR....

For a scalar field which has no indices, FABC... = ϕ(x), while for the vector field, we have a single Lorentz
index, i.e. A = µ, and FABC... = V µ. To extract the form of the generators of the Lorentz group acting on
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the scalar and vector space or for that matter a general tensor field, say FABC..(x) with a bunch of indices
A,B,C, . . ., we will need to use the infinitesimal forms of the transformations namely,

Λµ ν = δµν + ωµ ν , (29)

and
F ′ABC...(x) ≈ (I− i ωµν Mµν)

ABC...
PQR... FPQR...(x). (30)

To illustrate the procedure, let’s extract the form of the Lorentz generators acting the scalar space and vector
space which transform like,

ϕ(x)→ ϕ′(x′) = ϕ(x), (31)

and,
V µ(x)→ V ′µ(x′) = Λµ ν V

ν(x) (32)

respectively. For the scalar field, which has no indices, we have,

ϕ′(x′) = ϕ(x), x′ = Λ x

or,

ϕ′(x) = ϕ(Λ−1x)

= ϕ
((

Λ−1
)µ

ν x
ν
)

≈ ϕ ((δµν − ωµ ν)xν)

≈ ϕ (xµ − ωµ νxν)

≈ ϕ(xµ)− ωµ ν xν∂µϕ(x)

≈ [1− ωµνxν∂µ]ϕ(x)

≈
[
1− 1

2
ωµν (xν∂µ − xµ∂ν)

]
ϕ(x)

≈

1− i

2
ωµν i (xµ∂ν − xν∂µ)︸ ︷︷ ︸

Mµν

ϕ(x).

Thus we identify the Lorentz generator acting on the scalar function space as the linear operator,

Mµν = i (xµ∂ν − xν∂µ) . (33)

Next for the vector field,
V ′α(x′) = Λα β V

β(x),

or,

V ′α(x) = Λα β V
β
(
Λ−1x

)
= Λα β V

β
((

Λ−1
)µ

ν x
ν
)

≈
(
δαβ + ωα β

)
V β ((δµν − ωµ ν)xν)

≈
(
δαβ + ωα β

)
V β (xµ − ωµ νxν)

≈
(
δαβ + ωα β

) (
V β(xµ)− ωµ νxν∂µV β(x)

)
≈ V α(x) + ωα β V

β(x)− ωµ νxν∂µV α(x)

≈
(
δαβ + ωα β − ωµν δαβ xν∂µ

)
V β(x)

≈
(
δαβ + ωµνδαµηνβ − ωµν δαβ xν∂µ

)
V β(x)

≈
[
δαβ +

1

2
ωµν

(
δαµηνβ − δαν ηµβ

)
+

1

2
ωµν δαβ (xµ∂ν − xν∂µ)

]
V β(x)

≈
[
I− i

2
ωµνMµν

]α
β V

β(x),
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where, the Lorentz generator has been identified to be,

(Mµν)
α
β = i

(
δαµηνβ − δαν ηµβ

)
+ i (xµ∂ν − xν∂µ) δαβ . (34)

The two extra indices α, β in this expression compared to the expression of the Lorentz generator acting on
the scalar fields, (33) indicates that the Lorentz group is acting on a vector field i.e. a field with a Lorentz
index. Evidently the part,

(Lµν)
α
β = i (xµ∂ν − xν∂µ) δαβ

is the orbital angular momentum part (it depends on the position, xµ and momentum p̂µ = i∂µ), while the
part,

(Sµν)
α
β = i

(
δαµηνβ − δαν ηµβ

)
,

is the spin angular momentum part (independent of position or momentum).

HW Problem: Derive/Reproduce the Lie algebra of the Lorentz group (28) for the Lorentz
generators, (33) and (34) acting on the scalar and vector spaces respectively.

4 Including the translation generators: Poincaré algebra

The Lorentz group needs to be augmented by the abelian group of spacetime translations to constitute the
Poincaré group. Let’s first extract the form of the generators of the Poincaré group acting on spacetime
points. To this end, we introduce the 5-dimensional vector, XA = (xµ, 1) , A = 0, 1, . . . , 4. The Poincaré
transformation on spacetime points,

x→ x′ = Λ x− a.

is represented by the vector-matrix equation,

X → X ′ = P X,

where,

P =

(
(Λµ ν)4×4 (−aµ)4×1

(0)1×4 1

)
,

i.e.

PA B = δAµ δνB Pµ ν︸︷︷︸
=Λµ ν

+δAµ δ4
B Pµ 4︸︷︷︸

=−aµ

+δA4 δνB P 4
ν︸︷︷︸

=0

+δA4 δ4
B P 4

4︸︷︷︸
=1

= δAµ δνB Λµ ν − δAµ δ4
B aµ + δA4 δ4

B .

Now consider infinitesimal form of the transformation, i.e. Λµ ν = δµν +ωµ ν with, ωµ ν → 0, and aµ → 0. In
that case, to first order in the parameters a, ω,

PA B ≈ δAµ δνB (δµν + ωµ ν)− δAµ δ4
B aµ + δA4 δ4

B

≈ δAµ δµB + δAµ δνB ωµ ν − δAµ δ4
B aµ + δA4 δ4

B

≈ δAC δCB + δAµ δνB ωµ ν − δAµ δ4
B aµ

≈ δAC δCB + δAµ ηνB ωµν − δAµ δ4
B aµ

≈ δAC δCB −
i

2
ωµν i

(
δAµ ηνB − δAν ηµB

)︸ ︷︷ ︸
(Mµν)A B

−iaµ
(
−iδAµ δ4

B

)︸ ︷︷ ︸
(Pµ)A B

.

So we get the Lorentz generators,

(Mµν)
A
B = i

(
δAµ ηνB − δAν ηµB

)
,

and the translation generators,
(Pµ)

A
B = −i δAµ δ4

B .
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Note that here we have introduced a new object, ηνB = δνB . This is only true if B is a greek (Lorentz) index.
If B = 5, then ηνB = δνB = 0.

The Lie algebra of the Poincaré generators is now easy to work out. We already know what the algebra
of the Lorentz generators is. So we only need to work out the translation algebra elements, i.e. [Pµ, Pν ] and
the mixed algebra elements, [Mµν , Pρ].

[Pµ, Pν ]
A
B = (Pµ)

A
C (Pν)

C
B − (µ↔ ν)

=
(
−iδAµ δ4

C

) (
−iδCν δ4

B

)
− (µ↔ ν)

= −δAµ δ4
C δCν δ4

B − (µ↔ ν)

= −δAµ δ4
ν︸︷︷︸

=0

δ4
B − (µ↔ ν)

= 0.

[Mµν , Pρ]
A
B = (Mµν)

A
C (Pρ)

C
B − (Pρ)

A
C (Mµν)

C
B

= i
(
δAµ ηνC − δAν ηµC

) (
−iδCρ δ4

B

)
−
(
−iδAρ δ4

C

)
i
(
δCµ ηνB − δCν ηµB

)
= −i2

(
δAµ ηνC δCρ δ4

B − δAν ηµC δCρ δ4
B

)
+ i2

(
δAρ δ4

C δCµ ηνB − δAρ δ4C δCν ηµB
)

= −i2
(
δAµ ηνρ δ

4
B − δAν ηµρ δ

4
B

)
+ i2

δAρ δ4
µ︸︷︷︸

=0

ηνB − δAρ δ4
ν︸︷︷︸

=0

ηµB



= iηνρ

− i δAµ δ4
B︸ ︷︷ ︸

(Pµ)A B

− iηµρ
− i δAν δ4

B︸ ︷︷ ︸
=(Pν)A B


= iηνρ (Pµ)

A
B − iηµρ (Pν)

A
B .

Thus, we have,

[Pµ, Pν ] = 0,

[Mµν , Pρ] = iηρνPµ − iηρµPν .

Next we extract the form of the translation generator acting on the scalar field (function space) and vector
field (function space). For the scalar field, under x→ x′ = x− a,

ϕ′(x′) = ϕ(x)

⇒ ϕ′(x− a) = ϕ(x)

⇒ ϕ′(x) = ϕ(x+ a)

≈ ϕ(x) + aµ∂µϕ(x)

≈ (1 + aµ∂µ)ϕ(x)

≈

1− i aµ

 i∂µ︸︷︷︸
Pµ


ϕ(x),

⇒ Pµ = i∂µ.
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Similarly for a vector field under translation, x→ x′ = x− a,

V ′µ(x′) = V µ(x),

⇒ V ′µ(x− a) = V µ(x),

⇒ V ′µ(x) = V µ(x+ a)

≈ V µ(x) + aα∂αV
µ(x)

≈ (δµν + aα δµν ∂α)V ν(x)

≈

δµν − iaα (iδµν ∂α)︸ ︷︷ ︸
=[Pα]µ ν

V ν(x)

≈ (I− i aα Pα)
µ
ν V

ν(x),

⇒ [Pα]
µ
ν = iδµν ∂α.

For both these cases the algebra of the translation generators is,

[Pµ, Pν ]ϕ(x) = i2 [∂µ, ∂ν ]ϕ = 0,

[Pµ, Pν ]
α
βV

β(x) = (Pµ)
α
γ (Pν)

γ
βV

β(x)− (µ↔ ν)

=
(
iδαγ ∂µ

) (
iδγβ∂ν

)
V β(x)− (µ↔ ν)

= i2 [∂µ, ∂ν ]V α(x)

= 0.

Homework: Derive the Lie algebra of the translation generators, Pµ and the
Lorentz generators i.e. [Mµν , Pρ] on the represenation space of scalar and vector
field.
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