PH6418/EP4618: Quantum Field Theory (Spring 2022)
Midterm Exam*

May 10, 2022

1. A. Follow the Noether algorithm to construct the conserved charges for the translation
symmetry for the field theory of a generic tensor field, say F(x), described by an action,

1[F()] = / &'z £ (F(2),0,F(x)), (1)

where the lagrangian density is a function of the field and its first order derivatives. To
reduce clutter of notation, the Lorentz or other internal indices of the field F are not being
displayed. [Hint: The answer should be

oL
O = ——=.0"F —n" L 2
9 (0,F) K @)
where the dot “.” denotes contraction over Lorentz or any other indices of F]|

B. Use the equation of motion of F to show that the canonical stress tensor is conserved,

9,0M =0,

C. Use the general formula (2) to write down the expression for the canonical stress tensor
of the Maxwell field, A,(x). Maxwell theory is given by the action,

A (z)] = / d'z (—}lFagFaﬁ), (3)

where, Fog(x) = 0,Ap(x) — 0sAa(z), is the Maxwell field strength tensor

D. Write down the expression for the linear momentum 4-vector for the Maxwell theory.
(5424 2+ 1 =10 points)

Solution: Under infinitesimal local translations,
r— 12 =1z —¢(x)

F(z) = F'(a') = Fla),

*(Maximum score: 50)



The derivative of the field transforms like,

0. F(x) = 9,F (a') = % 0, F(x)
= (0} + Ou€”) 0, F (2)

= 0, F(x) + 0u€” 0, F (x).
The Jacobian under local translations to first order,

ozx'*

ox?

= |64 — DM =1 — O,e™.

Thus the first order change in the action under local translations is,
oI = I[F'(a")] = I[F(x)]

d'a! L(F(@),0,F (@) = | d*z L(F(2),0uF (x))
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= /d4:v {@LEV 3(8?.5'(1“))'8”]:(%) — O ﬁ(}-(x)ﬁu]:(x))]
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Thus the Noether current for translations, i.e. the canonical stress tensor is,
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B. The conservation law is proven using the EL equations for field F as follows
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C. For Maxwell theory, £ = —1F,3F*# where Fo3 = 0o Ag — 03Aq. Then the canonical stress tensor is,
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D. Write down the expression for the linear momentum 4-vector for the Maxwell theory.
. - . - . 0
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The second term is a total derivative and becomes a surface term at spatial infinity which vanishes due
to boundary conditions, while the second term vanishes due to Gauss law in the absence of free charges,
p=0=V_.E.

. Consider the theory of a Maxwell field, A,(x), coupled to an conserved external electric
current-density (source), j*(z), given by the action,

1
M) = [ate (<3R4,
A. Compute the dimension of the Maxwell field.

B. Use the functional form of the Euler-Lagrange equation, namely

5](-25:0) B % (6;(Lw)>

to arrive at the equation of motion for this theory. (Note that the rule for functional differ-
entiation here would be

0 A, ()
0A,(y)

). Then use the alternative form of the Euler-Lagrange equation,

oc 5 oL

OF — " \0(9,F)
to arrive at the equation of motion (Maxwell equation). Here F is a generic tensor field with
all indices suppressed to reduce clutter of notation.

=0, 6% (x —y)

C. Then work out the Hamiltonian for the Maxwell theory.



D. Show that the action is symmetric under the (abelian) gauge transformations,
A, (z) — AL(:)&) =A,— 0.\

where A(x) is an arbitrary scalar field.
(14+4+ 3+ 2 =10 points)

Solution: A. The action is dimensionless. So

[d*z] + [F,F*] = 0.

Now,
[d'z] = [L*] = —4,
while,
v A ’
PP = 2(F] = 20,0 =2 | 2] =214+ 2
So we have,
—4+2[A,]+2=0=[A,] = +1.
B. The LHS,
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For the RHS we first need to compute,
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Then the RHS,

oL )
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O F" () — j(x) = =0 F " (),

Thus the functional EL equations are,

or, .
Qo F" + O, F' 1+ = j+
or,
o, F"" = 5+,

Alternative EL equations without functional derivatives,
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For the RHS we need,
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Then the RHS,

oL
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0, (8((% u)) O, F o, F" 1.

Thus the EL equations are,
—j = =0, F" ",

or,
8, FVH = j.

C. Hamiltonian for the Maxwell theory: The Hamiltonian density in the absence of charges/currents is given
by @00

0% = —FOr°A, — L

=—FY9%4, — L

= —FY00A; — L
Now,

L=—tp_1 (E* - B?)

4 2

and, ) )
FOZ — _F°

while,

doA; = Fy; + 0;A°
=FE'+9,0.

Substituting these in 0%,

00 __ i (v ) _1 2_ 2
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Thus the Hamiltonian is
) . 1
H:/ddeOO:/ddmi(E2+32)+ Pz V-(E®)

:/d3w%(E2+B2).

D. The Maxwell field strength F},, is invariant under gauge transformations:
Ay(x) — A’M(ac) =A,— 0.\

where A(z) is an arbitrary scalar field. So the term fiF 2 in the lagrangian is invariant under gauge
transformations. Now let’s look at the coupling term, j#A,. Under a gauge transformation this transforms
to,

JrAL — gt A;L =Jj" (Au = 0uA)
=jrA, — 1O\

0
= j“Au - 8# (ju )‘) + )‘W



The last term vanished since j#is a conserved current. So the coupling term changes a total derivative. When
integrated against spacetime this would reduce to a surface term at infinity which will be made to vanish by
appropriate initial and boundary conditions. Thus,

/d4xj“ Al = /d‘*xjﬂ A,

and hence the Maxwell equation with coupling to a conserved current is invariant under gauge transforma-

tions.

. Apply the Noether algorithm to construct the conserved charges for the Lorentz invariant
field theory (1) for a generic field (representation of Lorentz group) F(z), for symmetry
under Lorentz transformations,
= = A", a2,
F(x) = F(2') =D (A) F(x).
where the representation (matrix) D(A) is generated by the ¥ is the spin matrix (genera-
tor):

D(A) = exp (—% Wa Eaﬂ) ~1-— %waﬁ neb,

[Hint: The Noether algorithm should give,
1
ol = /d4x 3 O\W MA#Y

where w,,, is the infinitesimal parameter for Lorentz transformation,
At =00 4+ Wt .

and,
oL
MM =gl @M — g7 Q@M — YW F
’ ! " 9(0nF)
Thus the current M*#* is the Noether current, a rank (3,0) tensor.]
(10 points)

Solution: The infinitesimal form of the local Lorentz transformation is,

ot — ™ =2t + Wt (x) 2,

2
= F(z) — %wag(x) EQB.}"(m).

Fla) = F(a) = (1 — L (@) zaﬁ) ()

The derivative of the field transforms to,

ox”
OuF(x) = 0, F' (') = oo O (D (A) F(x))
= (6Z —w” = Ouw” a;zca) (61,]: - % OpWap »neb F— % waps(x) zaﬁ.ayf>

= 0,F(x) —0,w"” 0x® 0, F(x) — % Opwas P T — w” ,0,F (z) — % wWap BP0, F .

=A(0uF(x))
=0, F(x) + A (0, F(x))



Finally the Jacobian of the infinitesimal local Lorentz transformation,

ox'H

ox?

= |0F + w* , + Oy %] —1+M+8Hw‘ ya¥ =14 0,w", ¥,

The first order change in the action for an infinitesimal local Lorentz transformation is then,
oI = I'[F(a")] = I [F(z)]
= /d‘*:c’ﬁ(]:'(x’),@;]:'(x')) — /d%ﬁ(]-"(x),@u}"(x))

:/d4x (1+8Mw“,,x”)£(}"(x)—;wa3 NP F(x),0,F(x) + A (8, F(x ) /d4x£ ), OuF(x))
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The “...” represent terms which are proportional to w and not derivatives of w. These terms are guaranteed

to vanish due to the existence of the global symmetry. Then evidently the conserved current for the Lorentz
transformation is,
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The conserved charges for this are the angular momenta,

oL
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OF

. A complex scalar field ®(x) has the following Lagrange density,
L= (0"9) (0,8) — m*®*® — ) (*®) — 12 (O + &*2),  m? > 2%

A. Write down the continuous global symmetry when p? = 0. Write down the corresponding
Noether current J*(no derivation necessary).

B. Obtain the 4-divergence of J* when p? # 0.

C. What is the physical interpretation of the free Lagrangian density (i.e A = 0) when

p* # 0. :
(44 4+ 2 =10 points)

Solution: A. The continuous global symmetry when p? = 0, is the global U(1) symmetry (symmetry
under phase transformations): ‘
O — P =e "D,

The Noether current for this symmetry is,

JH =i (®Tord — 0roT D)



B. The equation of motion in the presence of the u? term is,
oc_, [ oc
oo M 10(0,9)

or,
—m2d* — 2\ (O*P) &* — 212 P = (IP*

or,

00" = —m2d* — 2)|®> &* — 2,,°®.

Similarly for ® we get,
00 = —m2® — 2X [®|° & — 24%D*.

Now we compute the 4-divergence of the current,
Oy J* =i (2" 00 — O™ P)
. 21412 2\? 25%2 2|42 2)? 252
— i (m?|0| +2>\<|<I>|) +2020%2 — m? |9 72)\(|<I>\) — 2,%®

=i2p® (9% — 7).

C. Resolving the complex scalar ® into real and imaginary components,

©1 + P2
= LT
V2

and plugging into the lagrangian with the p? term turned on while having the A-term turned off, we get the
lagrangian to read as,

1 1 1 1
L=500) =5 (m* +2u°) o] + 5 (92)” = 5 (m® = 21) 3.
This is the lagrangian for two free real scalar fields i, o of different masses, m? = m? + 2u? and

m3 = m? — 2u? respectively.

. Consider the complex scalar field theory described by the action,
I@@ﬂ:/&xKW@%Mw4M@¢—V@@ﬂ. (4)

which has the global U(1) symmetry,
O(z) = &'(z) = e "™ D(x). (5)

A. Show that when the system is expressed in terms of the real and imaginary parts, the
complex scalar field, ¢1, po as defined by

_ Y1+ 1P

V2

then the U(1) symmetry transformation 5 looks like an SO(2) transformation, namely,

)

= ¢t =0,

(%)

9

where



is a column vector and O is a 2 X 2 matrix orthogonal matrix of unit determinant (an element
of SO(2)). This shows the isomorphism of the groups, U(1) = SO(2).

B. Work out the Noether current(s) for this SO(2) symmetry. You will first need to rewrite
the action (4) in terms of the real scalar field column vector :

4 1 w T m? T T
Ip(@)] = [ d'z |5(9"0)" (Oup) = ¢ 0=V (0'9) (6)

where ¢ = transpose(y) is a row vector.

C. The equation of motion to show that the Noether current is conserved i.e. satisfy conti-
nuity equation.

D. The action (6) is actually symmetric under O(2) transformations not just SO(2). Since
O(2) = PUSO(2), where P is the (field space) parity transformation,

1 0
(3 4)
What is this symmetry in terms of the complex field.
(34 3+ 3+ 1 =10 points)

Solution: A. Resolving the symmetry transformed field, ® in terms of real and imaginary components,
¥}, ph, we can write the symmetry transformation ®'(z) = e** ®(x) as,

(¢h +iph) = e (p1+ip2)
= (cosa ¢y +sinaps) +i (—sina 1 + cosa ps) .

So in terms of the components, the symmetry transformation reads,

©1 — ) = cosa p + sina ps,

P2 — ph = —sina p1 + cos a .
In matrix notation,
AN 1y cosa  sina ©1
V2 vy /T \ —sina cosa w2 )
0]

Evidently the matrix O is an element of SO(2) since it is same as the rotation matrix in 2 dimensions
(rotation by an angle « in the zy plane).
B. Noether current for SO(2) symmetry: The action is

/d4 [ (0"0)" (Dup) — nij@—V(wTw)}
$1

P2
a function of spacetime, a(x) ,

where now ¢ = < ) . We need to compute change in the action when the symmetry parameter « is made

I =TI[¢]—1I[p],¢" =O0(a(z)) ¢

Clearly the potential terms,——w p—=V (cp <p) are invariant even under local SO(2) since they contain no
derivatives of the field. So the only nonzero change in the action arises from the kinetic term,

1= [[ata [5 @) 0.) - 5 @) )]

10



To leading order in «,
0 1
LPIZQP+a($)A<p7A=(1 O)'

Thus,
o' =0 p+ 00 Ap+aAdp

and,

(0¢)" (0u") = (g + 0" Ap+ a Ad"0)" (Oup + O A + a Adyugp)

= (o* <,0 Ty ora ol AT + oty TAT) (Opp+ 0 Ap+aAd,p)
= (0"" —0"a T A—ad'p" A) (Oup + Oua Ao+ aAd,p)
= (0"¢") (Oup) + Opar (00T A — T A0"p) + O (a?).

Substituting back in the action (change) we get,
1
ol = /d4x N 3 (G”QQTA o — T A@“g@) .
Evidently the Noether current is,

JH (0T Ap — T A0"p) = 20Mp1 — 010" po.

l\D\F—‘

C. Check that the SO(2) Noether current is conserved i.e. satisfy continuity equation: For this we need the
equations of motion for @1, @s. The Lagrangian density, in terms of ¢1, @9 is,
2

* " N 1 1
= (0"2)" 0,2~ m*>* -V (e*D) = o (8p1)° + 5 (8p)” — —

5 (PT+93) =V (o), p=¢T+¢5

Then the EL equation for ¢ is,

o (5ol - 2
"\0Oupr)) O
or,
oy — 2 _ WV 00
$1 = ¥1 dp

By symmetry the EL equation for s is then,
av
Oy = m%ps — QCT P2

Now we compute the 4-divergence of the current,

OpJ" = a1 — 100

av av
= P2 (m2<ﬂ1 —2— 801) -1 <m2¢2 —2— 902)
dp dp

=0.

D. The configuration space parity transformation,

(4)-(h 1)(2)
(



in terms of complex scalar, becomes,

Prtivh _ p1—igps
(I)-)(I)/: = :(bT.
V2 V2

This is the complex conjugation (charge conjugation) symmetry of the complex scalar field theory.
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