PH6418/EP4618: Quantum Field Theory (Spring 2022) Midterm Exam*

May 10, 2022

1. **A.** Follow the Noether algorithm to construct the conserved charges for the translation symmetry for the field theory of a generic tensor field, say $\mathcal{F}(x)$, described by an action,

$$I\left[\mathcal{F}(x)\right] = \int d^4x \, \mathcal{L}\left(\mathcal{F}(x), \partial_{\mu}\mathcal{F}(x)\right),\tag{1}$$

where the lagrangian density is a function of the field and its first order derivatives. To reduce clutter of notation, the Lorentz or other internal indices of the field \mathcal{F} are not being displayed. [Hint: The answer should be

$$\Theta^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \mathcal{F})} \cdot \partial^{\nu} \mathcal{F} - \eta^{\mu\nu} \mathcal{L}$$
 (2)

where the dot "." denotes contraction over Lorentz or any other indices of \mathcal{F}

B. Use the equation of motion of \mathcal{F} to show that the canonical stress tensor is conserved,

$$\partial_{\mu}\Theta^{\mu\nu}=0.$$

C. Use the general formula (2) to write down the expression for the canonical stress tensor of the Maxwell field, $A_{\mu}(x)$. Maxwell theory is given by the action,

$$I\left[A_{\mu}(x)\right] = \int d^4x \, \left(-\frac{1}{4}F_{\alpha\beta}F^{\alpha\beta}\right),\tag{3}$$

where, $F_{\alpha\beta}(x) = \partial_{\alpha}A_{\beta}(x) - \partial_{\beta}A_{\alpha}(x)$, is the Maxwell field strength tensor

D. Write down the expression for the linear momentum 4-vector for the Maxwell theory. (5+2+2+1=10 points)

Solution: Under infinitesimal local translations,

$$x \to x' = x - \epsilon(x)$$

$$\mathcal{F}(x) \to \mathcal{F}'(x') = \mathcal{F}(x),$$

^{*(}Maximum score: 50)

The derivative of the field transforms like,

$$\partial_{\mu} \mathcal{F}(x) \to \partial'_{\mu} \mathcal{F}'(x') = \frac{\partial x^{\nu}}{\partial x'^{\mu}} \partial_{\nu} \mathcal{F}(x)$$
$$= (\delta^{\nu}_{\mu} + \partial_{\mu} \epsilon^{\nu}) \partial_{\nu} \mathcal{F}(x)$$
$$= \partial_{\mu} \mathcal{F}(x) + \partial_{\mu} \epsilon^{\nu} \partial_{\nu} \mathcal{F}(x).$$

The Jacobian under local translations to first order,

$$\left|\frac{\partial x'^{\mu}}{\partial x^{\nu}}\right| = \left|\delta^{\mu}_{\nu} - \partial_{\nu}\epsilon^{\mu}\right| = 1 - \partial_{\mu}\epsilon^{\mu}.$$

Thus the first order change in the action under local translations is,

$$\begin{split} \delta I &= I \left[\mathcal{F}'(x') \right] - I \left[\mathcal{F}(x) \right] \\ &= \int d^4 x' \, \mathcal{L} \left(\mathcal{F}'(x'), \partial'_{\mu} \mathcal{F}'(x') \right) - \int d^4 x \, \mathcal{L} \left(\mathcal{F}(x), \partial_{\mu} \mathcal{F}(x) \right) \\ &= \int d^4 x \, \left(1 - \partial_{\mu} \epsilon^{\mu} \right) \, \mathcal{L} \left(\mathcal{F}(x), \partial_{\mu} \mathcal{F}(x) + \partial_{\mu} \epsilon^{\nu} \, \partial_{\nu} \mathcal{F}(x) \right) - \int d^4 x \, \mathcal{L} \left(\mathcal{F}(x), \partial_{\mu} \mathcal{F}(x) \right) \\ &= \int d^4 x \, \left(1 - \partial_{\mu} \epsilon^{\mu} \right) \, \left[\mathcal{L} \left(\mathcal{F}(x), \partial_{\mu} \mathcal{F}(x) \right) + \partial_{\mu} \epsilon^{\nu} \, \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \mathcal{F}(x) \right)} . \partial_{\nu} \mathcal{F}(x) + O(\epsilon^2) \right] - \int d^4 x \, \mathcal{L} \left(\mathcal{F}(x), \partial_{\mu} \mathcal{F}(x) \right) \\ &= \int d^4 x \, \left[\partial_{\mu} \epsilon^{\nu} \, \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \mathcal{F}(x) \right)} . \partial_{\nu} \mathcal{F}(x) - \partial_{\mu} \epsilon^{\mu} \, \mathcal{L} \left(\mathcal{F}(x), \partial_{\mu} \mathcal{F}(x) \right) \right] \\ &= \int d^4 x \, \partial_{\mu} \epsilon_{\nu} \, \left[\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \mathcal{F}(x) \right)} . \partial^{\nu} \mathcal{F}(x) - \eta^{\mu \nu} \, \mathcal{L} \left(\mathcal{F}(x), \partial_{\mu} \mathcal{F}(x) \right) \right]. \end{split}$$

Thus the Noether current for translations, i.e. the canonical stress tensor is,

$$\Theta^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \mathcal{F})} \cdot \partial^{\nu} \mathcal{F} - \eta^{\mu\nu} \mathcal{L}.$$

B. The conservation law is proven using the EL equations for field $\mathcal F$ as follows

$$\begin{split} \partial_{\mu}\Theta^{\mu\nu} &= \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\mathcal{F})} \cdot \partial^{\nu}\mathcal{F} - \eta^{\mu\nu} \mathcal{L} \right) \\ &= \underbrace{\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\mathcal{F})} \right)}_{=\frac{\partial \mathcal{L}}{\partial \mathcal{F}}} \cdot \partial^{\nu}\mathcal{F} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\mathcal{F})} \cdot \partial^{\mu}\partial^{\nu}\mathcal{F} - \partial^{\nu}\mathcal{L} \\ &= \underbrace{\frac{\partial \mathcal{L}}{\partial \mathcal{F}}}_{\partial^{\nu}\mathcal{L}} \cdot \partial^{\nu}\mathcal{F} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\mathcal{F})} \cdot \partial^{\mu}\partial^{\nu}\mathcal{F} - \partial^{\nu}\mathcal{L} \\ &= 0. \end{split}$$

C. For Maxwell theory, $\mathcal{L} = -\frac{1}{4}F_{\alpha\beta}F^{\alpha\beta}$ where $F_{\alpha\beta} = \partial_{\alpha}A_{\beta} - \partial_{\beta}A_{\alpha}$. Then the canonical stress tensor is,

$$\begin{split} \Theta^{\mu\nu} &= \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu}A_{\rho}\right)} \partial^{\nu}A_{\rho} - \eta^{\mu\nu} \,\mathcal{L} \\ &= \frac{\partial}{\partial \left(\partial_{\mu}A_{\rho}\right)} \left(-\frac{1}{4}F_{\alpha\beta}F^{\alpha\beta}\right) \partial^{\nu}A_{\rho} - \eta^{\mu\nu} \,\mathcal{L} \\ &= -\frac{1}{2} \frac{\partial F_{\alpha\beta}}{\partial \left(\partial_{\mu}A_{\rho}\right)} F^{\alpha\beta} \partial^{\nu}A_{\rho} - \eta^{\mu\nu} \,\mathcal{L} \\ &= -\frac{1}{2} \left(\delta^{\mu}_{\alpha}\delta^{\rho}_{\beta} - \delta^{\mu}_{\beta}\delta^{\rho}_{\alpha}\right) F^{\alpha\beta} \partial^{\nu}A_{\rho} - \eta^{\mu\nu} \,\mathcal{L} \\ &= -F^{\mu\rho}\partial^{\nu}A_{\rho} - \eta^{\mu\nu} \,\mathcal{L}. \end{split}$$

D. Write down the expression for the linear momentum 4-vector for the Maxwell theory.

$$P^{i} = \int d^{3}x \, \Theta^{0i} = \int d^{3}x \, \left(-F^{0\rho} \partial^{i} A_{\rho} - g^{0\mathcal{F}} \mathcal{L} \right)$$

$$= \int d^{3}x \, \left(-F^{0j} \partial^{i} A_{j} \right)$$

$$= \int d^{3}x \, \left(\underbrace{-F^{0j} \partial_{i} A^{j}} \right)$$

$$= \int d^{3}x \, E^{j} \partial_{i} A^{j}$$

$$= \int d^{3}x \, E^{j} \left(\underbrace{\partial_{i} A^{j} - \partial_{j} A^{i}}_{\epsilon^{ijk} B^{k}} \right) + \int d^{3}x \, E^{j} \partial_{j} A^{i}$$

$$= \int d^{3}x \, \epsilon^{ijk} \, E^{j} \, B^{k} + \int d^{3}x \, \partial_{j} \left(E^{j} A^{i} \right) - \int d^{3}x \, \left(\partial_{j} E^{j} \right) A^{i}$$

$$= \int d^{3}x \, \left(\mathbf{E} \times \mathbf{B} \right)^{i}.$$

The second term is a total derivative and becomes a surface term at spatial infinity which vanishes due to boundary conditions, while the second term vanishes due to Gauss law in the absence of free charges, $\rho = 0 = \nabla \cdot \mathbf{E}$.

2. Consider the theory of a Maxwell field, $A_{\mu}(x)$, coupled to an conserved external electric current-density (source), $j^{\mu}(x)$, given by the action,

$$I\left[A_{\mu}(x)\right] = \int d^4x \, \left(-\frac{1}{4}F_{\alpha\beta}F^{\alpha\beta} - j^{\mu}A_{\mu}\right),\,$$

- A. Compute the dimension of the Maxwell field.
- **B.** Use the functional form of the Euler-Lagrange equation, namely

$$\frac{\delta L}{\delta \mathcal{F}(\boldsymbol{x})} = \frac{\partial}{\partial t} \left(\frac{\delta L}{\delta \dot{\mathcal{F}}(\boldsymbol{x})} \right)$$

to arrive at the equation of motion for this theory. (Note that the rule for functional differentiation here would be

$$rac{\delta A_{\mu}(oldsymbol{x})}{\delta A_{
u}(oldsymbol{y})} = \delta^{
u}_{\mu} \, \delta^{3} \, (oldsymbol{x} - oldsymbol{y})$$

). Then use the alternative form of the Euler-Lagrange equation,

$$\frac{\partial \mathcal{L}}{\partial \mathcal{F}} = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \mathcal{F} \right)} \right)$$

to arrive at the equation of motion (Maxwell equation). Here \mathcal{F} is a generic tensor field with all indices suppressed to reduce clutter of notation.

C. Then work out the Hamiltonian for the Maxwell theory.

D. Show that the action is symmetric under the (abelian) gauge transformations,

$$A_{\mu}(x) \to A'_{\mu}(x) = A_{\mu} - \partial_{\mu}\lambda$$

where $\lambda(x)$ is an arbitrary scalar field.

$$(1+4+3+2=10 \text{ points})$$

Solution: A. The action is dimensionless. So

$$[d^4x] + [F_{\mu\nu}F^{\mu\nu}] = 0.$$

Now,

$$\left[d^4x\right] = \left[L^4\right] = -4,$$

while,

$$[F_{\mu\nu}F^{\mu\nu}] = 2[F_{\mu\nu}] = 2[\partial_{\mu}A_{\nu}] = 2\left[\frac{A_{\mu}}{L}\right] = 2[A_{\mu}] + 2.$$

So we have,

$$-4 + 2[A_{\mu}] + 2 = 0 \Rightarrow [A_{\mu}] = +1.$$

B. The LHS,

$$\begin{split} \frac{\delta L}{\delta A_{\mu}(\boldsymbol{x})} &= \frac{\delta}{\delta A_{\mu}(\boldsymbol{x})} \left(-\frac{1}{4} \int d^{3}\boldsymbol{y} \, F_{\alpha\beta}(\boldsymbol{y}) F^{\alpha\beta}(\boldsymbol{y}) - \int d^{3}\boldsymbol{y} j^{\alpha}(\boldsymbol{y}) \, A_{\alpha}(\boldsymbol{y}) \right) \\ &= -\frac{1}{4} \int d^{3}\boldsymbol{y} \, \frac{\delta \left(F_{\alpha\beta}(\boldsymbol{y}) F^{\alpha\beta}(\boldsymbol{y}) \right)}{\delta A_{\mu}(\boldsymbol{x})} - \int d^{3}\boldsymbol{y} j^{\alpha}(\boldsymbol{y}) \, \underbrace{\frac{\delta A_{\alpha}(\boldsymbol{y})}{\delta A_{\mu}(\boldsymbol{x})}}_{\boldsymbol{\delta} A_{\mu}(\boldsymbol{x})} \\ &= -\frac{1}{2} \int d^{3}\boldsymbol{y} \, \frac{\delta F_{\alpha\beta}(\boldsymbol{y})}{\delta A_{\mu}(\boldsymbol{x})} F^{\alpha\beta}(\boldsymbol{y}) - j^{\mu}(\boldsymbol{x}) \\ &= -\frac{1}{2} \int d^{3}\boldsymbol{y} \, \left[\frac{\delta \left(\partial_{y^{\alpha}} A_{\beta}(\boldsymbol{y}) \right)}{\delta A_{\mu}(\boldsymbol{x})} - \frac{\delta \left(\partial_{y^{\beta}} A_{\alpha}(\boldsymbol{y}) \right)}{\delta A_{\mu}(\boldsymbol{x})} \right] F^{\alpha\beta}(\boldsymbol{y}) - j^{\mu}(\boldsymbol{x}) \\ &= -\frac{1}{2} \int d^{3}\boldsymbol{y} \, \left[\frac{\delta A_{\beta}(\boldsymbol{y})}{\delta A_{\mu}(\boldsymbol{x})} \right) F^{i\beta}(\boldsymbol{y}) - \partial_{y^{j}} \left(\frac{\delta A_{\alpha}(\boldsymbol{y})}{\delta A_{\mu}(\boldsymbol{x})} \right) F^{\alpha j}(\boldsymbol{y}) \right] - j^{\mu}(\boldsymbol{x}) \\ &= \frac{1}{2} \int d^{3}\boldsymbol{y} \, \left[\delta_{\beta}^{\mu} \, \delta^{3}(\boldsymbol{y} - \boldsymbol{x}) \, \partial_{y^{i}} F^{i\beta}(\boldsymbol{y}) - \delta_{\alpha}^{\mu} \, \delta^{3}(\boldsymbol{y} - \boldsymbol{x}) \, \partial_{y^{j}} F^{\alpha j}(\boldsymbol{y}) \right] - j^{\mu}(\boldsymbol{x}) \\ &= \frac{1}{2} \left(\partial_{i} F^{i \mu}(\boldsymbol{x}) - \partial_{j} F^{\mu j}(\boldsymbol{x}) \right) - j^{\mu}(\boldsymbol{x}) \\ &= \partial_{i} F^{i \mu}(\boldsymbol{x}) - j^{\mu}(\boldsymbol{x}). \end{split}$$

For the RHS we first need to compute,

$$\begin{split} \frac{\delta L}{\delta \dot{A}_{\mu}(\boldsymbol{x})} &= \frac{\delta}{\delta \dot{A}_{\mu}(\boldsymbol{x})} \left(-\frac{1}{4} \int d^{3}\boldsymbol{y} \, F_{\alpha\beta}(\boldsymbol{y}) F^{\alpha\beta}(\boldsymbol{y}) - \int d^{3}\boldsymbol{y} j^{\alpha}(\boldsymbol{y}) \, A_{\alpha}(\boldsymbol{y}) \right) \\ &= -\frac{1}{4} \int d^{3}\boldsymbol{y} \, \frac{\delta \left(F_{\alpha\beta}(\boldsymbol{y}) F^{\alpha\beta}(\boldsymbol{y}) \right)}{\delta \dot{A}_{\mu}(\boldsymbol{x})} \\ &= -\frac{1}{2} \int d^{3}\boldsymbol{y} \, \frac{\delta F_{\alpha\beta}(\boldsymbol{y})}{\delta \dot{A}_{\mu}(\boldsymbol{x})} \, F^{\alpha\beta}(\boldsymbol{y}) \\ &= -\frac{1}{2} \int d^{3}\boldsymbol{y} \, \left[\frac{\delta \left(\partial_{y^{\alpha}} A_{\beta}(\boldsymbol{y}) \right)}{\delta \dot{A}_{\mu}(\boldsymbol{x})} - \frac{\delta \left(\partial_{y^{\beta}} A_{\alpha}(\boldsymbol{y}) \right)}{\delta \dot{A}_{\mu}(\boldsymbol{x})} \right] F^{\alpha\beta}(\boldsymbol{y}) \\ &= -\frac{1}{2} \int d^{3}\boldsymbol{y} \, \left[\underbrace{\frac{\delta \dot{A}_{\beta}(\boldsymbol{y})}{\delta \dot{A}_{\mu}(\boldsymbol{x})} \, F^{0\beta}(\boldsymbol{y}) - \underbrace{\frac{\delta \dot{A}_{\alpha}(\boldsymbol{y})}{\delta \dot{A}_{\mu}(\boldsymbol{x})}}_{=\delta_{\alpha}^{\mu} \delta^{3}(\boldsymbol{y} - \boldsymbol{x})} \right] F^{\alpha0}(\boldsymbol{y}) \right] \\ &= -\frac{1}{2} \left(F^{0\mu}(\boldsymbol{x}) - F^{\mu 0}(\boldsymbol{x}) \right) \\ &= F^{0\mu}(\boldsymbol{x}). \end{split}$$

Then the RHS,

$$\partial_t \left(\frac{\delta L}{\delta \dot{A}_{\mu}(oldsymbol{x})} \right) = -\partial_0 F^{0\,\mu}(oldsymbol{x}).$$

Thus the functional EL equations are,

$$\partial_i F^{i\mu}(\boldsymbol{x}) - j^{\mu}(\boldsymbol{x}) = -\partial_0 F^{0\mu}(\boldsymbol{x}),$$

or,

$$\partial_0 F^{0\,\mu} + \partial_i F^{i\,\mu} = j^\mu$$

or,

$$\partial_{\nu}F^{\nu\mu}=i^{\mu}$$

Alternative EL equations without functional derivatives,

$$\frac{\partial \mathcal{L}}{\partial \mathcal{F}} = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \mathcal{F} \right)} \right)$$

The LHS:

$$\frac{\partial \mathcal{L}}{\partial A_{\mu}} = \frac{\partial}{\partial A_{\mu}} \left(\frac{1}{4} F_{\alpha\beta} F^{\alpha\beta} \right)^{-0} \frac{\partial}{\partial A_{\mu}} \left(j^{\alpha} A_{\alpha} \right)$$
$$= -j^{\mu}.$$

For the RHS we need,

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \left(\partial_{\nu} A_{\mu}\right)} &= \frac{\partial}{\partial \left(\partial_{\nu} A_{\mu}\right)} \left(-\frac{1}{4} F_{\alpha \beta} F^{\alpha \beta}\right) - \underbrace{\frac{\partial}{\partial \left(\partial_{\nu} A_{\mu}\right)}}^{0} \\ &= -\frac{1}{2} \frac{\partial F_{\alpha \beta}}{\partial \left(\partial_{\nu} A_{\mu}\right)} F^{\alpha \beta} \\ &= -\frac{1}{2} \frac{\partial \left(\partial_{\alpha} A_{\beta} - \partial_{\beta} A_{\alpha}\right)}{\partial \left(\partial_{\nu} A_{\mu}\right)} F^{\alpha \beta} \\ &= -\frac{1}{2} \left(\delta_{\alpha}^{\nu} \delta_{\beta}^{\mu} - \delta_{\beta}^{\nu} \delta_{\alpha}^{\mu}\right) F^{\alpha \beta} \\ &= F^{\mu \nu}. \end{split}$$

Then the RHS,

$$\partial_{\nu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\nu} A_{\mu} \right)} \right) = \partial_{\nu} F^{\mu \nu} = - \partial_{\nu} F^{\nu \mu}.$$

Thus the EL equations are,

$$-j^{\mu} = -\partial_{\nu} F^{\nu \mu},$$

or,

$$\partial_{\nu}F^{\nu\mu}=j^{\mu}.$$

C. Hamiltonian for the Maxwell theory: The Hamiltonian density in the absence of charges/currents is given by Θ^{00}

$$\Theta^{00} = -F^{0\rho}\partial^{0}A_{\rho} - \mathcal{L}$$
$$= -F^{0i}\partial^{0}A_{i} - \mathcal{L}$$
$$= -F^{0i}\partial_{0}A_{i} - \mathcal{L}$$

Now,

$$\mathcal{L} = -\frac{1}{4}F^2 = \frac{1}{2}\left(\boldsymbol{E}^2 - \boldsymbol{B}^2\right)$$

and,

$$F^{0i} = -E^i$$

while,

$$\partial_0 A_i = F_{0i} + \partial_i A^0$$
$$= E^i + \partial_i \Phi.$$

Substituting these in Θ^{00} ,

$$\Theta^{00} = E^{i} \left(E^{i} + \partial_{i} \Phi \right) - \frac{1}{2} \left(\mathbf{E}^{2} - \mathbf{B}^{2} \right)$$

$$= \frac{1}{2} \left(\mathbf{E}^{2} + \mathbf{B}^{2} \right) + \mathbf{E} \cdot \nabla \Phi$$

$$= \frac{1}{2} \left(\mathbf{E}^{2} + \mathbf{B}^{2} \right) + \nabla \cdot \left(\mathbf{E} \Phi \right) - \Phi \underbrace{\nabla \cdot \mathbf{E}}_{=0}$$

Thus the Hamiltonian is

$$H = \int d^3 \mathbf{x} \, \Theta^{00} = \int d^3 \mathbf{x} \, \frac{1}{2} \left(\mathbf{E}^2 + \mathbf{B}^2 \right) + \int d^3 \mathbf{x} \, \mathbf{\nabla} \cdot (\mathbf{E} \Phi)^{0}$$
$$= \int d^3 \mathbf{x} \, \frac{1}{2} \left(\mathbf{E}^2 + \mathbf{B}^2 \right).$$

D. The Maxwell field strength $F_{\mu\nu}$ is invariant under gauge transformations:

$$A_{\mu}(x) \to A'_{\mu}(x) = A_{\mu} - \partial_{\mu}\lambda$$

where $\lambda(x)$ is an arbitrary scalar field. So the term $-\frac{1}{4}F^2$ in the lagrangian is invariant under gauge transformations. Now let's look at the coupling term, $j^{\mu}A_{\mu}$. Under a gauge transformation this transforms to,

$$j^{\mu}A_{\mu} \to j^{\mu} A'_{\mu} = j^{\mu} (A_{\mu} - \partial_{\mu}\lambda)$$

$$= j^{\mu}A_{\mu} - j^{\mu}\partial_{\mu}\lambda$$

$$= j^{\mu}A_{\mu} - \partial_{\mu} (j^{\mu}\lambda) + \lambda(\partial_{\mu}j^{\mu}).$$

The last term vanished since j^{μ} is a conserved current. So the coupling term changes a total derivative. When integrated against spacetime this would reduce to a surface term at infinity which will be made to vanish by appropriate initial and boundary conditions. Thus,

$$\int d^4x \, j^\mu \, A'_\mu = \int d^4x \, j^\mu \, A_\mu,$$

and hence the Maxwell equation with coupling to a conserved current is invariant under gauge transformations.

3. Apply the Noether algorithm to construct the conserved charges for the Lorentz invariant field theory (1) for a generic field (representation of Lorentz group) $\mathcal{F}(x)$, for symmetry under Lorentz transformations,

$$x^{\mu} \to x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu},$$

$$\mathcal{F}(x) \to \mathcal{F}'(x') = D(\Lambda) \mathcal{F}(x).$$

where the representation (matrix) $D(\Lambda)$ is generated by the $\Sigma^{\mu\nu}$ is the spin matrix (generator):

$$D(\Lambda) = \exp\left(-\frac{i}{2}\,\omega_{\alpha\beta}\,\Sigma^{\alpha\beta}\right) \approx \mathbb{1} - \frac{i}{2}\,\omega_{\alpha\beta}\,\Sigma^{\alpha\beta}.$$

[Hint: The Noether algorithm should give,

$$\delta I = \int d^4x \, \frac{1}{2} \, \partial_{\lambda} \omega_{\mu\nu} \, M^{\lambda \, \mu \, \nu}.$$

where $\omega_{\mu\nu}$ is the infinitesimal parameter for Lorentz transformation,

$$\Lambda^{\mu}_{\ \nu} = \delta^{\mu}_{\nu} + \omega^{\mu}_{\ \nu}.$$

and,

$$M^{\lambda\mu\nu} = x^{\mu} \Theta^{\lambda\nu} - x^{\nu} \Theta^{\lambda\mu} - i \frac{\partial \mathcal{L}}{\partial(\partial_{\lambda}\mathcal{F})} . \Sigma^{\mu\nu} . \mathcal{F}.$$

Thus the current $M^{\lambda\mu\nu}$ is the Noether current, a rank (3,0) tensor.]

(10 points)

Solution: The infinitesimal form of the local Lorentz transformation is,

$$x^{\mu} \to x'^{\mu} = x^{\mu} + \omega^{\mu}_{\nu}(x) x^{\nu},$$

$$\mathcal{F}(x) \to \mathcal{F}'(x') = \left(\mathbb{1} - \frac{i}{2} \omega_{\alpha\beta}(x) \Sigma^{\alpha\beta}\right) . \mathcal{F}(x)$$
$$= \mathcal{F}(x) - \frac{i}{2} \omega_{\alpha\beta}(x) \Sigma^{\alpha\beta} . \mathcal{F}(x).$$

The derivative of the field transforms to,

$$\begin{split} \partial_{\mu}\mathcal{F}(x) &\to \partial'_{\mu}\mathcal{F}'(x') = \frac{\partial x^{\nu}}{\partial x'^{\mu}} \, \partial_{\nu} \left(D \left(\Lambda \right) \, \mathcal{F}(x) \right) \\ &= \left(\delta^{\nu}_{\mu} - \omega^{\nu}_{\ \mu} - \partial_{\mu}\omega^{\nu}_{\ \alpha}x^{\alpha} \right) \left(\partial_{\nu}\mathcal{F} - \frac{i}{2} \, \partial_{\nu}\omega_{\alpha\beta} \, \Sigma^{\alpha\beta}.\mathcal{F} - \frac{i}{2} \, \omega_{\alpha\beta}(x) \, \Sigma^{\alpha\beta}.\partial_{\nu}\mathcal{F} \right) \\ &= \partial_{\mu}\mathcal{F}(x) \underbrace{-\partial_{\mu}\omega^{\nu}_{\ \alpha}x^{\alpha} \, \partial_{\nu}\mathcal{F}(x) - \frac{i}{2} \, \partial_{\mu}\omega_{\alpha\beta} \, \Sigma^{\alpha\beta}.\mathcal{F} - \omega^{\nu}_{\ \mu}\partial_{\nu}\mathcal{F}(x) - \frac{i}{2} \, \omega_{\alpha\beta} \, \Sigma^{\alpha\beta}.\partial_{\mu}\mathcal{F}}_{\equiv \Delta(\partial_{\mu}\mathcal{F}(x))} \\ &= \partial_{\mu}\mathcal{F}(x) + \Delta \left(\partial_{\mu}\mathcal{F}(x) \right) \end{split}$$

Finally the Jacobian of the infinitesimal local Lorentz transformation,

$$\left|\frac{\partial x'^{\mu}}{\partial x^{\nu}}\right| = \left|\delta^{\mu}_{\nu} + \omega^{\mu}_{\nu} + \partial_{\nu}\omega^{\mu}_{\alpha}x^{\alpha}\right| = 1 + \omega^{\mu}_{\mu} + \partial_{\mu}\omega^{\mu}_{\nu} x^{\nu} = 1 + \partial_{\mu}\omega^{\mu}_{\nu} x^{\nu}.$$

The first order change in the action for an infinitesimal local Lorentz transformation is then,

$$\begin{split} \delta I &= I\left[\mathcal{F}'(x')\right] - I\left[\mathcal{F}(x)\right] \\ &= \int d^4x' \, \mathcal{L}\left(\mathcal{F}'(x'), \partial'_{\mu}\mathcal{F}'(x')\right) - \int d^4x \, \mathcal{L}\left(\mathcal{F}(x), \partial_{\mu}\mathcal{F}(x)\right) \\ &= \int d^4x \, \left(1 + \partial_{\mu}\omega^{\mu}_{\ \nu} \, x^{\nu}\right) \mathcal{L}\left(\mathcal{F}(x) - \frac{i}{2} \, \omega_{\alpha\beta} \, \Sigma^{\alpha\beta}.\mathcal{F}(x), \partial_{\mu}\mathcal{F}(x) + \Delta \left(\partial_{\mu}\mathcal{F}(x)\right)\right) - \int d^4x \, \mathcal{L}\left(\mathcal{F}(x), \partial_{\mu}\mathcal{F}(x)\right) \\ &= \int d^4x \, \left[\partial_{\mu}\omega^{\mu}_{\ \nu} \, x^{\nu}\mathcal{L} - \frac{i}{2} \, \omega_{\alpha\beta} \, \frac{\partial \mathcal{L}}{\partial \mathcal{F}}.\Sigma^{\alpha\beta}.\mathcal{F} + \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu}\mathcal{F}\right)}.\Delta \left(\partial_{\mu}\mathcal{F}(x)\right)\right] \\ &= \int d^4x \, \partial_{\mu}\omega_{\nu\rho} \left(\eta^{\mu\nu}x^{\rho}\mathcal{L} - \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu}\mathcal{F}\right)}.\partial^{\nu}\mathcal{F}(x) \, x^{\rho} - \frac{i}{2} \, - \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu}\mathcal{F}\right)}.\Sigma^{\nu\rho}.\mathcal{F}\right) + \dots \\ &= \int d^4x \, \partial_{\mu}\omega_{\nu\rho} \left(-x^{\rho}\Theta^{\mu\nu} - \frac{i}{2} \, \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu}\mathcal{F}\right)}.\Sigma^{\nu\rho}.\mathcal{F}\right) + \dots \\ &= \int d^4x \, \frac{1}{2}\partial_{\mu}\omega_{\nu\rho} \left(x^{\nu}\Theta^{\mu\rho} - x^{\rho}\Theta^{\mu\nu} - i \, \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu}\mathcal{F}\right)}.\Sigma^{\nu\rho}.\mathcal{F}\right) + \dots \end{split}$$

The "..." represent terms which are proportional to ω and not derivatives of ω . These terms are guaranteed to vanish due to the existence of the global symmetry. Then evidently the conserved current for the Lorentz transformation is,

$$M^{\mu\nu\rho} = \underbrace{x^{\nu}\Theta^{\mu\rho} - x^{\rho}\Theta^{\mu\nu}}_{\text{Orbital}} - i\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\mathcal{F})} \cdot \Sigma^{\nu\rho} \cdot \mathcal{F}$$

The conserved charges for this are the angular momenta,

$$J^{\nu\rho} = \int d^3 \mathbf{x} \, M^{0\nu\rho} = \int d^3 \mathbf{x} \, \left(x^{\nu} \Theta^{0\rho} - x^{\rho} \Theta^{0\nu} - i \frac{\partial \mathcal{L}}{\partial \dot{\mathcal{F}}} . \Sigma^{\nu\rho} . \mathcal{F} \right).$$

4. A complex scalar field $\Phi(x)$ has the following Lagrange density,

$$\mathcal{L} = (\partial^{\mu}\Phi)^{*}(\partial_{\mu}\Phi) - m^{2}\Phi^{*}\Phi - \lambda (\Phi^{*}\Phi)^{2} - \mu^{2}(\Phi^{2} + \Phi^{*2}), \qquad m^{2} > 2\mu^{2}.$$

A. Write down the continuous global symmetry when $\mu^2 = 0$. Write down the corresponding Noether current J^{μ} (no derivation necessary).

B. Obtain the 4-divergence of J^{μ} when $\mu^2 \neq 0$.

C. What is the physical interpretation of the free Lagrangian density (i.e $\lambda=0$) when $\mu^2\neq 0$.

$$(4+4+2=10 \text{ points})$$

Solution: A. The continuous global symmetry when $\mu^2 = 0$, is the global U(1) symmetry under phase transformations):

$$\Phi \to \Phi' = e^{-i\alpha}\Phi.$$

The Noether current for this symmetry is,

$$J^{\mu} = i \left(\Phi^{\dagger} \partial^{\mu} \Phi - \partial^{\mu} \Phi^{\dagger} \Phi \right)$$

B. The equation of motion in the presence of the μ^2 term is,

$$\frac{\partial \mathcal{L}}{\partial \Phi} = \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \Phi \right)} \right]$$

or,

$$-m^2\Phi^* - 2\lambda \left(\Phi^*\Phi\right)\Phi^* - 2\mu^2\Phi = \Box\Phi^*$$

or,

$$\Box \Phi^* = -m^2 \Phi^* - 2\lambda |\Phi|^2 \Phi^* - 2\mu^2 \Phi.$$

Similarly for Φ we get,

$$\Box \Phi = -m^2 \Phi - 2\lambda \left| \Phi \right|^2 \Phi - 2\mu^2 \Phi^*.$$

Now we compute the 4-divergence of the current,

$$\begin{split} \partial_{\mu}J^{\mu} &= i \left(\Phi^* \Box \Phi - \Box \Phi^* \Phi \right) \\ &= -i \left(m^2 |\Phi|^2 + 2\lambda \left(|\Phi|^2 \right)^2 + 2\mu^2 \Phi^{*2} - m^2 |\Phi|^2 - 2\lambda \left(|\Phi|^2 \right)^2 - 2\mu^2 \Phi^2 \right) \\ &= i 2\mu^2 \left(\Phi^2 - \Phi^{*2} \right). \end{split}$$

C. Resolving the complex scalar Φ into real and imaginary components,

$$\Phi = \frac{\varphi_1 + i\varphi_2}{\sqrt{2}}$$

and plugging into the lagrangian with the μ^2 term turned on while having the λ -term turned off, we get the lagrangian to read as,

$$\mathcal{L} = \frac{1}{2} (\partial \varphi_1)^2 - \frac{1}{2} (m^2 + 2\mu^2) \varphi_1^2 + \frac{1}{2} (\partial \varphi_2)^2 - \frac{1}{2} (m^2 - 2\mu^2) \varphi_2^2.$$

This is the lagrangian for two free real scalar fields φ_1, φ_2 of different masses, $m_1^2 = m^2 + 2\mu^2$ and $m_2^2 = m^2 - 2\mu^2$ respectively.

5. Consider the complex scalar field theory described by the action,

$$I\left[\Phi(x)\right] = \int d^4x \left[\left(\partial^{\mu}\Phi\right)^* \partial_{\mu}\Phi - m^2\Phi^*\Phi - V(\Phi^*\Phi) \right]. \tag{4}$$

which has the global U(1) symmetry,

$$\Phi(x) \to \Phi'(x) = e^{-i\alpha} \Phi(x). \tag{5}$$

A. Show that when the system is expressed in terms of the real and imaginary parts, the complex scalar field, φ_1, φ_2 as defined by

$$\Phi = \frac{\varphi_1 + i\,\varphi_2}{\sqrt{2}}$$

then the U(1) symmetry transformation 5 looks like an SO(2) transformation, namely,

$$\varphi \rightarrow \varphi \prime = O \ \varphi,$$

where

$$\varphi = \left(\begin{array}{c} \varphi_1 \\ \varphi_2 \end{array}\right)$$

is a column vector and O is a 2×2 matrix orthogonal matrix of unit determinant (an element of SO(2)). This shows the isomorphism of the groups, $U(1) \cong SO(2)$.

B. Work out the Noether current(s) for this SO(2) symmetry. You will first need to rewrite the action (4) in terms of the real scalar field column vector φ :

$$I[\varphi(x)] = \int d^4x \left[\frac{1}{2} \left(\partial^{\mu} \varphi \right)^T \left(\partial_{\mu} \varphi \right) - \frac{m^2}{2} \varphi^T \varphi - V \left(\varphi^T \varphi \right) \right]$$
 (6)

where $\varphi^T = \text{transpose}(\varphi)$ is a row vector.

C. The equation of motion to show that the Noether current is conserved i.e. satisfy continuity equation.

D. The action (6) is actually symmetric under O(2) transformations not just SO(2). Since $O(2) = P \cup SO(2)$, where P is the (field space) parity transformation,

$$P = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

What is this symmetry in terms of the complex field.

$$(3+3+3+1=10 \text{ points})$$

Solution: A. Resolving the symmetry transformed field, Φ' in terms of real and imaginary components, φ'_1, φ'_2 , we can write the symmetry transformation $\Phi'(x) = e^{-i\alpha} \Phi(x)$ as,

$$(\varphi_1' + i \varphi_2') = e^{-i\alpha} (\varphi_1 + i \varphi_2)$$

= $(\cos \alpha \varphi_1 + \sin \alpha \varphi_2) + i (-\sin \alpha \varphi_1 + \cos \alpha \varphi_2).$

So in terms of the components, the symmetry transformation reads,

$$\varphi_1 \to \varphi_1' = \cos \alpha \, \varphi_1 + \sin \alpha \, \varphi_2,$$

 $\varphi_2 \to \varphi_2' = -\sin \alpha \, \varphi_1 + \cos \alpha \, \varphi_2.$

In matrix notation,

$$\left(\begin{array}{c} \varphi_1 \\ \varphi_2 \end{array}\right) \to \left(\begin{array}{c} \varphi_1' \\ \varphi_2' \end{array}\right) = \underbrace{\left(\begin{array}{cc} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{array}\right)}_{Q} \left(\begin{array}{c} \varphi_1 \\ \varphi_2 \end{array}\right).$$

Evidently the matrix O is an element of SO(2) since it is same as the rotation matrix in 2 dimensions (rotation by an angle α in the xy plane).

B. Noether current for SO(2) symmetry: The action is

$$I\left[\varphi(x)\right] = \int d^4x \, \left[\frac{1}{2} \left(\partial^{\mu}\varphi\right)^T \left(\partial_{\mu}\varphi\right) - \frac{m^2}{2} \varphi^T \varphi - V\left(\varphi^T \varphi\right)\right]$$

where now $\varphi = \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}$. We need to compute change in the action when the symmetry parameter α is made a function of spacetime, $\alpha(x)$,

$$\delta I = I[\varphi'] - I[\varphi], \varphi' = O(\alpha(x)) \varphi$$

Clearly the potential terms, $-\frac{m^2}{2}\varphi^T\varphi - V\left(\varphi^T\varphi\right)$ are invariant even under local SO(2) since they contain no derivatives of the field. So the only nonzero change in the action arises from the kinetic term,

$$\delta I = \int d^4x \, \left[\frac{1}{2} \left(\partial^{\mu} \varphi' \right)^T \left(\partial_{\mu} \varphi' \right) - \frac{1}{2} \left(\partial^{\mu} \varphi \right)^T \left(\partial_{\mu} \varphi \right) \right].$$

To leading order in α ,

$$\varphi' = \varphi + \alpha(x) A \varphi, A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Thus,

$$\partial_{\mu}\varphi' = \partial_{\mu}\varphi + \partial_{\mu}\alpha \, A \, \varphi + \alpha \, A \, \partial_{\mu}\varphi$$

and,

$$\begin{split} \left(\partial^{\mu}\varphi'\right)^{T}\left(\partial_{\mu}\varphi'\right) &= \left(\partial^{\mu}\varphi + \partial^{\mu}\alpha \, A \, \varphi + \alpha \, A \, \partial^{\mu}\varphi\right)^{T}\left(\partial_{\mu}\varphi + \partial_{\mu}\alpha \, A \, \varphi + \alpha \, A \, \partial_{\mu}\varphi\right) \\ &= \left(\partial^{\mu}\varphi^{T} + \partial^{\mu}\alpha \, \varphi^{T} \, A^{T} + \alpha \, \partial^{\mu}\varphi^{T} \, A^{T}\right)\left(\partial_{\mu}\varphi + \partial_{\mu}\alpha \, A \, \varphi + \alpha \, A \, \partial_{\mu}\varphi\right) \\ &= \left(\partial^{\mu}\varphi^{T} - \partial^{\mu}\alpha \, \varphi^{T} \, A - \alpha \, \partial^{\mu}\varphi^{T} \, A\right)\left(\partial_{\mu}\varphi + \partial_{\mu}\alpha \, A \, \varphi + \alpha \, A \, \partial_{\mu}\varphi\right) \\ &= \left(\partial^{\mu}\varphi^{T}\right)\left(\partial_{\mu}\varphi\right) + \partial_{\mu}\alpha \, \left(\partial^{\mu}\varphi^{T} A \, \varphi - \varphi^{T} \, A \, \partial^{\mu}\varphi\right) + O\left(\alpha^{2}\right). \end{split}$$

Substituting back in the action (change) we get,

$$\delta I = \int d^4x \, \partial_\mu \alpha \, \frac{1}{2} \left(\partial^\mu \varphi^T A \, \varphi - \varphi^T \, A \, \partial^\mu \varphi \right).$$

Evidently the Noether current is,

$$J^{\mu} = \frac{1}{2} \left(\partial^{\mu} \varphi^{T} A \varphi - \varphi^{T} A \partial^{\mu} \varphi \right) = \varphi_{2} \partial^{\mu} \varphi_{1} - \varphi_{1} \partial^{\mu} \varphi_{2}.$$

C. Check that the SO(2) Noether current is conserved i.e. satisfy continuity equation: For this we need the equations of motion for φ_1, φ_2 . The Lagrangian density, in terms of φ_1, φ_2 is,

$$\mathcal{L} = (\partial^{\mu}\Phi)^{*} \partial_{\mu}\Phi - m^{2}\Phi^{*}\Phi - V(\Phi^{*}\Phi) = \frac{1}{2} (\partial\varphi_{1})^{2} + \frac{1}{2} (\partial\varphi_{2})^{2} - \frac{m^{2}}{2} (\varphi_{1}^{2} + \varphi_{2}^{2}) - V(\rho), \ \rho = \varphi_{1}^{2} + \varphi_{2}^{2}.$$

Then the EL equation for φ_1 is,

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \varphi_{1} \right)} \right) = \frac{\partial \mathcal{L}}{\partial \varphi_{1}}$$

or,

$$\Box \varphi_1 = m^2 \varphi_1 - \frac{dV}{d\rho} \frac{\partial \rho}{\partial \varphi_1}$$
$$= m^2 \varphi_1 - 2 \frac{dV}{d\rho} \varphi_1.$$

By symmetry the EL equation for φ_2 is then,

$$\Box \varphi_2 = m^2 \varphi_2 - 2 \frac{dV}{d\rho} \, \varphi_2.$$

Now we compute the 4-divergence of the current,

$$\begin{split} \partial_{\mu}J^{\mu} &= \varphi_{2}\Box\varphi_{1} - \varphi_{1}\Box\varphi_{2} \\ &= \varphi_{2}\left(m^{2}\varphi_{1} - 2\frac{dV}{d\rho}\,\varphi_{1}\right) - \varphi_{1}\left(m^{2}\varphi_{2} - 2\frac{dV}{d\rho}\,\varphi_{2}\right) \\ &= 0. \end{split}$$

D. The configuration space parity transformation,

$$\varphi' = P \varphi$$

$$\begin{pmatrix} \varphi'_1 \\ \varphi'_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}$$

$$= \begin{pmatrix} \varphi_1 \\ -\varphi_2 \end{pmatrix}.$$

in terms of complex scalar, becomes,

$$\Phi \to \Phi' = \frac{\varphi_1' + i\,\varphi_2'}{\sqrt{2}} = \frac{\varphi_1 - i\,\varphi_2}{\sqrt{2}} = \Phi^\dagger.$$

This is the complex conjugation (charge conjugation) symmetry of the complex scalar field theory.