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Notes for Lecture 14-15: Quantization of the free scalar field∗

February 4, 2021

1 Recap of the classical theory

The theory of a classical relativistic scalar field is given by the action,

I [ϕ(x)] =

ˆ
d4x L(ϕ, ∂µϕ)

where the Lagrangian density L is a Lorentz scalar and a local function of the field, ϕ(x) and
its first order spacetime derivatives, ∂µϕ(x). The physical reasons behind arriving at this type of
action (lagrangian) has been outlined in the classical field theory course. This is a field theory, i.e.
the generalized coordinates, qi(t) are labeled by a continuous label, namely the position/location
of the coordinate, say ϕx(t) or better yet ϕ(x, t). The Euler-Lagrange equations of motion are
given by,

δL

δϕ(x)
=

d

dt

(
δL

δϕ̇(x)

)
where L =

´
d3x L is the Lagrangian. This equation is equivalent to the more familiar and

relativistically covariant looking form,

∂L
∂ϕ

= ∂µ

(
∂L

∂ (∂µϕ)

)
. (1)

The conjugate momentum field, say π(x, t)

π(x, t) =
δL

δϕ̇(x, t)
=

∂L
∂ϕ̇(x)

.

The Hamiltonian for the theory can be derived from the Lagrangian via a Legendre transform,

H =

ˆ
d3x π(x, t) ϕ̇(x, t)− L =

ˆ
d3x H (π(x), ϕ(x))

where H(x) = π(x)ϕ̇(x) − L(x) is the Hamiltonian density. Starting from the Hamiltonian one
can also write down the Hamilton’s equation of motion, namely,

ϕ̇(x, t) =
δH

δπ(x, t)
, π̇(x, t) = − δH

δϕ(x, t)
.

∗Typos and errors should be reported to sroy@phy.iith.ac.in
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In general given a Hamiltonian for the scalar field, one can write down the evolution equation for
a general field which is a function of both the scalar field, ϕ(x) as well as its conjugate momentum
field say O (ϕ(x), π(x)) via the Poisson brackets equation,

dO
dt

= {O, H}PB (2)

where the Poisson brackets are defined by the functional version for field theory,

{A,B}PB =

ˆ
d3x

(
δA

δϕ(x, t)

δB

δπ(x, t)
− δB

δϕ(x, t)

δA

δπ(x, t)

)
. (3)

In particular, the canonical Poisson brackets are,

{ϕ(x, t), π(y, t)}PB = δ3 (x− y) , (4)

{ϕ(x, t), ϕ(y, t)}PB = {π(x, t), π(y, t)}PB = 0. (5)

The “free” theory is given by the particular Lagrangian density containing purely quadratic
terms (Lorentz scalars)

L =
1

2
(∂µϕ) (∂µϕ)− m2

2
ϕ2.

The parameter m has the dimensions of mass, [m] = 1 and naturally called the mass parameter.
However The equation of motion (1) is then linear in the field,(

� +m2
)
ϕ(x) = 0, (6)

where � ≡ ∂2 = ∂µ∂µ. The equation is called the Klein-Gordon equation, originally in the context
of relativistic quantum mechanics with ϕ being a single particle (Schrödinger) wave-function,
however here we are talking about a strictly classical field, ϕ(x). Since for a linear equation of
motion, for any two distinct solutions say ϕ1(x) and ϕ2(x) which satisfy the Klein-Gordon equation,
any linear combination ϕ(x) = c1ϕ1(x) + c2ϕ2(x), for arbitrary constants c1,2 is also a solution
(the superposition principle) i.e. the constituent fields, ϕ1,2 do not mix with each other or scatter
off each other, but evolve in time individually or separately. This lack of mixing of two solutions
when superposed is why this theory is considered a noninteracting or free theory. The conjugate
momentum is,

π(x) = ϕ̇(x)

and the Hamiltonian is given by H =
´
d3x H,where the Hamiltonian density is,

H =
ϕ̇2

2
+

(∇ϕ)2

2
+
m2ϕ2

2
.

From the expression of the Hamiltonian, we can write down the Hamilton’s equations,

ϕ̇ = π, π̇ = −∇2ϕ+m2ϕ,

combining which we again get the Klein-Gordon equation, (� +m2)ϕ(x) = 0. The Klein-Gordon
equation admits plane wave solutions, ϕ(x) ∼ e−ik.x where k = (ωk,k) is the wave-vector and the
dispersion relation,

ωk =
√

k2 +m2. (7)
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The general solution is given by the superposition of such (dispersive) plane waves,

ϕ(x) =

ˆ
d3k

(2π)2 2ωk

(
ϕ(ωk,k) e−ik.x + c.c

)
, (8)

where ϕ(ωk,k) is the amplitude for the component with wave-vector k = (ωk,k) and c.c. stands
for “complex conjugate”. Complex conjugation is necessary since the field is real.

1.1 Symmetries and conserved charges of the free theory

The free theory action is invariant under the the Poincaré symmetry,

x→ x′ = Λx+ a

which is a group of continuous (i.e. the symmetry parameters are continuous variables taking values
on Ror a subset of R), global (since the symmetry parameters are same at all spacetime locations)
symmetries. Then according to Noether’s (first) theorem, there must exist a conserved Noether
charge for each such continuous global symmetry parameter (c.f. Classical Field Theory notes for
the Noether algorithm to extract charges from a continuous global symmetry of the action). For the
translation symmetry, with symmetry parameters being components of the 4-vector, a = (a0,a),
the conserved charges are the components of the momentum 4-vector, P µ

P 0 = H =

ˆ
d3x

(
ϕ̇2

2
+

(∇ϕ)2

2
+
m2ϕ2

2

)
, (9)

P = −
ˆ
d3x π∇ϕ. (10)

For the Lorentz symmetries (boosts and rotations) the conserved charges are the components of
the rank 2 antisymmetric tensor Mµν ,

Mµν =

ˆ
d3x

(
xµT 0ν − xνT 0µ

)
where T µν = ∂µϕ ∂L

∂(∂νϕ)
− ηµνϕ is the canonical stress-energy-momentum density tensor. (How-

ever these are only 3 charges, namely, the angular momentum charges, M ij. The boost charges,
M0i = x0P i − xCoMP 0, do not give rise to any new charges. )

There is also a discrete symmetry which is an internal symmetry, namely a global sign-flip in
configuration space,

ϕ(x)→ −ϕ(x).

However since this is not a continuous symmetry there are no conserved Noether charges corre-
sponding to this symmetry. However this discrete reflection symmetry will have a major conse-
quence when we quantize the theory.
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2 Quantizing the free (real) scalar theory: Canonical quan-

tization

To quantize a field theory in general we will follow the canonical quantization procedure whereby
we

1. Promote the coordinates and momenta to linear operators acting on a Hilbert space of states,

ϕ(x)→ ϕ̂(x), π(x)→ π̂(x)

2. Promote the Poisson brackets of two classical functions (observables) to commutator of the
respective operators

{A,B}PB →

[
Â, B̂

]
i

.

In particular the canonical Poisson brackets (4-5) turn into the canonical commutation rela-
tions,

[ϕ̂(x, t), π̂(y, t)] = i δ3(x− y), (11)

[ϕ̂(x, t), ϕ̂(y, t)] = [π̂(x, t), π̂(y, t)] = 0 (12)

In terms of the 4-vectors, x, y

[ϕ̂(x), π̂(y)]x0=y0 = i δ3(x− y), (13)

[ϕ̂(x), ϕ̂(y)]x0=y0 = [π̂(x), π̂(y)]x0=y0 = 0. (14)

These are dubbed as the equal time canonical commutation relations (ETCCR).

3. We work in the Heisenberg picture where the observables (operators) evolve in time but
the state of the system does not evolve. To determine the quantum dynamics (evolution
equation) of an observable, O we first promote it to an operator, Ô (prescribed in step 1)
and then by replace the Poisson brackets in the classical time evolution equation (2) by
commutator brackets as prescribed in step 2:

dÔ
dt

=

[
Ô, Ĥ

]
i

,

or,
dÔ
dt

= i
[
Ĥ, Ô

]
(15)

This is the Heisenberg equation of motion.

**From here on since will be working with a quantum theory and every field or ob-
servable, say O appearing will be an operator, we will not bother to write the caret
or hat, “ ˆ ”.**
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Let’s apply the procedure of canonical quantization to the free real scalar field theory introduced
in the last section, ϕ(x). The Hamiltonian is given by (9), and it is easy to check using the
ETCCR’s, that the evolution equation for the quantum field operators, ϕ(x) and π(x) are,

∂ϕ(x, t)

∂t
= i [H,ϕ(x, t)]

= i

[ˆ
d3y H (ϕ(y, t), π(y, t)) , ϕ(x, t)

]
= i

ˆ
d3y [H (ϕ(y, t), π(y, t)) , ϕ(x, t)]

=
i

2

ˆ
d3y

[
π2(y, t), ϕ(x, t)

]
= i

ˆ
d3y π(y, t) [π(y, t), ϕ(x, t)]︸ ︷︷ ︸

=− i δ3(y−x)

⇒ π(x, t) =
∂ϕ(x, t)

∂t
, (16)

and,

∂π(x, t)

∂t
= i [H, π(x, t)]

= i

[ˆ
d3y H (ϕ(y, t), π(y, t)) , π(x, t)

]
= i

ˆ
d3y [H (ϕ(y, t), π(y, t)) , π(x, t)]

=
i

2

ˆ
d3y

[
(∇yϕ(y, t))2 +m2 ϕ2(y, t), π(x, t)

]
= i

ˆ
d3y

(
∇yϕ(y, t) ·∇y [ϕ(y, t), π(x, t)] +m2ϕ(y, t) [ϕ(y, t), π(x, t)]

)
⇒ ∂π(x, t)

∂t
= ∇2ϕ(x, t)−m2 ϕ(x, t). (17)

Substituting (16) in the LHS of (17) we obtain the operator version of the Klein-Gordon equation
(6), (

� +m2
)
ϕ = 0.

As a result, the form of the solution will also remain same as that in the classical case i.e. (8)
except that now the amplitude or coefficient ϕ(ωk,k) is an operator, say ϕ̂(ωk,k). Redefining this
operator,

ϕ̂(ωk,k)√
(2π)52ωk

→ a(k),

we have the following standard form of the Klein-Gordon quantum field operator,

ϕ(x) =

ˆ
d3k√

(2π)3 2ωk

(
a(k) e−ik.x + a†(k) eik.x

)
. (18)
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The point of this redefining the operator ϕ(ωk,k) in terms of a(k) will become clear shortly. In
some texts, one can find an alternative form,

ϕ(x) =

ˆ
d3k (a(k) fk(x) + h.c.) , fk(x) =

e−ik.x√
(2π)3 2ωk

, (19)

where h.c. stands for “hermitian conjugate”. The conjugate momentum operator can then be
obtained,

π(x) = ϕ̇(x) =

ˆ
d3k√

(2π)3 2ωk

(
−iωk a(k) e−ik.x + h.c.

)
=

ˆ
d3k (−iωk a(k) fk(x) + h.c.) . (20)

N.B.: In the antiquated and incorrect way of thinking about the Klein-Gordon field, ϕ(x), as
single particle quantum mechanical wave function for a free relativistic point particle, the mode
functions fk(x) are regarded as the momentum eigenstate wave-functions,

fk(x) = 〈x
∣∣k(t)〉

which obey the orthonormality conditions wrt to the “Klein-Gordon” norm

(fk, fk′) ≡
ˆ
d3xf ∗k(x) i

←→
∂ 0 fk′(x) = δ3 (k − k′) , (21)

and,

(f ∗k, fk′) ≡
ˆ
d3xfk(x) i

←→
∂ 0 fk′(x) = 0.

Here
←→
∂ 0 is defined as a

←→
∂ 0b = a∂0b− b∂0a.

The operators a(k) and a†(k) are going to play a major role in what is to follow from here
on about the Hilbert space of states of the free scalar field theory. From the ETCCR’s (1413) it
follows that the operators ak and a†

k′ obey the following commutation relations,[
a(k), a†(k′)

]
= δ3(k − k′), (22)

[a(k), a(k′)] =
[
a†(k), a†(k′)

]
= 0. (23)

Homework: Using the ETCCR’s (14)-(13) derive the commutation relations (22)-(23)
for ak, a

†
k′.

(Hint: First express ak and a†
k′ in terms of the field and its conjugate momentum,

ϕ(x), π(x). Alternatively use the orthonormality conditions (21) to express ak, a
†
k′ as

Fourier coefficients of ϕ).

Plugging the “mode expansions” (19) & (20) of the free real scalar field and the conjugate momen-
tum field in the expressions for the energy/Hamiltonian operator H, (9) ,and linear momentum
operator P , (10) we get,

H =

ˆ
d3k ωk

1

2

(
a(k)a†(k) + a†(k)a(k)

)
, (24)

P =

ˆ
d3k k

1

2

(
a(k)a†(k) + a†(k)a(k)

)
. (25)
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Homework: Derive (24) and (25).

2.1 The free scalar field as a collection of infinite number of indepen-
dent harmonic oscillators

It is evident that the commutation relations (22) and (23) are those of an infinite set of simple
harmonic creation operators, a†(k) and annihilation operators, a(k) labeled by the continuous
index, k. This can be easily seen if one goes back to the discrete label case, i.e. consider N
decoupled (noninteracting) harmonic oscillators labeled by discrete index, say i or j, where i, j ∈
{1, . . . , N}. The i-th harmonic oscillator is described by its creation and annihilation operators,
namely a†i , ai. Their commutation relations is,[

ai, a
†
j

]
= δij,

[ai, aj] =
[
a†i , a

†
j

]
= 0.

Now if we go from the discrete indices to continuum labels by sending N → ∞ and replacing
i→ k, j → k′, and replacing the Kronecker delta by the Dirac delta,

δij → δ3(k − k′),

then these commutation rules become same as (22) and (23), i.e. those of a free real quantum
scalar in wave-vector space.

Similarly, consider the Hamiltonian of this system of N decoupled harmonic oscillators. The
Hamiltonian of a single harmonic oscillator of frequency ω and creation-annihilation operators a†, a
is

h =
1

2
ω
(
a†a+ aa†

)
. (26)

So the energy of Nsuch non-interacting harmonic oscillators labeled by the discrete index i will be
the sum of energy of individual oscillators:

H =
N∑
i=1

1

2
ωi

(
aia
†
i + a†iai

)
.

Again in the continuum version where N →∞ and the discrete label i is replaced by a continuum
label k, we have to replace the sum over i by the integral over k,

∑
i →
´
d3k

H =

ˆ
d3k

1

2
ωk

(
a(k) a†(k) + a†(k) a(k)

)
,

which is exactly what we have for the real scalar field Hamiltonian (24), with the continuous label
k being identified with a point in wave-vector space. Thus we have established that the free
real scalar quantum field is identical to an infinite set of decoupled (noninteracting)
harmonic oscillators, one located at every point in wave-vector space, k.
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2.2 The Hilbert space of states: Fock space basis (occupation number
basis)

Let’s work out the energy eigenstates of the free real quantum scalar field. Before we do that we
review some facts about the Hilbert space of states of a single harmonic oscillator with frequency
ω. The energy eigenstates of this single harmonic oscillator are labeled by the eigenstates of the
level number operator, N ≡ a†a because the Hamiltonian (26) can be expressed as,

h =
1

2
ω
(
a†a+ aa†

)
=

1

2
ω

a†a+
[
a, a†

]︸ ︷︷ ︸
=1

+a†a

 =

(
N +

1

2

)
ω.

Consider a state of the level number operator, say |n〉 defined by

N |n〉 = n |n〉 .

This is also an energy eigenstate and the energy eigenvalue of this state is,

En =

(
n+

1

2

)
ω.

Thus the level number n represents the energy level. From the commutation relation,
[
N, a†

]
= a†,

one realizes that the creation operator acts on the state |n〉 and increases the level number by one
unit,

a† |n〉 =
√
n+ 1 |n+ 1〉 ,

while the commutation relation [N, a] = −a implies that the annihilation operator lowers the level
number of a state by one unit,

a |n〉 =
√
n |n− 1〉 .

In particular when n = 0, one reaches a state of lowest level number, |0〉 which is annihilated by a

a |0〉 = 0.

Thus the level number n takes positive semidefinite integer values, n = 0, 1, 2, . . .. Thus the energy
spectrum is,

En =

(
n+

1

2

)
ω, n = 0, 1, 2, . . . ,

which bounded from below with the lowest level being of energy,

E0 =
1

2
ω.

The n-th energy eigenstate can be obtained by repeated applications of the n creation operators
on the vacuum:

|n〉 =

(
a†
)n

√
n!

∣∣0〉.
Since the the n-th energy eigenstate has an energy n ω more than the vacuum state,
the n-th energy level of a harmonic oscillator can be thought of as a state containing
n quanta (packets of energy) with energy ω. In particular the vacuum is devoid of
any quanta. In such an interpretation the level number n is also called the occupation
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number.

Next consider the case of a finite number, say N of decoupled harmonic oscillators labeled
by the discrete index, i. The Hamiltonian for this system is the sum of the Hamiltonian of the
individual oscillators,

H =
N∑
i=1

ωi

(
n̂i +

1

2

)
,

where
n̂i = a†iai

is the level number operator of the i-th oscillator. One can also define a total level number operator,

n̂ ≡
N∑
i=1

n̂i =
N∑
i=1

a†iai. (27)

Evidently,
[n̂i, n̂] = 0 = [n̂i, n̂j] , [n̂i, H] = 0

The ground state/ vacuum state is given by the direct product of the vacuum states of the individual
oscillators, ∣∣0〉 =

∣∣0〉1 ⊗ ∣∣0〉2 ⊗ . . .⊗ ∣∣0〉N . (28)

Evidently, the vacuum state is annihilated by either of the lowering operators,

ai
∣∣0〉 = 0, ∀i = 1, . . . , N. (29)

The energy eigenstates of this system is given by the direct product state(s) of the form:

|n1, n2, . . . , nN〉 ≡
∣∣n1〉1 ⊗

∣∣n2〉2 ⊗ . . .⊗
∣∣nN〉N =

(
a†1

)n1

√
n1!

∣∣0〉1 ⊗
(
a†2

)n2

√
n2!

∣∣0〉2 ⊗ . . .⊗
(
a†N

)nN
√
nN !

∣∣0〉N
⇒ |n1, n2, . . . , nN〉 =

(
a†1

)n1

√
n1!

(
a†2

)n2

√
n2!

. . .

(
a†N

)nN
√
nN !

∣∣0〉, (30)

i.e. a state where the oscillator with label 1 is in the level n1, the oscillator with label 2 is in the
level n2, so on. The ni’s are positive integers or zero. The total level number of this state is,

n =
N∑
i=1

ni. (31)

The energy of this state is evidently the sum of the energies of the individual oscillators,

En1,n2,...,nN =
N∑
i=1

(
ni +

1

2

)
ωi.

In particular the ground state energy is,

E0 =
N∑
i=1

1

2
ωi.
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We will use a condensed notation where we denote the state (30) by abstract dummy index, i

∣∣ {ni}〉 ≡ N∏
i=1

⊗
∣∣ni〉i.

In this case, the number ni is the excitation level of the i-th oscillator and the n =
∑

i ni
is the total level number. Alternatively we say there are ni quanta present in the i-th
oscillator.

Now let’s go over to the continuum version by replacing the discrete label i by a continuous
label k, i → k. The vacuum state

∣∣0〉 is by all the lowering operators corresponding arbitrary k,
so analogous to (29)

a(k)
∣∣0〉 = 0,∀k,

The occupation number or level number of this state is obtained by acting on the vacuum by the
number operator. The the total (level) number operator is obtained by replacing the discrete label
i by a continuous label k, i→ k in equation (27),

N̂ =

ˆ
d3k n̂(k), n(k) = a†(k) a(k).

Clearly then, n(k)d3k is now the occupation number of the oscillator labeled by the continuum
index k with frequency ωk. So n(k) is now the occupation number density (per unit volume
in k space) for the oscillators with wave-number in the range/interval k and k+dk. Acting with
this on the vacuum state, we obtain

N̂
∣∣0〉 =

ˆ
d3k a†(k) a(k)

∣∣0〉︸ ︷︷ ︸
=0

= 0
∣∣0〉.

Thus the vacuum state is an eigenstate of the number operator with eigenvalue 0 i.e. the free
quantum scalar vacuum state is devoid of any quanta (just like in the harmonic oscillator vacuum).

Next consider the “first excited states” i.e. those obtained by acting on the vacuum by a single
raising operator, e.g.,

a†(k)
∣∣0〉,

for some vector k. By analogy from the discrete N -oscillator case, we expect this to be a state
containing a single quantum. Let’s verify it by acting on this state by the occupation number
operator,

N̂ a†(k)
∣∣0〉 =

ˆ
d3q a†(q) a(q) a†(k)

∣∣0〉
=

ˆ
d3q a†(q)

([
a(q), a†(k)

]
+ a†(k) a(q)

) ∣∣0〉
=

ˆ
d3q a†(q)

(
δ3 (q − k) + a†(k) a(q)

) ∣∣0〉
= a†(k)

∣∣0〉
= 1 a†(k)

∣∣0〉. (32)
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Thus we have checked that the state a†(k)
∣∣0〉 is an eigenstate of the occupation number operator

with eigenvalue 1, i.e. a single quantum state.

Then the higher states are then obtained by acting repeatedly with the raising or creation
operators for many different k’s on this vacuum state analogous to the state (30).,

∣∣ni(k1), n2(k2), . . . , nl(kl)〉 ≡
(
a†(k1)

)n1

√
n1!

(
a†(k1)

)n1

√
n1!

. . .

(
a†(kN)

)nl
√
nN !

∣∣0〉. (33)

This state has the oscillator with wave-number k1 excited to level n1, the oscillator with wave-
number k2 excited to level n1 and so on and so forth. Alternatively in this state one has n1 quanta
with wavenumber k1, n2 quanta of wavenumber k2 etc. This can be easily verified by acting on
state (33) by the number density operator,

n̂(k)
∣∣ni(k1), n2(k2), . . . , nl(kl)〉 = a†(k) a(k)

(
a†(k1)

)n1

√
n1!

(
a†(k1)

)n1

√
n1!

. . .

(
a†(kl)

)nl
√
nl!

∣∣0〉
= a†(k)

([
a(k),

(
a†(k1)

)n1

√
n1!

(
a†(k1)

)n1

√
n1!

. . .

(
a†(kl)

)nl
√
nl!

]
+

(
a†(k1)

)n1

√
n1!

(
a†(k1)

)n1

√
n1!

. . .

(
a†(kl)

)nl
√
nl!

a(k)

)∣∣0〉
= a†(k)

[
a(k),

(
a†(k1)

)n1

√
n1!

(
a†(k1)

)n1

√
n1!

. . .

(
a†(kl)

)nl
√
nl!

] ∣∣0〉 (since a(k)
∣∣0〉 = 0)

=
l∑

i=1

a†(k)

(
a†(k1)

)n1

√
n1!

(
a†(k1)

)n1

√
n1!

. . .

[
a(k),

(
a†(ki)

)ni
√
ni!

]
. . .
∣∣(a†(kl))nl√

nl!

∣∣0〉
=

l∑
i=1

a†(k)

(
a†(k1)

)n1

√
n1!

(
a†(k1)

)n1

√
n1!

. . . ni

(
a†(ki)

)ni−1
√
ni!

[
a(k), a†(ki)

]
. . .

(
a†(kl)

)nl
√
nl!

∣∣0〉
=

l∑
i=1

a†(k)

(
a†(k1)

)n1

√
n1!

(
a†(k1)

)n1

√
n1!

. . . ni

(
a†(ki)

)ni−1
√
ni!

δ3(k − ki) . . .

(
a†(kl)

)nl
√
nl!

∣∣0〉
=

l∑
i=1

ni δ
3(k − ki)

(
a†(k1)

)n1

√
n1!

(
a†(k1)

)n1

√
n1!

. . .

(
a†(ki)

)ni
√
ni!

. . .

(
a†(kl)

)nl
√
nl!

∣∣0〉
=

(
l∑

i=1

ni δ
3(k − ki)

) ∣∣ni(k1), n2(k2), . . . , nl(kl)〉

So this is an eigenstate of the number density operator, with eigenvalue n =
∑l

i=1 ni δ
3(k − ki),

which is clearly a density (recall from electrostatics the density of a configuration of point charges
is given by a sum of Dirac delta functions). Further this state is also an eigenstate of the total
occupation number operator, N̂ =

´
d3k n̂(k), n(k) = a†(k) a(k),

N̂
∣∣ni(k1), n2(k2), . . . ni(ki), . . . nl(kl)〉 =

ˆ
d3k n̂(k)

∣∣ni(k1), n2(k2), . . . ni(ki), . . . nl(kl)〉

=

ˆ
d3k

(
l∑

i=1

ni δ
3(k − ki)

) ∣∣ni(k1), n2(k2), . . . ni(ki), . . . nl(kl)〉

= N
∣∣ni(k1), n2(k2), . . . ni(ki), . . . nl(kl)
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where

N =
l∑

i=1

ni

is total number level number of all the oscillators excited. Thus this is a state containing a total
of N quanta, out of which n1 quanta are of type k1, n2 quanta are of type k2 etc.

2.3 The particle (quanta) interpretation

In this section we show that the states (33) actually represent a state of N noninteracting point
particles of mass m out of which n1 of them have with linear momentum k1, n2 of them have
with linear momentum k2, and so on and so forth. For this purpose we will need to recall the
Hamiltonian expressed as a mode expansion (24)

H =

ˆ
d3k

1

2
ωk

(
a†(k) a(k) + a(k) a†(k)

)
. (34)

and the linear momentum operator expressed as a mode expansion,

P =

ˆ
d3k

1

2
k
(
a†(k) a(k) + a(k) a†(k)

)
Here n(k) is now the level number density of the oscillator labeled by the continuum index k

with frequency ωk. The reason n(k) is a density is because it is being integrated over d3k, i.e. the
level number is n(k)d3k. For the case of the free scalar quantum field theory, the continuum index

k is the wave-vector and the frequency is ωk =
√
k2 +m2. In this case, n(k) is interpreted as

the number density of particles of mass m and linear momentum k, or equivalently
n(k) d3k is the number of particles of mass m and linear momentum k. This is easily
demonstrated as follows. Consider first vacuum state,

∣∣0〉. This is an eigenstate of the energy and
momentum operators, as can be seen by acting with the energy and linear momentum operators
on it. First consider the energy operator, H

H
∣∣0〉 =

ˆ
d3k

1

2
ωk

(
a†(k) a(k) + a(k) a†(k)

) ∣∣0〉 = E0

∣∣0〉
where E0 is the vacuum energy1

E0 =

ˆ
d3k

1

2
ωk δ

3(0),

and,

P
∣∣0〉 =

ˆ
d3k

1

2
k
(
a†(k) a(k) + a(k) a†(k)

) ∣∣0〉 =

(ˆ
d3k k

1

2

)
δ3(0) = 0

∣∣0〉,
as the k-integrand is an odd function and the range is over (−∞,∞). Thus the vacuum state is
a simultaneous eigenstate of the occupation number operator, the Hamiltonian operator and the
linear momentum operator with eigenvalues 0, E0,0 respectively.

1More discussion on the divergent vaccum energy in Sec. 3
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Next consider the state: ∣∣Ψ〉 = a†(p)
∣∣0〉

This state has a single quantum as shown in (32),

N
∣∣Ψ〉 = 1

∣∣Ψ〉.
This is also an energy eigenstate and the energy eigenvalue can be obtained by acting with the H
operator in this state,

H
∣∣Ψ〉 =

ˆ
d3k

1

2
ωk

(
a†(k) a(k) + a(k) a†(k)

)
a†(p)

∣∣0〉
=

ˆ
d3k

1

2
ωk

(
a†(k) a(k) a†(p)

∣∣0〉+ a(k) a†(k) a†(p)
∣∣0〉)

= (ωp + E0)
∣∣Ψ〉.

Here we have use the algebraic simplifications,

a†(k) a(k) a†(p)
∣∣0〉 = a†(k)

[
a(k), a†(p)

] ∣∣0〉+ a†(k) a†(p)���
�a(k)
∣∣0〉

= a†(k) δ3(k − p)
∣∣0〉, (35)

and

a(k) a†(k) a†(p)
∣∣0〉 =

[
a(k), a†(k)

]
a†(p)

∣∣0〉+ a†(k) a(k) a†(p)
∣∣0〉

=
[
a(k), a†(k)

]
a†(p)

∣∣0〉+ a†(k)
[
a(k), a†(p)

] ∣∣0〉+ a†(k) a†(p)���
�a(k)
∣∣0〉

= δ3(0) a†(p)
∣∣0〉+ a†(k) δ3(k − p)

∣∣0〉, (36)

to arrive at this result,

H
∣∣Ψ〉 =

ˆ
d3k ωk

(
δ3(k − p) +

1

2

) ∣∣Ψ〉
= (ωp + E0)

∣∣Ψ〉.
Thus the energy of this state is ωp =

√
p2 +m2 above the vacuum:

Eψ − E0 = ωp.

The linear momentum of the state is obtained by acting on this state with the P and using
the simplifications (35), (36)

P
∣∣Ψ〉 =

ˆ
d3k

1

2
k
(
a†(k) a(k) + a(k) a†(k)

)
a†(p)

∣∣0〉
=

ˆ
d3k

1

2
k
(
2 a†(k) δ3(k − p) + δ3(0) a†(p)

) ∣∣0〉
= p a†(p)

∣∣0〉
= p

∣∣ψ〉.
As expected this is a momentum eigenstate with eigenvalue p.
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2.3.1 Particle interpretation

Since this state a†(p)
∣∣0〉 represents an excitation with energy E =

√
p2 +m2 and mo-

mentum p, it can be identified with a single particle of mass m and linear momentum
p. Similarly one can show that the state

(
a†(p)

)n ∣∣0〉 creates an excitation which has
energy, nE and momentum np, i.e. this state can be identified with a state containing
n free particles of mass m and linear momentum p. More generally, the state(

a†(p1)
)n1
(
a†(p2)

)n2
. . .
(
a†(pN)

)nN ∣∣0〉
represents an excitation of energy,

E = n1

√
p2
1 +m2 + n2

√
p2
2 +m2 + . . .+ nN

√
p2
N +m2

and momentum,
P = n1p1 + n2p2 + . . .+ nNpN .

Thus it can be identified with a state of n1 free particles of mass m and momentum
p1, n2 free particles of mass m and momentum p2, etc.

Homework: Prove the last statement.

The occupation number operator can then be interpreted as particle number operator.

3 Vacuum energy of the free scalar quantum field: UV

and IR divergences

The Hamiltonian of the free quantum scalar field is,

H =

ˆ
d3k

1

2
ωk

(
a†(k)a(k) + a(k)a†(k)

)
=

ˆ
d3k

1

2
ωk

(
2a†(k)a(k) +

[
a(k), a†(k)

])
=

ˆ
d3k ωk

(
a†(k)a(k) +

1

2
δ3(0)

)
.

The vacuum is an eigenstate of the Hamiltonian with the eigenvalue,

E0 = 〈0
∣∣H∣∣0〉 =

ˆ
d3k ωk

(
���

���
���:

0
〈0
∣∣a†(k)a(k)

∣∣0〉+ 〈0
∣∣1
2
δ3(0)

∣∣0〉)

= δ3(0)

(ˆ
d3k

1

2
ωk

)
.

Thus the vacuum energy is divergent on two accounts. First we have the divergent integral,´
d3k 1

2
ωk, which represents the sum total of ground state energy of oscillators of frequency ωk.

Since the ground state energy of a single harmonic oscillator is finite and increasing function of |k|,
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this energy of oscillators with large |k| will diverge. This integral diverges at large wave-numbers,
i.e. when k = |k| → ∞ as, ˆ

d3k
1

2
ωk ∼

ˆ ∞
dk k3 ∼ k4

because d3k ∼ k2dk while ωk ∼ k at large k. This quartic divergence as k →∞ is an example of
a UV divergence (ultraviolet divergence) because it stems from large k and since k = 2π

λ
, it means

small λ or, short wavelengths i.e. the ultraviolet end of the spectrum.

On the other hand the divergence arising from the Dirac delta function in k-space,

δ3(0)

has nothing to do with large k, but instead has to do with k → 0 i.e. infinitely long wave-
lengths and thus represents an Infrared divergence (IR divergence). What is the origin of this
IR divergence? It can be shown that the origin of this divergence is due to the fact that in the
interval |k| and |k + dk| contains an infinite number of modes. Let Ω(k) dk represent the number
of modes in the infinitesimal interval |k| and |k + dk|. Then one can show that in the limit of
infinite volume in physical space, V =

´
d3x, the density of states in k-space diverges,

lim
V→∞

Ω(k)→∞.

To see this we start not from infinite space i.e. R3 but instead a finite dimensional box with edges
L1, L2, L3 with periodic boundary conditions in all three directions2, and finally we will take the
limit V = L1L2L3 →∞. In such a finite dimensional box the oscillator modes (wave-vectors) are
discretized instead of being continuous,

k = n1
2π

L1

x̂ + n2
2π

L2

ŷ + n3
2π

L3

ẑ,

for three integers n1, n2, n3. Now the number of states in the range |k| and |k + dk| is then given
by the number of such discrete points which lie inside a spherical shell of radius |k| and thickness
d |k|. Now each point is characterized by 3 integers and the unit cell volume for such discrete points

is, (2π)3

L1L2L3
i.e.within this volume in k-space there exist just one allowed point i.e. wave-vector .

Then the number of points in the spherical shell is,

Ω(k) dk =
4π |k|2 d |k|(

(2π)3

L1L2L3

) ∼ V |k|2 d |k| .

Clearly this diverges when V → ∞. Such divergences arise strictly in the large volumes (large
system-size) limit, and such IR divergence can be cured by putting the field theory in a very large
but finite box. Then the vacuum energy becomes finite (the UV divergence can also be tamed) and
is an observable/measurable quantity known as the Casimir energy (it produces a famous effect,
in fact a force known as Casimir force).
at

How should we deal with the infinite vacuum energy of the free scalar field? One way to
deal with this problem is realizing that the vacuum energy is not a measurable quantity and

2This means we are considering space with the topology of a three torus, T 3 = S1 × S1 × S1 instead of R3.
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in experiments we only measure changes in the energy level when the system makes transitions
(jumps) from one energy level to another. Since all the energy levels of the free quantum scalar
field has identical divergent contribution, say E0

En = E ′n + E0,

the energy differences are rendered finite!

Em − En = E ′m +��E0 − E ′n −��E0 = E ′m − E ′n.

Here E ′n, E
′
m are the finite parts. For the generic state (33),

E =
l∑

i=1

ni ωki + E0.

3.1 Prescription to avoid vaccum energy: Normal ordering the Hamil-
tonian

The way we get around this divergence in the vacuum energy, sometimes referred to as the zero
point energy is by using a particular ordering of creation and annihilation operators known as
Normal ordering . Normal ordering prescription is defined by the rule that any product of
arbitrary number of creation and annihilation operators in an arbitrary sequence must be ordered
such that all the creation operators are to the left and all the annihilation operators
are to the right by using commutation rules and dropping the purely c-number pieces. We will
denote the normal ordered version of a given operator O by the punctuation mark colon - from
left and right,

: O :

For example, the operator a(k)a†(p) is not normal ordered because the creation operator is to the
right of the annihilation operator. So we change the order by using oscillator commutator algebra,

a(k)a†(p) =
[
a(k), a†(p)

]︸ ︷︷ ︸
δ3(k−p)

+a†(p)a(k)

= δ3(k − p) + a†(p)a(k).

Next we will drop the c-number piece, δ3(k − p) to get the normal ordered operator,

: a(k)a†(p) : = a†(p)a(k).

On the other hand, the operators,a†(p)a†(k), or a(p) a(k) are already normal ordered,

: a†(k)a†(p) : = a†(k)a†(p),

: a(p) a(k) : = a(p) a(k).

Next, consider the operator
O ≡ a(k1) a(k2) a

†(k3).
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The normal ordered version of this operator is,

: O := a†(k3) a(k1) a(k2).

To see how the operators O and : O : are different, we will use commutation rules between a, a†

to switch their orders in O as follows. First we switch the orders of the last two operators so that
the annihilation operator a(k3) is to the right,

O = a(k1) a(k2) a
†(k3)

= a(k1)
([
a(k2), a

†(k3)
]

+ a†(k3) a(k2)
)

= a(k1)
(
δ3 (k2 − k3) + a†(k3) a(k2)

)
= a(k1) δ

3 (k2 − k3) + a(k1) a
†(k3) a(k2).

Next we normal order the second term by using commutation rules to place a(k1) to the right

O = a(k1) δ
3 (k2 − k3) + a(k1) a

†(k3) a(k2)

= a(k1) δ
3 (k2 − k3) +

([
a(k1), a

†(k3)
]

+ a†(k3) a(k1)
)
a(k2)

= a(k1) δ
3 (k2 − k3) + δ3 (k1 − k3) a(k2) + a†(k3) a(k1) a(k2)

= a(k1) δ
3 (k2 − k3) + δ3 (k1 − k3) a(k2)+ : O :

Thus we see that the difference between O and its normal ordered version is,

O− : O : = a(k1) δ
3 (k2 − k3) + δ3 (k1 − k3) a(k2).

In this case this difference is not a big deal because both have the same vacuum expectation value,

〈0
∣∣O∣∣0〉 − 〈0∣∣ : O :

∣∣0〉 = 〈0
∣∣a(k1)

∣∣0〉︸ ︷︷ ︸
=0

δ3 (k2 − k3) + δ3 (k1 − k3) 〈0
∣∣a(k2)

∣∣0〉︸ ︷︷ ︸
=0

= 0.

However in general,
〈0
∣∣O∣∣0〉 6= 〈0∣∣ : O :

∣∣0〉
and only the normal ordered operator has vanishing vacuum expectation value3,

〈0
∣∣ : O :

∣∣0〉 = 0

3It is tempting to claim that a normal ordered operator annihilate the vacuum while the non-normal ordered
operator might not,

O
∣∣0〉 6= 0 =: O :

∣∣0〉.
This is almost always true but not universally true. For example, consider the operator, O = a†(k) a†(p). This is
already normal ordered, i.e. O =: O :, but it does not annihilate the vacuum,

: O :
∣∣0〉 6= 0.

However the vacuum expectation value definitely vanishes,

〈0
∣∣ : O :

∣∣0〉 = 〈0
∣∣O∣∣0〉 = 〈0

∣∣a†(k) a†(p)
∣∣0〉 = 0

because,

〈0
∣∣a†(k) =

(
a(k)

∣∣0〉)† = 0.
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because on the right the annihilation operators destroy the vacuum i.e. a
∣∣0〉 = 0, as well as on the

left the creation operators kill the vacuum,

〈0
∣∣a† =

(
a
∣∣0〉)† = 0.

Using the normal ordering prescription for the Hamiltonian operator (24),

: H : =

ˆ
d3k

1

2
ωk

(
: a†(k) a(k) : + : a(k)a†(k) :

)
=

ˆ
d3k

1

2
ωk

(
a†(k) a(k) + a†(k) a(k)

)
=

ˆ
d3k ωk a

†(k) a(k).

Now with the normal ordered Hamiltonian, we will find that the infinite constant, E0 disappears
and the vacuum has zero energy.

: H :
∣∣0〉 =

ˆ
d3k ωka

†(k) a(k)
∣∣0〉︸ ︷︷ ︸

=0

= 0.

Using the normal ordering prescription, the energy eigenvalues (33) of the states become finite,

E ′ =
l∑

i=1

nl ωki .

Normal ordering will come very handy when we discus interacting scalar quantum field theory by
means of perturbation theory and lead to a very important result, namely Wick’s theorem.

Homework: Find out the normal ordered form of the operator O ≡ a(k1) a
†(k2) a(k3) a

†(k4)
and work out the difference between O and : O :
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