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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 2.1: Basic Concepts

* Co-lecturer: Paul Liang. Original course co-developed 

with Tadas Baltrusaitis. Spring 2021 and 2022 editions 

taught by Yonatan Bisk. 
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Administrative Stuff
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Lecture Highlight Form

Ask questions about the lecture

Will be answered either online or at the next lecture

https://forms.gle/g6zovyaK2QwUvXW17

Deadline: Tuesday 11:59pm ET

(for Thursday’s lecture, the deadline is 

Thursday 11:59pm ET)

New form for each lecture

Posted on Piazza’s Resources section

Use your Andrew CMU email

You will need to login using this address

https://forms.gle/g6zovyaK2QwUvXW17
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Lecture Highlight Form - Segments

10:10am 10:40am 11:10am 11:30am

Segment 1 Segment 2 Segment 3

Scheduled 

beginning 

of the lecture

Scheduled 

end 

of the lecture

Segment 1 starts at 10:10am, even if the lecture starts slightly later.

Segment 3 ends whenever the lecture ends

Slides happening around the segment borders (+/- 5min of 

10:40am and 11:10am) can be included in either neighboring 

segment.
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Lecture Highlight Form - Grading

For each segment

▪ Two sentences (10+ words each; complete English sentences) 

describing two main points described in this segment

For the whole lecture

▪ Your main two take-aways from the lecture

▪ 10+ words each; complete English sentences

▪ Be as concrete as possible in your take-home messages

▪ Avoid generic summaries like: “This is about multimodal”

Each submission is worth 1 point

▪ Final grade is the sum of your top 16 submissions
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Reading Assignments – Piazza Posts

For each reading assignment, 2 instruction posts will be created:

Sent to everyone

Contains list of reading options

Sent separately to each study group

Link to personalized signup sheet

Post your summary as top-level

Post your follow-up posts

1

2
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Reading Assignments – Signup Sheet

Each study group has its own signup sheet:
Sign-up here for the 

paper option you 

would like to read 

and summarize

The details for 

the paper options 

are in the first 

Piazza post

A different tab for each 

reading assignment
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Reading Assignments – Weekly Schedule

Four main steps for the reading assignments

1. Monday 8pm: Official start of the assignment

2. Wednesday 8pm: Select your paper

3. Friday 8pm: Post your summary

4. Monday 8pm: End of the reading assignment
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Team Matching – Project Preference Form

Deadline: Today at 8pm!!

Every students should submit a form

Students on the waitlist are also 

encouraged to submit a form

A summary will be shared to help you 

find potential teammates
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Team Matching – Thursday Event

Thursday around 11am ET

(later part of the lecture)

Detailed instructions will be shared during lecture

Event optional for students who already have a full team
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Lecture Objectives

▪ Unimodal basic representations
▪ Visual, language and acoustic modalities

▪ Sensors, tables, graphs, sets

▪ Data-driven machine learning
▪ Representation learning

▪ Neural networks
▪ Score and loss functions

▪ Parameter optimization

▪ Backpropagation and gradient descent

▪ Optimization – practical guidelines
▪ Adaptive learning rate

▪ Bias, variance and regularization
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Unimodal Basic 

Representations



14

Unimodal Representation – Visual Modality

Dog ?

…

Binary classification 

problem

Color image

Each pixel
is represented 
in ℛ𝑑, d is the 
number of 
colors 
(d=3 for RGB)

In
p
u
t 

o
b
s
e
rv

a
ti
o
n
 𝒙

𝒊

label 𝑦𝑖 ∈ 𝒴 = {0,1}
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Unimodal Representation – Visual Modality

Dog

…

Cat

Duck

Pig

Bird ?

Each pixel
is represented 
in ℛ𝑑, d is the 
number of 
colors 
(d=3 for RGB)

-or-

-or-

-or-

-or-

label 𝑦𝑖 ∈ 𝒴 = {0,1,2,3, … }

In
p
u
t 

o
b
s
e
rv

a
ti
o
n
 𝒙

𝒊

Multi-class 

classification problem
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Unimodal Representation – Visual Modality

…
Puppy ?

label vector 𝒚𝒊 ∈ 𝒴𝑚 = 0,1 𝑚

In
p
u
t 

o
b
s
e
rv

a
ti
o
n
 𝒙

𝒊

Each pixel
is represented 
in ℛ𝑑, d is the 
number of 
colors 
(d=3 for RGB)

Dog ?

Cat ?

Duck? 

Pig ?

Bird ?

Multi-label (or multi-task) 

classification problem
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Unimodal Representation – Visual Modality

…
label vector 𝒚𝒊 ∈ 𝒴𝑚 = ℝ𝑚

In
p
u
t 

o
b
s
e
rv

a
ti
o
n
 𝒙

𝒊

Each pixel
is represented 
in ℝ𝑑, d is the 
number of 
colors 
(d=3 for RGB)

Weight ?

Height ?

Age ? 

Distance ?

Happy ?

Multi-label (or multi-task) 

regression problem
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Unimodal Representation – Language Modality

W
ri

tt
e

n
 l
a

n
g

u
a

g
e
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p
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k

e
n

 l
a
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g

u
a

g
e

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

In
p
u
t 
o
b
s
e
rv

a
ti
o
n
 𝒙

𝒊

…
“one-hot” vector

𝒙𝒊 = number of words in dictionary

Word-level 

classification

Sentiment ?
(positive or negative)

Part-of-speech ?
(noun, verb,…)

Named entity ?
(names of person,…)
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Unimodal Representation – Language Modality

W
ri
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e
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 l
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1

0

0

1

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

In
p
u
t 
o
b
s
e
rv

a
ti
o
n
 𝒙

𝒊

…
“bag-of-word” vector

𝒙𝒊 = number of words in dictionary

Document-level 

classification

Sentiment ?
(positive or negative)
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Unimodal Representation – Language Modality

W
ri

tt
e
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 l
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g
e
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0

0

1

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

In
p
u
t 
o
b
s
e
rv

a
ti
o
n
 𝒙

𝒊

…
“bag-of-word” vector

𝒙𝒊 = number of words in dictionary

Utterance-level 

classification

Sentiment ?
(positive or negative)
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Unimodal Representation – Acoustic Modality

Digitalized acoustic signal

• Sampling rates: 8~96kHz

• Bit depth: 8, 16 or 24 bits

• Time window size: 20ms

• Offset: 10ms

Spectogram

0.21

0.14

0.56

0.45

0.9

0.98

0.75

0.34

0.24

0.11

0.02In
p
u
t 
o
b
s
e
rv

a
ti
o
n
 𝒙

𝒊

Spoken word ?
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Unimodal Representation – Acoustic Modality

Digitalized acoustic signal

• Sampling rates: 8~96kHz

• Bit depth: 8, 16 or 24 bits

• Time window size: 20ms

• Offset: 10ms

Spectogram

0.21

0.14

0.56

0.45

0.9

0.98

0.75

0.34

0.24

0.11

0.02In
p
u
t 
o
b
s
e
rv

a
ti
o
n
 𝒙

𝒊

…

0.24

0.26

0.58

0.9

0.99

0.79

0.45

0.34

0.24

Spoken word ?

Voice quality ?

Emotion ?
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Unimodal Representation – Sensors

Sundaram et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019

The tactile sensor array 

(548 sensors) is 

assembled on a knitted 

glove uniformly distributed 

over the hand.
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Unimodal Representation – Sensors

Time series data across six-

axis Force-Torque sensor:

T × 6 signal.

Lee et al., Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks. ICRA 2019

Measure values internal to the system 

(robot); e.g. motor speed, wheel load, 

robot arm joint angles, battery voltage.

Time series data across 

current position and 

velocity of the end-effector:

T × 2d signal.

Next action
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Unimodal Representation – Tables

Bao et al., Table-to-Text: Describing Table Region with Natural Language. AAAI 2018

Table-to-text 

generation
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Unimodal Representation – Graphs

Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019

Tasks on graphs:

Node classification

Link prediction

…

Using graphs:

Knowledge graphs 

for QA

Social network for 

sentiment analysis

…
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Unimodal Representation – Sets

Zaheer et al., DeepSets. NeurIPS 2017, Li et al., Point Cloud GAN. arxiv 2018 

Set anomaly 

detection

Set expansion

Set completion

Point cloud 

classification

Point cloud 

generation

Point clouds

Sets
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Machine Learning –

Basic Concepts
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Simplest Classifier ?

Dataset

?
Basket

Dog

Kayak ?

-or-

-or-

Traffic light
-or-
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Simple Classifier: Nearest Neighbor

Training

?
Basket

Dog

Kayak ?

-or-

-or-

Traffic light
-or-
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Nearest Neighbor Classifier

▪ Non-parametric approaches—key ideas:

▪ “Let the data speak for themselves”

▪ “Predict new cases based on similar cases”

▪ “Use multiple local models instead of a single global model”

▪ What is the  complexity of the NN  classifier w.r.t training  set of N images 

and test  set of M images?

▪ at training time?

O(1)

▪ At test time?

O(N)
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Simple Classifier: Nearest Neighbor

Distance metrics

L1 (Manhattan) distance:

L2 (Eucledian) distance:

𝑑1 𝑥1, 𝑥2 =

𝑗

𝑥1
𝑗
− 𝑥2

𝑗

𝑑2 𝑥1, 𝑥2 = 

𝑗

𝑥1
𝑗
− 𝑥2

𝑗
2

Which distance metric to use?

First hyper-parameter!
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Definition of K-Nearest Neighbor

What value should we set K?

Second hyper-parameter!

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor
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Going beyond Classifiers…

Data-driven feature representation learning: Deep neural networks
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Basic Concepts:

Neural Networks
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Neural Networks – inspiration

▪ Made up of artificial neurons
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Neural Networks – score function

▪ Made up of artificial neurons

▪ Linear function (dot product) followed by a nonlinear activation function

▪ Example a Multi Layer Perceptron
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Basic Neural Network building block

Activation function 𝑓( )

Output

Input

Weighted sum

𝑊𝑥 + 𝑏

ො𝑦 = 𝑓(𝑊𝑥 + 𝑏)

Nonlinear activation function

Linear classifier 
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The linear classifier 

defines a decision plane: 

Interpreting a Linear Classifier

𝑊𝑥𝑖 + 𝑏 > 0

𝑓(𝑥)

𝑤

−𝑏

𝑤

𝑓(𝑥)

𝑓(𝑥)

𝑓(𝑥)

Output can be 

seen as distance 

to decision plane

𝑓 𝑥𝑖;𝑊, 𝑏 = 𝑊𝑥𝑖 + 𝑏
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Neural Networks – activation function

▪ 𝑓 𝑥 = tanh 𝑥

▪ Sigmoid - 𝑓 𝑥 = (1 + 𝑒−𝑥)−1

▪ Linear – 𝑓 𝑥 = 𝑎𝑥 + 𝑏

▪ ReLU
▪ Rectifier Linear Units

▪ Faster training - no gradient vanishing

▪ Induces sparsity

𝑓 𝑥 = max 0, 𝑥 ~log(1 + exp(𝑥) )
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Multi-Layer Feedforward Network

𝑊3

𝑊2
𝑊1

𝑦𝑖𝑥𝑖
𝑓2;𝑊2

𝑥 = 𝜎(𝑊2𝑥 + 𝑏2)

𝑦𝑖 = 𝑓 𝑥𝑖 = 𝑓3;𝑊3
(𝑓2;𝑊2

(𝑓1;𝑊1
𝑥𝑖))

𝑓3;𝑊3
𝑥 = 𝜎(𝑊3𝑥 + 𝑏3)

Score function

Activation functions (individual layers)

𝑓1;𝑊1
𝑥 = 𝜎(𝑊1𝑥 + 𝑏1)

How to integrate all the output scores?
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Neural Network – Loss Function

(or cost function or objective)

𝑓 𝑥𝑖;𝑊

2 (dog) ?

1 (cat) ?

0 (duck) ? 

3 (pig) ?

4 (bird) ?(Size: 32*32*3)

Image

98.7

45.6

-12.3 

12.2

-45.3

Scores

𝑥𝑖

Label

𝑦𝑖 = 2 (𝑑𝑜𝑔)

Loss

𝐿𝑖 = ?

Multi-class problem

How to assign 

only one number 

representing 

how “unhappy” 

we are about 

these scores?

The loss function quantifies the amount by which 

the prediction scores deviate from the actual values.

How to normalize the scores?
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First Loss Function: Cross-Entropy Loss

(or logistic loss)

Logistic function: 𝜎 𝑓 =
1

1 + 𝑒−𝑓

Logistic regression:
(two classes)

= 𝜎 𝑤𝑇𝑥𝑖

0.5

0

0

1

𝜎 𝑓

𝑓

𝑝 𝑦𝑖 = "𝑑𝑜𝑔" 𝑥𝑖; 𝑤)

➢Score function

= true
for two-class problem
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First Loss Function: Cross-Entropy Loss

(or logistic loss)

Logistic function: 𝜎 𝑓 =
1

1 + 𝑒−𝑓

𝑝 𝑦𝑖 𝑥𝑖;𝑊) =
𝑒
𝑓𝑦𝑖

σ𝑗 𝑒
𝑓𝑗

Softmax function:
(multiple classes)

Logistic regression:
(two classes)

= 𝜎 𝑤𝑇𝑥𝑖𝑝 𝑦𝑖 = "𝑑𝑜𝑔" 𝑥𝑖; 𝑤)
= true
for two-class problem

𝐿𝑖 = −log
𝑒
𝑓𝑦𝑖

σ𝑗 𝑒
𝑓𝑗

Softmax functionCross-entropy loss:

Minimizing  the 

negative log  likelihood.
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Second Loss Function: Hinge Loss

loss due to  

example i sum over all

incorrect labels

difference between the correct class

score and incorrect class score

(or max-margin loss or Multi-class SVM loss)



Optimization –

Learning model parameters
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Learning model parameters

We have our training data

▪ X = {𝒙1, 𝒙2, … , 𝒙𝑛} (e.g. images, videos, text etc.)

▪ Y = {𝑦1, 𝑦2, … , 𝑦𝑛} (labels)

We want to learn the W (weights and biases) that leads to best loss

argmin
𝑊

[𝐿 X, Y,𝑊 ]

The notation means find 𝑊 for which 𝐿 X, Y,𝑊 has the lowest value  
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Optimization
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Analytical gradient

If we know the function and it is differentiable

▪ Derivative/gradient is defined at every point in f

▪ Sometimes use differentiable approximations

▪ Some are locally differentiable

Examples:

𝑓(𝑥) =
1

1 + 𝑒−𝑥
;
𝑑𝑓

𝑑𝑥
= (1 − 𝑓 𝑥 )𝑓(𝑥)

𝑓 𝑥 = (𝑥 − 𝑦)2;
𝑑𝑓

𝑑𝑥
= 2(𝑥 − 𝑦)
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How to follow the gradient

Many methods for optimization

▪ Gradient Descent (actually the “simplest” one)

▪ Newton methods (use Hessian – second derivative)

▪ Quasi-Newton (use approximate Hessian)

▪ BFGS

▪ LBFGS

▪ Don’t require learning rates (fewer hyperparameters)

▪ But, do not work with stochastic and batch methods so rarely used to train modern 

Neural Networks

All of them look at the gradient

▪ Very few non gradient based optimization methods
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Parameter Update Strategies

Gradient descent:

𝜃(𝑡+1) = 𝜃𝑡 − 𝜖𝑘𝛻𝜃𝐿

New model 

parameters
Previous 

parameters
Learning rate

at iteration k

Gradient of our loss function

𝜖𝑘 = 1 − 𝛼 𝜖0 + 𝛼𝜖𝜏
Learning rate

at iteration k
Decay Initial learning rate

Decay learning rate linearly until iteration 𝜏



Neural Network Gradient
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Gradient Computation

𝑥

ℎ

𝑦

𝜕𝑦

𝜕𝑥

Chain rule:

𝑦 = 𝑓(ℎ)

ℎ = 𝑔(𝑥)

=
𝜕𝑦

𝜕ℎ

𝜕ℎ

𝜕𝑥



54

Optimization: Gradient Computation

𝑥

ℎ2

𝑦

Multiple-path chain rule:

ℎ3ℎ1

𝜕𝑦

𝜕𝑥
𝑦 = 𝑓(ℎ1, ℎ2, ℎ3)

ℎ𝑗 = 𝑔(𝑥)

=

𝑗

𝜕𝑦

𝜕ℎ𝑗

𝜕ℎ𝑗
𝜕𝑥
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Optimization: Gradient Computation

𝑥2

ℎ2

𝑦

Multiple-path chain rule:

ℎ3ℎ1

𝑥3𝑥1

𝜕𝑦

𝜕𝑥1
=

𝑗

𝜕𝑦

𝜕ℎ𝑗

𝜕ℎ𝑗
𝜕𝑥1

𝜕𝑦

𝜕𝑥2
=

𝑗

𝜕𝑦

𝜕ℎ𝑗

𝜕ℎ𝑗
𝜕𝑥2

𝜕𝑦

𝜕𝑥3
=

𝑗

𝜕𝑦

𝜕ℎ𝑗

𝜕ℎ𝑗
𝜕𝑥3

𝑦 = 𝑓(ℎ1, ℎ2, ℎ3)

ℎ𝑗 = 𝑔(𝒙)
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Optimization: Gradient Computation

𝒙

𝒉

𝑦𝛻𝒙 𝑦 =
𝜕𝑦

𝜕𝑥1
,
𝜕𝑦

𝜕𝑥2
,
𝜕𝑦

𝜕𝑥3

Vector representation:

𝑦 = 𝑓(𝒉)

𝒉 = 𝑔(𝒙)
𝛻𝒙 𝑦 =

𝜕𝒉

𝜕𝒙

𝑇

𝛻𝒉 𝑦

Gradient

“local” Jacobian
“backprop” Gradient

(matrix of size ℎ × 𝑥 computed 

using partial derivatives)
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Backpropagation Algorithm (efficient gradient)

Forward pass

▪ Following the graph topology, 

compute value of each unit

Backpropagation pass

▪ Initialize output gradient = 1

▪ Compute “local” Jacobian matrix 

using values from forward pass

▪ Use the chain rule:

Gradient “local” Jacobian

“backprop” gradient

= x
𝒙

𝒉𝟏

𝒛 𝒛 = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉2,𝑾𝟑)

𝒉1 = 𝑓(𝒙;𝑾𝟏)

𝒉𝟐 𝒉𝟐 = 𝑓(𝒉𝟏;𝑾𝟐)

𝑾𝟑

𝑾𝟐

𝑾𝟏

𝐿

𝑦

𝐿 = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦|𝒛)
(cross-entropy)

▪ Why is this rule important?
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Computational Graph: Multi-layer Feedforward Network

𝒉 = 𝑓(𝒙;𝑾)𝒉

Computational unit:

▪ Sigmoid unit:

𝒙
𝑾

* exp-1*

ℎ𝑗 = (1 + 𝑒−𝑊𝑗𝒙)−1

+1 1/x

𝒉

Differentiable “unit” function!
(or close approximation to compute “local Jacobian)

𝒙

𝒉𝟏

𝒛 𝒛 = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉2,𝑾𝟑)

𝒉1 = 𝑓(𝒙;𝑾𝟏)

𝒉𝟐 𝒉𝟐 = 𝑓(𝒉𝟏;𝑾𝟐)

𝑾𝟑

𝑾𝟐

𝑾𝟏

𝐿

𝑦

𝐿 = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦|𝒛)
(cross-entropy)

• Multiple input

• One output

• Vector/tensor



Optimization:

Some Practical Guidelines
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Interpreting learning rates
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Critical Points
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Detecting Saddles

One way to detect saddles:

▪ Calculate Hessian at point 𝑥

▪ If Hessian is indefinite you have a saddle for sure.

▪ If Hessian is not indefinite you really can’t tell.

“My loss isn’t changing”

▪ You are definitely close to a critical point

▪ You may be in a saddle point

▪ You may be in the local minima/maxima

▪ One trick: quickly check the surrounding

▪ Best practical trick if Hessian is not indefinite. 
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Adaptive Learning Rate

Key Idea: Let neurons who just started learning have huge learning rate. 

Adaptive Learning Rate is an active area of research:

▪ Adadelta

▪ RMSProp
cache = decay_rate * cache + (1 - decay_rate) * dx**2

x += - learning_rate * dx / (np.sqrt(cache) + eps)

▪ Adam
m = beta1*m + (1-beta1)*dx

v = beta2*v + (1-beta2)*(dx**2)

x += - learning_rate * m / (np.sqrt(v) + eps)
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Adaptive Learning Rate
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Bias-Variance

Problem of bias and variance

▪ Simple models are unlikely to find the solution to a hard problem, thus 

probability of finding the right model is low. 

Real

Not an issue these days!
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Bias-Variance

Problem of bias and variance

▪ Simple models are unlikely to find the solution to a hard problem, thus 

probability of finding the right model is low. 

▪ Complex models find many solutions to a problem, thus probability of 

finding the right model is again low. 

A big issue with 

deep learning!Real
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Parameter Regularization

Adding prior to the network parameters
▪ 𝐿𝑝 Norms

𝐿1 𝐿2 𝐿∞

Minimize: 𝐿𝑜𝑠𝑠 𝑥; 𝜃 + ԡ∝ ԡ𝜃



68

Structural Regularization

Lots of models can learn everything.

▪ Go for simpler ones. 

Take advantage of the structure and “invariances” present in 

each modality:

▪ CNNs: translation invariance

▪ LSTMs: sequential structure

▪ GRUs: sequential structure

Occam’s razor


