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Lecture Highlight Form

=
IMPORTANT: Please rea d the detailed instructions in Piazza's Resources section (Lecture D I I n = I d a I h l I rSd a at :I :I - 59 m I I
Highlights - Instructions.pdf”, in the Instructions for Course Assignments list) before filling - y -

out this form.

Z

tps:/piazza.com/cmu/fall2020/11777a/resources

<
)

ur email address (Imorency@andrew.cmu.edu) will be recorded when you submit this
‘orm. Not you? Swit 3

Use your Andrew CMU email
¢ You will need to login using this address

oot 0 e =y xeaon Pases ik it New form for each lecture

¢ Posted on Piazza’s Resources section

Next 30 mins - Main take home message (about 15-40 mins) *

You should start taking as soon as
(Optional) Next 30 mins - Any question? Please include slide number(s) th e ad m i n i St rative St u SS i S Ove r !

Contact us if you have any problem
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Reading Assignments — Weekly Schedule
Four main steps for the reading assignments
1. Monday 8pm: Official start of the assignment
2. Wednesday 8pm: Select your paper
3. Friday 8pm: Post your summary
4, Monday 8pm: Post your extra comments (5 posts)
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Team Matching Event — Today!

Today around 11am ET

(later part of the lecture)

» Detailed instructions will be shared during lecture

» Event optional for students who already have a full team
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AWS Credits

New procedure this semester!
= We need your AWS account info (deadline: Tuesday 9/13)
= Max $150 credit for the whole semester. No exception.
= More details will be sent on Piazza

Alternative: Amazon SageMaker Studio Lab
= Similar to Google Colab (link)
= NoO cost, easy access to JupyterLab-based user interface
= Access to G4dn.xlarge instances
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https://studiolab.sagemaker.aws/
https://colab.research.google.com/
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Lecture Objectives

= Dimension of heterogeneity

* I[mage representations
* |mage gradients, edges, kernels

= Convolution neural network (CNN)
= Convolution and pooling layers

= Visualizing CNNs
= Region-based CNNs
= Sequence modeling with convolution networks

= Team matching event
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Dimensions of
Heterogeneity



Heterogeneous Modalities

Information present in different modalities will often show
diverse qualities, structures and representations.

g Modality A h Homogeneous Heterogeneous
) Modalities Modalities
_ Modality B (with similar qualities) (with diverse qualities)
Examples: Images Text from Language 277
from 2 2 different and vision
cameras languages
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Dimensions of Heterogeneity Modality A Modality B

Element representations: A O
Discrete, continuous, granularity

Element distributions:
Density, frequency

Structure:
Temporal, spatial, latent, explicit

Information:
Abstraction, entropy H@) O
Noise:
Uncertainty, noise, missing data

QD
®—

Relevance:
Task, context dependence
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........

Modality Profile " Modality A | { Modality B

.......................................................................................................................................................................................................................................................................................................................................................................................................................

Element representations: A ®
Discrete, continuous, granularity

Element distributions:
Density, frequency

Structure:
Temporal, spatial, latent, explicit

Information:
Abstraction, entropy

Noise:
Uncertainty, noise, missing data

Relevance:
Task, context dependence
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Modality Profile

@ Element representations:
Discrete, continuous, granularity

Element distributions:
Density, frequency

@ Structure:

Temporal, spatial, latent, explicit

Information:
Abstraction, entropy

@ Noise:

Uncertainty, noise, missing data

Relevance:
Task, context dependence
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Image
Representations



How Would You Describe This Image?
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Object-Based Visual Representation
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Object Descriptors

Histograms of

Oriented Gradients Optical Flow
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ODbject Descriptors

Many approaches over the years...
Horizontal

and vertical < ||} ™ 0 0 grgz?;?\?s
gradients

m&@&

="l

Haar Wavelets

Templates tested
on the image

...... (i.e., convolution
---.- kernels)

Inspired by
visual cortex

Gabor filters
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Convolution Kernels

Convolution
kernels

Response maps
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ODbject Descriptors

Language Technologies Institute

Many approaches over the years...

Convolutional Neural Network (CNN)

Convolution Pooling Fully Fu ”y
Connected Con
! . ‘ \ >
InputImage Feature maps Feature maps Pooled Dog (0.1)
Feature aps Feature Maps Cocat(0.4)
. Deer(0.94) !
[ | ¢ Lion(0.2)
Data Source - Open Internet various sources Image Source - https://vin I m  via @vinod1975 W : H

More details about CNNs is coming...

. and we will also talk about visual
transformers in coming weeks...

And Images are more than a list or objects!




One representation, lots of tasks

person 99%
y y :
- person 74%
4 I

W\

https://github.com/facebookresearch/detectron2
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Facial expression analysis

. Face analysis framework
File Recarding settings AU settings  View

r Appearance features

~Geometry features

Orientation Pose

Tum: 3° X: -0 mm
Up/down 9° Y: -1mm
Tilt: -4° Z 382 mn
- - - -

r » Ty = -

Non rigid parameters

AU04

Al23

Al4s

rAction Units
“lassification

A2 -

AU1S -

AL28 -

X

Brow lowerer

Lip cormer puller | _

Lip comer depres

up ughtener

Up suck

Blink

Regression

AUO1 - Inner Brow raiser

AUO02 - Outer Brow raiser
ALO4 - Brow lowerer o
AU06 - Cheek raser [ 1]
AUDS - Nose wrinkler 13
AUT0 - Upper ip raiser T
AU12 - Lip corner putier | [T
AU14 - Dimpler =
AU1S - Lip cormer depres
AU17 - Chin Rasser

AU20 - Lip Stretcher -
AU25 - Lips part =

Pause|Stop|Reset]

[OpenFace: an open source facial behavior analysis toolkit, T. BaltrusSaitis et al., 2016]
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Articulated Body Tracking: OpenPose

See appendix for list of available tools
for automatic visual behavior analysis
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https://github.com/CMU-Perceptual-Computing-Lab/openpose

Convolutional
Neural Networks



Why using Convolutional Neural Networks?

Goal: building more abstract,
hierarchical visual representations

Objects
Key advantages:
1) Inspired from visual cortex
2) Encourages visual abstraction Parts
3) Exploits translation invariance
4) Kernels/templates are learned
5) Fewer parameters than MLP Edges/blobs
Input pixels
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Translation Invariance

2 Data Points — Which one is up?

@ @ » MLP can easily learn this task

(possibly with only 1 neuron!)

,@ What happens if the face is slightly translated?

» The model should still be able to classify it

» But CNNs are kernel-based, which helps with translation
Invariance and reduce number of parameters
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Predefined vs Learned Kernels

Predefined kernels Learned kernels
Convolutional Neural Network (CNN)
12¢33 |
L=y R Cpre | Ml | Holerl | cepart |~

classifier

"I S O

\
= e e T

Haar Wavelets T
|1k

]

(7

¢ )

I n 5 DN E AR AR | R
VGG-16 Convi_1 VGG-16 Conv3_2 VGG-16 Conv5_3

Gabor filters [> With CNNSs, the kernel values are

learned as model parameters
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Learned Fllters (aka ConVOIUtlon Kernels) https://distill.pub/2017/feature-visualization/
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https://distill.pub/2017/feature-visualization/

Convolution in 2D — Example

Convolution
kernel

Input image Response map
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Convolution as a Fully-Connected Network

Not efficient!

: T " 200 x 200 image
(mage) requires
. 40,000 X n parameters

(where n is size of kernel)

Output
I N \ | o And it may learn different kernels
e j‘g for different pixel positions
T Output: kernel responses o _
(response map) ®) Not translation invariant
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Convolutional Neural Layer

Input: all pixels

Example with
1D kernel:

Wi | Wy | W3

I Ay \
- fsi‘.
:h\ " r\‘ 1
(response map) Convolution
y =Wx kernel

Output: kernel responses
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Convolutional Neural Layer

Modification 1: Sliding window — Only apply
the kernel to a small region

Input: all pixels

Example with
1D kernel:

Wi | Wy | W3

Output: kernel responses
(response map)

y=Wx
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Convolutional Neural Layer

Modification 2: Same kernel applied to
all sliding windows

Input: all pixels

ORRRROROIOI
Example with

W 1D kernel:
Output Wi Wz W3

Zh
S ) ) )

Output: kernel responses

(response map)

y=Wx
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Convolutional Neural Layer

Modification 2: Same kernel applied to
all sliding windows

Wi Wy W3 0 0 O
0 W1 WZ coe O O O \ !
0 0 w 0 0 0 Example with
W= 5 5 1D kernel:
0 00 ws 00
Output \ 0 0 O e Wy w3y 0 W1 W W3
| ~- O 0 0 W]_ W2 W3
| 4 -,\.;“(\
\hye
(response map) Can be implemented efficiently on GPUs
y= Wx

W will be 3D: 3" dimension allows for multiple kernels

Language Technologies Institute 34




Convolutional Neural Network

Multiple convolutional layers

Allows the network to
learn combinations of
sub-parts, to increase
complexity

but how to encourage
abstraction and summarization?

Answer: Pooling layers

Language Technologies Institute




Pooling Layer

Response map subsampling:
Allows summarization of the responses

224x224x64 . .
112511264 Single depth slice
3
pool 111124
max pool with 2x2 filters
NG 7 | 8 and stride 2 6 | 8
l T 3 | 2 [EimEG 3| 4
1 | 2 IS
204 [ — Bl 112
<22, downsampling .
112 y
224
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Common architectures

Repeat several times:

= Start with a convolutional layer

* Followed by non-linear activation and pooling
End with a fully connected (MLP) layer

RELU RELU RELU RELU RELU RELU

COlNV lCOlNVl CONV lCOlNVl COlNV lCNVl EC
B =
'

car
= truck
airplane
Ship

I‘horse

=
=
E
=
=
=

T TR RN

T 0 LI
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Example: VGGNet model

Used for object classification task
= 1000-way classification task
= 138 million parameters

224 224 x 3 234 x 224 x Gid

Dl D = 204
ff 28 x 28 x 512 =T %512

ﬁ” x 14512 +, 1x1x4096 1x1x1000

ﬂ convolution4 RelLLT

A max pooling
fully connected4+Heal.l

| softmeax
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Residual Networks (ResNet)

weight layer
.F(xj l relu
weight layer

X

identity

ResNet (He et al., 2015)
 Upto 152 layers!
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Visualizing CNNs



Visualizing the Last CNN Layer: t-sne

Embed high dimensional data
points (i.e. feature codes) so . jue
that pairwise distances are v§
conserved in local
neighborhoods.
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Deconvolution

Layer Above

Reconstruction

“‘ Pooled Maps
--je
) 8 D N
B
Max Locations
“Switches”

Pooling

‘&

‘ Unpooled Rectiﬁed‘ ‘
Maps Feature Maps “
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CAM: Class Activation Mapping [CVPR 2016]

1 W-
%/ 8\1\' Australian

terrier
//// (::y W
11

V
\ 4/

<200
<Z0O0
=200
<Z00
&

N

Class Activation Mapping

Class
Activation

Map

‘ . (Australian terrier)

— ﬂ—'Whl*

c c Ak

Leam = E:’ka
k
w

linear combination
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Grad-CAM [iccv 2017]

Rectified Conv FC Layer
Feature Maps Activations

RelLU

Cc | Tiger Cat

Grad-CAM
global average pooling
P i
k= 122 9 L¢ = ReLU E;lCAk
Y%= 7 Ak Grad-cAM — 1t€ Qy,
N~ ~ ~
gradients via backprop linear combination
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Region-based CNNs



Object recognition

Input Image
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Object Detection (and Segmentation)

Input image DetectedObjectS

One option: Sliding window

Language Technologies Institute




Object Detection (and Segmentation)

Input image Region Proposals DetectedObjects

A better option: Start by Identifying hundreds of region
proposals and then apply our CNN object detector

How to efficiently identify region proposals?

Language Technologies Institute




Selective Search [Uijlings et al., IJCV 2013]

Image segmentation And then merge
(using superpixels) similar regions

Create box
region proposals

Language Technologies Institute




R-CNN [Girshick et al., CVPR 2014]

aeroplane? no.

person? yes.

tvmonitor? no.

» Select ~2000 region proposals =y Time consuming!
« Warp each region

* Apply CNN to each region s Time consuming!

Fast R-CNN: Applies CNN only once, and then extracts regions

Faster R-CNN: Region selection on the Conv5 response map
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Mask R-CNN: Detection and Segmentation

(He et al., 2018)
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Sequential Modeling
with Convolutional
Networks



Modeling Temporal and Sequential Data

EARA R AR RN

How to represent a video sequence?

One option: Recurrent Neural Networks
(more about this next week)
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3D CNN

3D CNN

Input as a 3D tensor \_ i )

(stacking video images)

First layer with 3D kernels

Language Technologies Institute




Time-Delay Neural Network

1 1D Convolution '—>
11

Sstl el Ll e L Ll ] A2

Alexander Waibel, Phoneme Recognition Using Time-Delay Neural Networks,
SP87-100, Meeting of the Institute of Electrical, Information and Communication
Engineers (IEICE), December, 1987,Tokyo, Japan.
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Temporal Convolution Network (TCN) [Lea et al., CVPR 2017]

"1 oo *e
C ‘ ‘ A
Decoder  uwsom

Conv

Upsample | hecoder

Encoder Fool
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Team Matching Event



Appendix: Tools for
Automatic visual
behavior analysis
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Automatic analysis of visual behavior

= Face detection

= Face tracking
= Facial landmark detecion

= Head pose

= Eye gaze tracking

» Facial expression analysis
* Body pose tracking
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Face Detection — Multi-Task CNN [SPL 2016]

Stage 1: candidate windows are produced through a fast Proposal Network

Stage 2: refine these candidates through a Refinement Network

Stage 3: produces final bounding box and facial landmarks position
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Existing software (face detection)

= Multi-Task CNN face detector
= https://kpzhang93.qgithub.io/MTCNN face detection alignment/index.html

= OpenCV (Viola-Jones detector)
= dlib (HOG + SVM)
= http://dlib.net/

* Tree based model (accurate but very slow)
= http://www.ics.uci.edu/~xzhu/face/

= HeadHunter (accurate but slow)
= http://markusmathias.bitbucket.orq/2014 eccv face detection/

= NPD
=  http://www.cbsr.ia.ac.cn/users/scliao/projects/npdface/
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http://dlib.net/
http://www.ics.uci.edu/~xzhu/face/
http://markusmathias.bitbucket.org/2014_eccv_face_detection/
http://www.cbsr.ia.ac.cn/users/scliao/projects/npdface/

Facial Landmarks: Constrained Local Neural Field

Response
map . h Non-Uniform

Joint Optimization
Continuous Conditional Neural Fielj@n / \

OJ0) ©O
®® © © ®® ,

Input image
with detected face

Region of .
Interest
ol
>

Language Technologies Institute



Existing software (facial landmarks)

= OpenFace: facial features
= https://github.com/TadasBaltrusaitis/OpenFace
= Chehra face tracking
= https://sites.google.com/site/chehrahome/
= Menpo project (good AAM, CLM learning tool)
= http://www.menpo.org/
= IntraFace: Facial attributes, facial expression analysis
= http://www.humansensing.cs.cmu.edu/intraface/
= OKAO Vision: Gaze estimation, facial expression
= http://www.omron.com/ecb/products/mobile/okao03.html (Commercial software)

= VisageSDK
= http://www.visagetechnologies.com/products/visagesdk/
= (Commercial software)
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https://github.com/TadasBaltrusaitis/OpenFace
https://sites.google.com/site/chehrahome/
http://www.humansensing.cs.cmu.edu/intraface/
http://www.omron.com/r_d/coretech/vision/okao.html
http://www.visagetechnologies.com/products/visagesdk/

Facial expression analysis

. Face analysis framework
File Recarding settings AU settings  View

r Appearance features

~Geometry features

Orientation Pose

Tum: 3° X: -0 mm
Up/down 9° Y: -1mm
Tilt: -4° Z 382 mn
- - - -

r » Ty = -

Non rigid parameters

AU04

Al23

Al4s

rAction Units
“lassification

A2 -

AU1S -

AL28 -

X

Brow lowerer

Lip cormer puller | _

Lip comer depres

up ughtener

Up suck

Blink

Regression

AUO1 - Inner Brow raiser

AUO02 - Outer Brow raiser
ALO4 - Brow lowerer o
AU06 - Cheek raser [ 1]
AUDS - Nose wrinkler 13
AUT0 - Upper ip raiser T
AU12 - Lip corner putier | [T
AU14 - Dimpler =
AU1S - Lip cormer depres
AU17 - Chin Rasser

AU20 - Lip Stretcher -
AU25 - Lips part =

Pause|Stop|Reset]

[OpenFace: an open source facial behavior analysis toolkit, T. BaltruSaitis et al., 2016]
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Existing Software (expression analysis)

= OpenFace: Action Units
= https://github.com/TadasBaltrusaitis/OpenFace

= Shore: facial tracking, smile detection, age and gender detection
= http://www.iis.fraunhofer.de/en/bf/bsy/fue/isyst/detektion/

= FACET/CERT (Emotient API): Facial expression recognition

= http://imotionsglobal.com/software/add-on-modules/attention-tool-facet-
module-facial-action-coding-system-facs/ (Commercial software)

= Affdex

= http://www.affectiva.com/solutions/apis-sdks/
= (commercial software)
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https://github.com/TadasBaltrusaitis/OpenFace
http://www.iis.fraunhofer.de/en/bf/bsy/fue/isyst/detektion/
http://imotionsglobal.com/software/add-on-modules/attention-tool-facet-module-facial-action-coding-system-facs/
http://www.affectiva.com/solutions/apis-sdks/

Gaze Estimation — Eye, Head and Body

—— Body
-==-=9 Head
. ....’. E\/O
Head=+20 degree
- Gaze

Image from Hachisu et al (2018). FaceLooks: A Smart Headband for Signaling Face-to-Face Behavior. Sensors.
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Existing Software (head gaze) @ @ %

= OpenFace

= https://github.com/TadasBaltrusaitis/OpenFace
= Chehra face tracking

= https://sites.google.com/site/chehrahome/

= \Watson: head pose estimation
= http://sourceforge.net/projects/watson/
= Random forests

= http://www.vision.ee.ethz.ch/~gfanelli/head pose/head forest.html
* (requires a Kinect)

= |ntraFace
= http://www.humansensing.cs.cmu.edu/intraface/
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https://github.com/TadasBaltrusaitis/OpenFace
https://sites.google.com/site/chehrahome/
http://sourceforge.net/projects/watson/
http://www.vision.ee.ethz.ch/~gfanelli/head_pose/head_forest.html
http://www.humansensing.cs.cmu.edu/intraface/

Existing Software (eye gaze)

* OpenFace: gaze from a webcam
= https://github.com/TadasBaltrusaitis/OpenFace
= EyeAPI: eye pupil detection
= http://staff.science.uva.nl/~rvalenti/
= EyeTab
= https://www.cl.cam.ac.uk/research/rainbow/projects/eyetab/

= OKAO Vision: Gaze estimation, facial expression

= http://www.omron.com/ecb/products/mobile/okao03.html (Commercial
software)
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https://github.com/TadasBaltrusaitis/OpenFace
http://staff.science.uva.nl/~rvalenti/
https://www.cl.cam.ac.uk/research/rainbow/projects/eyetab/
http://www.omron.com/r_d/coretech/vision/okao.html

Articulated Body Tracking: OpenPose
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Existing Software (body tracking)

= OpenPose
= https://github.com/CMU-Perceptual-Computing-Lab/openpose

= Microsoft Kinect
= http://www.microsoft.com/en-us/kinectforwindows/

= OpenNI
= http://openni.org/
= Convolutional Pose Machines
= https://github.com/shihenw/convolutional-pose-machines-release
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https://github.com/CMU-Perceptual-Computing-Lab/openpose
http://www.microsoft.com/en-us/kinectforwindows/
http://openni.org/
https://github.com/shihenw/convolutional-pose-machines-release

Visual Descriptors

Edge detection  Histograms of Oriented Gradients

Gabor Jets
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Existing Software (visual descriptors)

= OpenCV: optical flow, gradient, Haar filters...

= SIFT descriptors

= http://blogs.oregonstate.edu/hess/code/sift/
= dlib — HOoG

= http://dlib.net/

= OpenFace: Aligned HoG for faces
= https://github.com/TadasBaltrusaitis/CLM-framework
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http://blogs.oregonstate.edu/hess/code/sift/
http://dlib.net/
https://github.com/TadasBaltrusaitis/CLM-framework

