
PH6418/ PH4618: Quantum Field Theory (Spring 2022)

Notes for Lecture 16: Correlation functions of the free
quantum scalar field∗

February 4, 2021

1 Correlation functions in free scalar field theory

The result of any measurement involving the scalar field theory can be in terms of vacuum expec-
tation values of a string of say nfield operators at ndifferent points in spacetime,

〈0
∣∣ϕ(x1) ϕ(x2) . . . ϕ(xn)

∣∣0〉
for arbitrary n. These are also called n-point correlation functions or simply n-point functions.
These are the fundamental quantities to be computed on the theory side to facilitate comparison
with experiments. Let’s compute some low order correlation functions in the free scalar field
theory. Even before we compute anything, just on the basis of the (discrete, internal) sign reflection
symmetry,

ϕ(x)→ −ϕ(x), ∀x,
we can say that odd order correlation functions vanish.

〈0
∣∣ϕ(x1) ϕ(x2) . . . ϕ(xn)

∣∣0〉 = 0, n = odd.

The proof is as follows. Under the sign reflection symmetry all physical observables including the
correlation functions must remain unchanged. Under sign reflection symmetry,

〈0
∣∣ϕ(x1) ϕ(x2) . . . ϕ(xn)

∣∣0〉 → (−)n 〈0
∣∣ϕ(x1) ϕ(x2) . . . ϕ(xn)

∣∣0〉
For odd n,

〈0
∣∣ϕ(x1) ϕ(x2) . . . ϕ(xn)

∣∣0〉 = −〈0
∣∣ϕ(x1) ϕ(x2) . . . ϕ(xn)

∣∣0〉,
which means,

〈0
∣∣ϕ(x1) ϕ(x2) . . . ϕ(xn)

∣∣0〉 = 0, n = odd.

So the first nontrivial thing to compute are the various two point correlation functions,

〈0
∣∣ϕ(x) ϕ(y)

∣∣0〉.
Since in quantum mechanics while taking products of two operators the ordering of operators is
important, we will work out each case in some detail in the following sections.

∗Typos and errors should be reported to sroy@phy.iith.ac.in
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1.1 Wightman functions

The Wightman functions are defined to be,

∆+(x, y) = 〈0
∣∣ϕ(x)ϕ(y)

∣∣0〉,
∆−(x, y) = 〈0

∣∣ϕ(y)ϕ(x)
∣∣0〉.

To evaluate the two point correlation function 〈0
∣∣ϕ(x)ϕ(y)

∣∣0〉, we will separately evaluate the ket,
ϕ(y)

∣∣0〉 and the bra 〈0
∣∣ϕ(x) and then take the product,

ϕ(y)
∣∣0〉 =

ˆ
d3p√

(2π)3 2ωp

(
a(p) e−ip.y + a†(p)eip.y

)
p0=ωp

∣∣0〉
=

ˆ
d3p√

(2π)3 2ωp

eip.y
∣∣
p0=ωp

a†(p)
∣∣0〉.

Taking the hermitian conjugate,

〈0
∣∣ϕ(x) =

(
ϕ(x)

∣∣0〉)† =

ˆ
d3k√

(2π)3 2ωk

e−ik.x
∣∣
k0=ωk

〈0
∣∣a(k).

Thus the Wightman function is

∆+(x, y) ≡ 〈0
∣∣ϕ(x)ϕ(y)

∣∣0〉 =

ˆ
d3k d3p

(2π)3 2
√
ωkωp

(
e−ik.x

∣∣
k0=ωk

eip.y
∣∣
p0=ωp

)
〈0
∣∣a(k)a†(p)

∣∣0〉
=

ˆ
d3k d3p

(2π)3 2
√
ωkωp

(
e−ik.x

∣∣
k0=ωk

eip.y
∣∣
p0=ωp

)
〈0
∣∣ [a(k), a†(p)

]︸ ︷︷ ︸
=δ3(k−p)

∣∣0〉
=

ˆ
d3k

(2π)3 2ωk

e−ik.(x−y)
∣∣
k0=ωk

. (1)

Then the reverse ordered Wightman function is,

∆−(x, y) ≡ 〈0
∣∣ϕ(y)ϕ(x)

∣∣0〉 = ∆+(y, x)

=

ˆ
d3k

(2π)3 2ωk

e−ik.(y−x)
∣∣
k0=ωk

=

ˆ
d3k

(2π)3 2ωk

eik.(x−y)
∣∣
k0=ωk

. (2)

In summary,

∆±(x, y) =

ˆ
d3k

(2π)3 2ωk

e∓ik.(x−y)
∣∣
k0=ωk

. (3)

The RHS of (3) might not appear Lorentz invariant but recall,

ˆ
d3k

2ωk

=

ˆ
d4k δ

(
k2 −m2

)
θ
(
k0
)
.
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So in Lorentz covariant notation we can express the Wightman functions as

∆±(x, y) =

ˆ
d4k

(2π)3
δ
(
k2 −m2

)
θ
(
k0
)
e∓ik.(x−y).

It is evident from their definition that the Wightman functions obey the Klein-Gordon equation,(
�x +m2

)
∆±(x, y) = 0.

1.1.1 Wightman function at spacelike separations

One can show that the Wightman function is non-vanishing when x and y are spacelike separated,
i.e. when (x− y)2 < 0. For such spacelike separated spacetime points, one can find an inertial
frame where x0 = y0 i.e. they are simultaneously occurring events. In such a case, the expression
for the Wightman function (1) becomes,

∆+(x, y) = ∆+ (x− y) =

ˆ
d3k

(2π)3 2ωk

eik(x−y)

=
m

4π2r
K1(m r), r = |x− y| (4)

∼
√
πmr

2

e−mr

4π2r2
. (5)

So the Wightman function decays exponentially fast for spacelike separations - signals cannot
propagate far outside the light-cone.

Homework: Prove (4) by performing the integration in the previous line around the
cut starting at im to i∞. (Hint: To perform the k-integration, use spherical polar co-
ordinates with the z-axis aligned with the vector (x− y)). Then prove (5) where “∼”
implies “asymptotically goes as” i.e. the Wightman functions decays exponentially
for spacelike separations i.e. outside the light-cone. (10 + 2 points)

This expression (4) for the Wightman function for spacelike separated points can be immedi-
ately generalized to that of an arbitrary reference frame by writing it in terms of Lorentz invariant

quantities such as the proper distance (length), s =
√
− (x− y)2:

∆+(x, y) =
m

4π2s
K1 (m s) . (6)

Similarly for timelike separations one can show that,

∆+(x, y) =
im

8 π τ
H

(2)
1 (mτ) . (7)

where τ =
√

(x− y)2 is the proper time.

Homework: Derive (7) by performing the integral (1). (3 points) [Hint: Since x
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and y are timelike separated, it is best to go to an inertial frame where x = y and
where the proper time, τ = x0 − y0. The perform the k−integral in spherical polar
coordinates using Mathematica. Finally you may need to use the identity,

K1(i x) = −π
2
H

(2)
1 (x).

This integral actually only converges if τ has a tiny negative imaginary part, i.e. τ−iε.
Similarly for ∆−(x, y) the integral converges only if τ → τ + iε.]

1.1.2 Wightman function at lightlike separations: Lightcone singularity

Finally we consider the case when the points x and y are lightlike separated, i.e. y lies on the
lightcone of x. There is no need to do this computation separately, one can simply deduce the
behavior by approaching the lightcone from spacelike or timelike separations i.e. taking s2 → 0
limit of the Wightman function for spacelike separated points (6) or τ 2 → 0 limit of the Wightman
function for timelike separated points (7). Either way we see that there is a branch point (square
root branch point) singularity in the Wightman function (distribution) as σ2 → 0 , σ2 = (x− y)2 .
For obvious reasons, this essential singularity is known as the light cone singularity of the Wight-
man function at null (or even coincident) separations.

1.2 Hadamard elementary function (distribution)

The Hadamard elementary function or the Hadamard distribution is defined by the symmetric
combination,

∆(1)(x, y) = 〈0
∣∣ {ϕ(x), ϕ(y)}

∣∣0〉 = ∆+(x, y) + ∆−(x, y)

=

ˆ
d3k

(2π)3 2ωk

(
e−ik.(x−y) + eik.(x−y)

)
k0=ωk

=

ˆ
d3k

(2π)3 ωk

cos (k. (x− y))|k0=ωk
.

In covariant notation,

∆(1)(x, y) =

ˆ
d4k

(2π)3
δ
(
k2 −m2

)
e−ik.(x−y).

By construction, it is symmetric in the spacetime argument,

∆(1)(x, y) = ∆(1)(y, x).

It is also evident that this is non-vanishing for spacelike separations i.e. when y is outside the
light-cone of x just as ∆±(x, y) are, and it also satisfies the Klein-Gordon equation,(

�x +m2
)

∆(1)(x, y) = 0.
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1.3 Schwinger function or Pauli-Jordan function

i∆(x, y) ≡ 〈0
∣∣ [ϕ(x), ϕ(y)]

∣∣0〉 = ∆+(x, y)−∆−(x, y)

=

ˆ
d3k

(2π)3 2ωk

(
e−ik.(x−y) − eik.(x−y)

)
k0=ωk

.

⇒ ∆(x, y) = −
ˆ

d3k

(2π)3 ωk

sin (k. (x− y))|k0=ωk
. (8)

Evidently when x0 = y0 this vanishes as it is an integral of an odd function of k over (−∞,∞).
This is expected because according the canonical commutation relations

[ϕ(x), ϕ(y)]x0=y0 = 0.

Only in the free theory [ϕ(x), ϕ(y)] is a c-number. In a general interacting theory [ϕ(x), ϕ(y)] is
an quantum operator i.e. q-number. Since it vanishes when x0 = y0, it immediately follows that
it vanishes for spacelike separations (x− y)2 < 0,

[ϕ(x), ϕ(y)](x−y)2<0 = 0.

(Homework: Prove this statement). This also makes sense, since for spacelike separations no
causal signal (moving with speed less than or equal to that of light) can be sent from x to y, and
hence the operators ϕ(x) and ϕ(x) represent independent measurements.

In covariant form,

∆(x, y) =
1

i

ˆ
d4k

(2π)3
δ
(
k2 −m2

)
ε
(
k0
)
e−ik.(x−y),

where ε(k0) is the sign function,

ε
(
k0
)

=


+1, k0 > 0

0, k = 0
−1, k0 < 0.

∆(x, y) too satisfies the Klein-Gordon equation,(
�x +m2

)
∆(x, y) = 0.

Clearly the Schwinger function is antisymmetric in the spacetime argument,

∆(x, y) = −∆(y, x).
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