
Spring 2022: Quantum Field Theory (PH6418/ EP4618)

Notes for lecture 13∗

April 11, 2022

1 Belinfante-Rosenfield symmetric stress tensor

Recall that using the Noether algorithm for spacetime translations, one can arrive at the expression
for the canonical stress tensor (HW problem),

Θµν =
∂L

∂ (∂µF)
.∂νF − ηµνL (1)

Here F is any type of field - could be a scalar, or a vector or a generic tensor field with various
kinds of indices, Lorentz and internal. To reduce clutter of notation, the Lorentz indices or other
indices of F are not explicitly displayed but they are understood to be there. In particular the dot
“.” between the tensors, ∂L

∂(∂µF)
and ∂νF in the formula above indicates that all the indices of F

in ∂L
∂(∂µF)

and being contracted with the indices of F in ∂νF :

∂L
∂ (∂µF)

.∂νF =
∂L

∂ (∂µFLMN...)
∂νFLMN....

For example, if F is a vector field (Maxwell field), say Aα, then,

∂L
∂ (∂µF)

→ ∂L
∂(∂µAα)

,

∂νF → ∂νAα

and so the stress tensor for the vector field should be

Θµν
A =

∂L
∂ (∂µF)

.∂νF − ηµνL =
∂L

∂(∂µAα)
∂νAα − ηµνL.

By construction, the canonical stress tensor expression (1) is in general not symmetric under
µ→ ν, i.e.

Θµν 6= Θνµ.

One can check it for the Maxwell field for which,

L = −1

4
FρσF

ρσ.

∗Typos and errors should be emailed to the Instructor: Shubho Roy (email: sroy@phy.iith.ac.in)
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Using this lagrangian density the canonical stress tensor expression for the Maxwell theory works
out to be,

Θµν
A =

∂L
∂(∂µAα)

∂νAα − ηµνL = −F µα∂νAα − ηµν
(
−1

4
FρσF

ρσ

)
.

One can check that the energy density,

Θ00
A = −F 0j∂0Aj −

(
1

4
FρσF

ρσ

)
= Ej

(
Ej + ∂jA0

)
− 1

2

(
E2 −B2

)
=

1

2

(
E2 + B2

)
+∇ · (EΦ) .

So up to a divergence it is a positive semidefinite quantity.

For various reasons, both physical and aesthetic, one would like to construct a symmetric
stress tensor (e.g. the gravitational field couples to the symmetric stress tensor). A special sym-
metric stress tensor for matter fields was constructed by Belinfante (and later derived differently
by Rosenfield) which couples to the gravitational field, the eponymous Belinfante-Rosenfield sym-
metric stress tensor. Here we review Belinfante’s construction. To this end, recall that the stress-
energy-momentum tensor, which is the Noether current for translations is non-unique . One can
construct a new stress-energy-momentum tensor from the canonical stress tensor, Θµν as follows,

T µν = Θµν + ∂λK
λµν , (2)

where Kλµν is an arbitrary rank 3 tensor which is antisymmetric the first pair of indices,

Kλµν = −Kµλν .

One can check right away that T µν too obeys the continuity equation:

∂µT
µν = ∂µθ

µν + ∂µ∂λK
λµν︸ ︷︷ ︸

=0

= ∂µθ
µν

= 0.

One can also check that both stress-tensors lead to the identical conserved charge, namely the
energy-momentum 4 vector:

P ν =

ˆ
d3x θ0ν =

ˆ
d3x T 0ν .

Our aim here is to exploit this ambiguity in the definition of the Noether current (stress tensor)
to construct a new stress tensor which is symmetric, i.e.,

T µν = T νµ,

starting from the asymmetric canonical stress tensor, Θµν . In particular we will follow Belinfante’s
prescription (1940) to arrive at a very special symmetrical stress tensor which is based on Lorentz
symmetry and Noether currents for the Lorentz symmetry for a generic field theory.
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The starting point is the Noether current for Lorentz transformations, namely the angular
energy-momentum density tensor,

Mλµν = xµΘλν − xνΘλµ − i ∂L
∂ (∂λF)

.Σµν .F , (3)

where
∑µν is the spin matrix for the field, F . Again the appearance of the “.”’s imply a contraction

of indices. For example, for the vector field, Aα

∂L
∂ (∂λF )

.Σµν .F =
∂L

∂ (∂λAα)
(Σµν)α

β Aβ.

The spin matrix can be easily found out from the infinitesimal form (linearized) of the Lorentz
transformation law of the field F(x) under Lorentz transformations,

xµ → x′µ = xµ + ωµ νx
ν ,

F(x)→ F ′(x′) = D(Λ).F(x)

= F(x)− i

2
ωµν Σµν .F(x).

Here we have used the infinitesimal version of the representation (matrix) D(Λ)

D(Λ) = I − i

2
ωµν Σµν . (4)

Since ωµν is antisymmetric, then so must be the spin matrix,

Σµν = −Σνµ.

The “.”’ imply a contraction of indices of (Σµν)... and F.... Again going back to our pet example,
the vector field, Aα,

A′α(x′) = Λα
β Aβ(x) = Aα(x)− i

2
ωµν (Σµν)α

β Aβ(x),

where the spin matrix turns out to be

(Σµν)α
β = i

(
δµαη

νβ − ηµβδνµ
)
.

From the expression (3) it is evident that this current is antisymmetric under a swap of the last
pair of indices,

Mλµν = −Mλνµ.

From the conservation law, ∂λM
λµν = 0, one gets the antisymmetric part of the canonical stress

tensor,

Θµν −Θνµ = ∂λ

[
i

∂L
∂ (∂λF)

.Σµν .F
]
, (5)

a result we will use momentarily.

Our aim is to find a suitable Kλµν in (2) which will turn T µν symmetric, i.e.

T µν = T νµ,
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which means that (in addition to K being addition to antisymmetric in the first two indices) we
must have the following identity for K satisfied,

Θµν + ∂λK
λµν = Θνµ + ∂λK

λνµ,

or, equivalently K must satisfy

Θµν −Θνµ = −∂λ
(
Kλµν −Kλνµ

)
. (6)

Comparing this condition for K with the result (5), we need K to satisfy the first order PDE,

∂λ
(
Kλµν −Kλνµ

)
= −∂λ

[
i

∂L
∂ (∂λF)

.Σµν .F
]
.

Now a simple solution to this equation is,

Kλµν −Kλνµ = −i ∂L
∂ (∂λF)

.Σµν .F . (7)

Permuting the indices λ, µ, ν cyclically once, we get,

Kµνλ −Kµλν = −i ∂L
∂ (∂µF)

.Σνλ.F , (8)

and permuting indices of this second equation cyclically once, we get,

Kνλµ −Kνµλ = −i ∂L
∂ (∂νF)

.Σλµ.F . (9)

Adding both sides of equations (7) and (8) and then subtracting equation (9) from the sum, we
get,

Kλµν−Kλνµ+Kµνλ− Kµλν︸ ︷︷ ︸
=−Kλµν

−

 Kνλµ︸ ︷︷ ︸
=−Kλνµ

− Kνµλ︸ ︷︷ ︸
=−Kµνλ

 = −i ∂L
∂ (∂λF)

.Σµν .F−i ∂L
∂ (∂µF)

. Σνλ︸︷︷︸
=−Σλν

.F+i
∂L

∂ (∂νF)
.Σλµ.F ,

or,

Kλµν =
i

2

(
∂L

∂ (∂νF)
.Σλµ.F +

∂L
∂ (∂µF)

.Σλν .F − ∂L
∂ (∂λF)

.Σµν .F
)
. (10)

Thus, following Belinfante we have figured out the requisite antisymmetric tensor, K which is need
to construct the symmetrical stress tensor,

T µν = Θµν + ∂λK
λµν .

1.1 Rosenfield’s prescription

Rosenfield independently, in the same year 1940, derived the same symmetrical stress tensor as
Belinfante except using a different prescription - that of minimal coupling to gravity. He coupled
the field theory to curved space metric using the minimal coupling principle, i.e. replacing all
flat/Minkowski metric by a curved metric,

ηµν → gµν(x),

4



replacing the four-dimensional Lorentz invariant volume element by the general covariant volume
element,

d4x→
√
−gd4x,

and the partial derivatives by general covariant derivatives,

∂µ → ∇µ.

Then he extracted the energy-momentum tensor by the usual general relativity formula,

T µν = − 2√
−g

δI

δgµν
.

and in the final expression restore flat space limit, i.e. gµν → ηµν .

Homework: Find out the symmetrical stress tensor for the Maxwell field (say
T µνA ) using Belinfante’s prescription and also using Rosenfield’s prescription. Show
that it is conserved using the equation of motion (Maxwell equation in vacuo).
What do the Lorentz symmetry Noether currents, Mλµν (3) look like when ex-
pressed in terms of the symmetrical stress tensor.

2 Local (gauge) symmetries

Often times, a field theory is invariant under continuous (differentiable) symmetry transformations
where the symmetry parameter is a function of spacetime. In such cases we say that the action has
a local or gauge symmetry. However, from the modern perspective such invariances of the action
are not considered a genuine “symmetry” in the sense that the Hilbert space does not furnish a
representation of the gauge symmetry and there is no associated Noether charge. An example of
a field theory having a gauge symmetry is Maxwell theory,

I [Aρ(x)] =

ˆ
d4x

(
−1

4
FρσF

ρσ

)
, Fρσ = ∂ρAσ − ∂σAρ,

which is invariant under the local or gauge transformations of the vector potential,

Aρ(x)→ A′ρ(x) = Aρ(x)− ∂ρλ(x) (11)

where the symmetry transformation parameter, λ(x), is a completely arbitrary scalar field (function
of spacetime). If we apply the Noether algorithm to extract charges in this case, at the end of step
3 we arrive at the

0 = δI =

ˆ
d4x (∂µλ) Jµ.

δI = 0 holds identically because the action was symmetric (invariant) under local (gauge) trans-
formations. So then we are forced to conclude that the Noether current and hence the Noether
charge for the Maxwell field vanishes!

Jµ = 0!

This vanishing current for gauge symmetry of Maxwell theory is responsible for the fact the photon
(quantum of the Maxwell field) is neutral.
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2.1 When can a local symmetry lead to a conserved current or charges?

If in the global limit of the gauge symmetry, i.e. when the symmetry parameter becomes a
constant instead of a arbitrary function of spacetime, the fields have nontrivial transformation,
then we have a global symmetry and the theory will admit nonzero Noether charges. An example
of this is provided by the gluon field theory (nonabelian gauge theory). Here the gauge symmetry
transformations are of the form,

Aiµ(x)→ A′iµ(x) = Aiµ(x) + if i jk λ
j(x) Akµ(x)− ∂µλi(x).

Here the λi(x)’s are the local symmetry transformation parameters, and f i jk are structure con-
stants of the nonabelian gauge group. For the abelian theory, f i jk = 0. The i, j, k indices are
the color SU(3)indices. Clearly in the global limit, i.e. λi(x) → constant, the gluon fields, Aiµ’s
transform nontrivially due to the non-derivative structure constant piece

Aiµ(x)→ A′iµ(x) = Aiµ(x) + if i jk λ
j Akµ(x)).

Thus we have in this case a global symmetry and hence this theory will admit a conserved Noether
charge, namely the color charge. This fact is responsible for gluons having a nontrivial color charge.
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