Quantum Field Theory (PH-6418/ EP-4618): Final Exam

IITH/Spring 2022 /Instructor: Shubho Roy

May 2, 2022

Instructions: All questions are compulsory. This is an open notes exam - you may use
class notes or lecture notes, formula sheet etc. but use of books and online resources
are not allowed. Maximum score is 50, and the duration is 3 hours.

1. Show that the Feynman propagator for the free real quantum scalar field defined by
iAp(z,y) =0 (2" —4°) (0l w(@) ¢(y) [0) +6 (4 — =) (00(y) ¢(z)|0)
satisfies the Green’s function equation,
(Os +m?) Ap(z,y) = —0'(z — y).

(5 points)

Solution: Taking a time-derivative of the Feynman propagator,

0o (iA(x = y)) = 6 (2° = y°) (0] [p(2), 0 (y)][0) +0 (z° —4”) (0]¢(x) (y)[0) + 0 (y° — 2°) (0 ¢(y) (x)|0)

=0 vide ETCCR
=40 (xo — yo) 0l o(z) p(y)]0) + 0 (yo - 330) (0 (y) o(x)|0).

Taking another time derivative,
920 (is(x —y)) =6 (x° — %) (0][p(x), o(y)]10) +6 (z° — 4°) (0] ¢(x) ©(y) 10) + 0 (v° — 2°) (0 ©(y) G(x)|0)

=—i 6*(z—y) vide ETCCR
=—id*z—y)+ 6 (2° —y°) (0]$(x) o(y) |0) + 6 (° — 2°) (0 (y) G(x)|0). (1)

Next,
V2 Az —y)) =0 (2° —3°) (0 VZ(z) p(y) [0) + 0 (3° —2°) (0 p(y) V¢(x)]0). (2)
Subtracting (2) from (1) we get,

02 (iA(z —y)) = =i 6*(z — y) + 0 (2" — 3°) (0] Oap(x) o(y) 10) + 6 (4° — 2°) (0 ¢(y) Ouip(x)]0) .

Next, in the RHS of this equation, we use the equation of motion for the free field operator, namely,
(Dx + m2) o(x) = 0 to replace,
Oap(a) = —mPp(z),

and obtain,

02 (iA(x — y)) = =i 6* (x —y) —m® (6 (2° — 4°) (0] (x) p(y) [0) + 0 (3° — 2°) (0 ©(y) (x)|0))

=i Ap(z—y)




or,
(Dz + mz) (iA(x —y)) = —i 54(x —v),

or,

(O, +m?) Az —y) = —6*(z — y).

. Show that the state in the free real quantum scalar field theory,

(a'(p1)™ (al(p2))™ 0)

can be interpreted as a state containing n; + ns relativistic particles of mass m, out of which
ny have linear 3-momentum p; and ny of them have linear 3-momentum p,. Hint: Check
the excitation energy and momentum of this state compared to the vacuum state.

(5 points)
Solution: The Hamiltonian is,

H=FEy+ /d3k wi a' (k) a(k)
while the momentum is,

pP= /d3k ka'(k)a(k).

Here Ej is the divergent vacuum energy. We first work out the following algebraic simplification,
at (k) a(k) (a'(p1)) " (a'(p))"™ 0) = o (k) [a(k). (a'(21))" (a}(2)"] 10) + 4" (k) (al ()" (a"(p))" alherio)™
= al (k) [a(k), (' ()] (a'(p2))"™ [0} +a' (k) (a(p1)™ |a(k), (al (p2)"] I0)
= ma (k) 3(k = p1) (a' (1) (' (2))"™ [0) +al (k) (al(p1))™ n28(k — py) (a
(
3

n2 S

(a'(
) 611" (1 2)™ 0+ a6 — ) (o)™ ()™ 0
[ 16°(k — py) + ngd> (k —py ] (aT ) n1 ( (p )) 0) .

= n15

Using this result we get,

n n n 0 n
H (aT(Pl)) ' (aT(pQ)) ’ |0) = [EO + niwp, +n2wp2] (aT(Pl)) ' (aT(pQ)) ’ 0) ,
and,
ni na ni na
P (a'(p)))"" (a'(p2))" [0) = [mapy + naps] (a (p1))" (a¥(po)) ™ 10).
Thus this is a state with the energy, niwp, + nawp, and momentum nip; + napy above the vacuum. Since
the vacuum is interpreted to be a zero particle/ no particle state, this state can be interpreted as a state of
n; noninteracting particles of mass m and linear 3-momentum p; and ng noninteracting particles of mass m

and linear momentum p,.

. In the lectures I claimed the two point function (Wightman function) determines all higher
order correlation functions in theory of the free real quantum scalar field. Verify this claim
by proving this the following for the case of the 4-point correlation function, namely

(0]e(z) o(y) (2) (w)|0) = Au(z,y) Ap(z,w) + Ay (z,2) A (y,w) + Ay (z,w) A (y, 2)
(10 points)

Solution: To start with we need the expression,

a3
([0 = / ‘/(27r)§2wp

2

etpw |p0:up aT(p)|O>



and then we get

d3p ; ; d*p _ig. ;
plw)|oy = [ ——2 D 1oy €7, al @ a @)]0)+ [ 2 oy oy @
\/27r) 2wq 27r) 2wp \/(271' 2wq \/(27r 2wp
d3p i . . .
:/ e E| o e o al( )aT(p)|0>+/ e E| e
\/(27r)3 g \/(27r)3 2wp e P \/(27r)3 Qg \/(27r)3 2w e P [
d3 d3 . . d3 .
:/ q p elq.z|q0:w 61p.w|p0:w af(q) aT(p)|O>+/ 31’ efzp.(sz)‘ . |0>
\/(271,)3 2wq \/(271,)3 2wp q P (27!') QUJP pr=wp
d3q d3p . .
S P et €0, 0T (@) 0T (9)]0) + [0) A4 (210):
\/(27r) 2wq \/(27r) 2wp
Similarly taking a hermitian conjugate,
d3s d3r . .
(0f¢(2) ¢(v) = () (@)[0))" = A (y,2)(0| +/ ey €Y 0, (Olals) a(r).
\/(27r)3 2w \/(2%)3 2w

Thus, G(z,y,w,z) = (O|go(x py) e(z) ¢ |0) is given by the overlap,
d3p : ; 0
Glaw,2) = A (o) [ = 1 €7 e, WD + - 9) 010 24650
\/(27r ) 2uwq 4/ (2m)3 2 —~
3s d3r d3q . ) ) )
+/ 715.1} o_ efz'r.yl o 67,q.z} o ezp.w| o_ (0|a(s) a(r)aT(q) aT
\/(27r)32w3 V(@m)3 2wr 1/(27)° 2uq 1/ (2m)3 20 e TTer s P
3 3 X . 0
+/' d’s d°r 6_1s,x|50:w5 e—zr.y|T0:wr (0a 0AL(2,y)
V(2 2ua £/ (2m) 20
=A_(y,7) Ay(z,w)
d3s d3r a3 d? —is.x —ir iq.z ip.w
+/ q p Fleozw, € oy, €7 O =wgq e |p0:wp (0a(s) a(r)a’(q) al
\/(27r)3 2ws \/(zn)?’ 2w \/(271')3 2uq \/(271')3 2uwp
(3)
Now, we simplify,
(0]a(s) a(r)a’ (q) a' (p)]0) = (0]a(s) [a(r), a' ()] af (©)|0) + (O]a(s)a (q) a(r) at(p)[0)
= 5%(r — q)(0|a(s) o’ () |0) + (0]a(s)a’ (q) a(r) a' (p)|0)
= 8%(r — a)(0] [a(s),a' (8))|0) + (0] [a(s),a" ()] [a(r), ot ()] |0)
=8(r—q)6°(s —p) +8°(s — q) 6°(r — p).
Using this result back in (3), we get
Gz, yw,z) = A_(y,z) Ay (z,w)
d3s d3r d3 d3 . ) ) )
+/ q P —zsw‘so:ws e—zr.y|’r0:wr ezq.z}qozwq ez}mw|pozwp 53(,,, _ q) 53(8 —P)
\/(27r)3 2ws \/(27r)3 P \/(27r)3 2ugq \/(27r)3 2uwp
d38 dsT qu —1is.x —ir iq.z ip.w
+/ ’ }sU:ws e 'y|T0:wT e }qo:wq e'?: |po:wp 5%(s — q) 8*(r — p).
V@m)? 2ws \/(

27)3 2wy \/(271')3 2wq \/(271')3 2wp

— A (yx) Ap(ew)
Ay (z,y)
3 3
i a°p eﬂ'p.(sz)‘ / d°q e—ia-(y—-2)
(2m)3 2uwp pO=wp (2m)% 2wq 1"=wq
3 3

+ d°q e—iq(z—z) d’p e~ tp- (y— w)‘

(27) 2wq qO=wq (27)% 2wp pO=wp

= Ap(2,9) A (z,w) + Ar (@, w) A (y,2) + Ap(2,2) Ay (0,

w).



4. Consider nfree point particles of masses my, ms, ..., m,. Let p be the total energy-momentum
4-vector, p = (p1 + pa + ... + pn) . Show that,

pQZ(m1+m2+...+mn)2.

(4 points)
Solution: The Let (ESM, pf™) represent the CM frame 4-momentum of the i-the particle of mass m;.
Here

EEY = \fm? 1 (p0)?

K3

Then the total 4-momentum in the CM frame is,

n
peM = (Z EfM,())
i=1
and hence the invariant norm squared of the total 4-momentum is,

2= () (z EEM>

i=1
" 2
- (Z ym + <p9M>2)
i=1
" 2
i=1
since (piCM)2 > 0.

5. Show that the quantum particles obtained by quantizing the free real scalar field obey Bose
statistics, i.e. the multi-particle wave functions or a ket/vector representing multi-particle
states are symmetric under particle exchange.

(2 points)
Solution: Consider a n-particle state of the quantum scalar field, given by
(@1, s 20)) = (@1,1) . p(@n, £)]0)
which represents n particles, each of mass m localized at positions x1,...,x, at some given fixed

time t. If we swap the i-th located at x; and the j-th particle located at x;, i.e starting from the
state

W(azl, Ty Xy, ) = (21, ) (X t) (e, t). ..gp(azn,t)‘())
we create the state,
‘w(zcl, Ty Ty, ) = (X1, ) (g, t) (@, t). ..go(:cn,t)‘O)

But since at equal time ¢, the ¢(x,t)’s for different x’s commute, we can change their order
using the equal time commutation rule! In particular in this case we can restore the order of the
i-th and j-th particle. This proves that

‘w(acl,...,:Ei,...,mj,...,a:n» = |¢(:c1,...,acj,...,a:i,...,wn)%

i.e. the state is symmetric under the swap of the i-th and j-th particle. So the quanta of excitation
of scalar quantum fields obey Bose statistics (bosons).



6. In class I mentioned that boost symmetry does not lead to any new Noether charge(s) (unlike
translation symmetry and rotational symmetry which lead to energy-momentum 4-vector and
angular momentum 3-vector as conserved Noether charges). Prove this.

(2 points)

Solution: The boost charge via the Noether process is,
Joi = /dga: (l,o 700 _ i TOO) 7
where TH” is the Belinfante-Rosenfield symmetric stress tensor. Next by the definition of the CM,
/d% ' T = Xy, E.
and,
/d3x 20T = 20 /d3x TY = 20 pt,

where P?, E and the i-th component of relativistic linear momentum and relativistic energy (zeroth compo-
nent) of the total linear 4-momentum of the system. Thus the boost charge is,

J =P~ XL\ E
Since for an isolated system the CM moves in a straight line,
i

, , . P
Xiag = 6 a° + X =

Eac0+Xé

where X{ is a constant of integration (initial position of the CM). In particular this constant can be set to
zero using translational symmetry, X§ = 0. This gives,

J% =2"P" — X}ty E=0.

Thus boost symmetry does not lead to any new conserved charge.

7. Consider the theory of the free complex scalar field specified by the lagrangian density,
L= (0" (9,0) — m*d' .
A. Write down the equal time canonical commutation relations.

B. Work out the Hamiltonian and Linear momentum. (Hint: These can both be derived
from the canonical stress tensor)

C. Write down the solution for the field operator ® as a mode sum. (Hint: Resolve @
into real and imaginary parts & = &\/;PQ and then substitute the mode expansion for the

real scalar field)

D. What is the algebra obeyed by the mode coefficient operators of the positive energy
modes (say b(k)) and negative energy modes (say d'(k')) i.e. [b,b'], [d,d], [b,d'], [d,bT]

E. Write down the Hamiltonian and Linear momentum operator as momentum space mode
sum.

F. Particle interpretation: Show that the Hilbert space of states of the free quantum complex
scalar field is spanned by states of two kinds of noninteracting particles of mass m. (Hint:

5



Consider the two singly excited states, b'(k) |0), d'(k’) |0))

G. These two particles (b-particles and d-particles) have identical masses m and identi-
cal spin (zero). So what distinguishes these two types of particles?
(B+3+2+4+4+4+ 2= 22 points)

Solution: A. The conjugate momentum to @ is,

m— 25 _ ¢ :
0o
and the conjugate momentum of ®T is,
f = 88; = O,
So the ETCCR are,
(@) TW) ooy = [21(@). )| | =id*(@ )
| 2. ¥ W), =[2@.00)],_ =i,
and,
2(2). 2oy = [#1(@). 8 w)]| = [e@).2tw)] =0,
and
(@) By = [0, = D@00, =0
| b2, = |¥@. 8], =0 )], =0

B. The canonical stress tensor for the complex scalar is,

oL oL
Y v veT MY
0 a(aﬂcp)a ¢+78(auqﬂ)a¢ L

= (0"®)T 9D + 91D 9D — ¥ ((E)N@)Jf (O\®) — m2®' <1>> .

Then the Hamiltonian density is,
- .o 1
0% = T + & df — <(akq>) (O\®) — m2 ot <1>>
P 12
—9 ‘@‘ - (‘(I)‘ ~ VO — m? \q>|2>
|2 2, 9252
= ‘fb‘ + |Ve|" +m*[®]".
and the Hamiltonian is,

.12
H—/d3x@00—/d3w <‘q>‘ +\V<I>\2+m2<b|2>.



Similarly the momentum density is,

. . . . t
0% — d19'd + b ot — P Z (a%p) (9x®) — m20 cp)
. (chai@ +d az-qﬂ) .
and the momentum is,
P= —/d3a,- (¥'ve+é Vo).
C. Resolving @ into real and imaginary parts

_ ¥ + 12
V2

we see that the complex scalar lagrangian splits into two noninteracting free real scalar field La-
grangians

)

2 2

m” oo 1 2 M~
5 801+2(3<P2) 5 #2

The form of the solution to the two resultant free scalar field operators is,

3

7= o
3

=] a2

Then the complex scalar field is given by the mode sum,

B A3k
o) = [ T (s(k)

where we have defined,

_ 1 2 _
5—2(5801)

—ik.x —I—CLJ{(I{Z) eik.x>

)
kO=wy,

—ik.x —I—(I;(k) eik.x>

kO=wy,

efz'k.m + dT(k) eik.x)

KO=wyg,

_ a1 (k) +iag(k)

b(k) = NG ,
_al (k) +iab(k)
d' (k) = %

D. We start with the algebra of mode coefficients for ¢1, @2, namely,
(a1 (), al (k)] = [az(k), af (&) = 6% (s — "),
[a1(k), a1(K')] = [as(k), az(K')]

a1 (k). az(k)] = [ar (k), a} (k)] = |al (k). az(k")] = [a] (k). ab(k')| = 0.

Using these we determine,

I
—
S
—=—t
—
&y
~—
<
——t
—~
a7
~
[E—
I
L —
)
N —+
—
a
~—
S]
N —+
—~
a7
~—
[E——
I
=

[b(kz)7 bT(k’)] _ [al(k) +iag(k) a];(kz’) _ ag(k’)] .

V2 ’ V2



) )] = !“1"") ealk) il¥) ;;“5““’)] = 5 [an00), 0l )]+ [oath), ab )] = 9Pk,
o). a1 )] = |20 Pl o) j;ag("")_ = 5 [0k, 0 k)] — 2 [aath), abr)] =0,
b8, a9 = | 2% el i) ?/;“5““')_ = 5 [ k)0l k)] — 2 [anth), abr)] =0,

I (k) (K] = {al(k) j/% ag(k_)7 ay (k') 1\;% az(k:’)] _o,
) = [AE=Seah) 10— el

E.Hamiltonian and Linear momentum operator as momentum space mode sum:
H = Hlp1] + H|p]
= / d*kw, (a1 (k)al (k) + al (k)ar (k) ) + / @k wy, (az(k)ab (k) + al(R)az(k) )
while,
P = P[p1] + Plps]
_ / Pk (ar(k)a] (k) +af (k)a (k) ) + / Pk (ax(k)al (k) +af (k)as(k) ).
In terms of b, d modes:

; Lo (b+d) (b +d")  (bT+d)(b+d) (b—d)(d'—0b") (dF —b")(b—d)

alai + aja1 + aza9 + agaz = 9 + 9 - 9 — 9

=bb! +bTb+ dd' + dd

Thus,

H= /d3k: n (b(k:) b (k) + b (k) b(k)) + /d3k: Wk <d(k) d' (k) +d*(k)d(k)) ,
P= /d?’kk (b(k) bl (k) + b (k) b(k)) + /d3k: k (d(k) d' (k) + d' (k) d(k)) .

F. Particle interpretation: Show that the Hilbert space of states of the free quantum complex scalar
field is spanned by states of two kinds of noninteracting particles of mass m. (Hint: Consider the
two singly excited states, bT(k) |0), df(k’)|0)). Define the vacuum to be state annihilated by b, d,

b(k) |0) = d(K) |0) = 0.

Clearly this state has energy,
H|0) = 2E; |0)

where Ej is the divergent vacuum energy for a single free scalar field, and zero momentum:

P|0) =0.



Then the “singly excited” state
b'(k) [0)

have excitation energy wpg
(H = 2B0) V() |0) = [ %' wa b1 (B8 R) 0)
_ / P e b1 (k) [b(k). 11 (k)] [0)
= wy, ' (k) [0)
and 3-momentum k
Pbi(k)|0) = / 3k k' b (Kb(KbT (k) |0)
_ / KK B () [k, b1 (k)] [0)
= kbl (k)|0).
So this singly excited state represents a free spinless particle of mass m. Ditto for df (k') |0).

G. The distinction in the b and d type particles is in their U(1) charge. The U(1) charge is
given by the expression,

Q= i/d3az (qﬂcb—ciﬂcb) :
- / Pk (bT(k) b(k) — d' (k) d(k))
= N, — Ny.

Here Np, Ng are the number operators counting the b-particles and d-particles respectively. Clearly
a b-particle contributes 41 to the charge while a d-particle contributes a charge —1.



