

Language Technologies Institute

Multimodal Machine Learning Lecture 3.1: Unimodal Representations (Part 2) Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk

Administrative Stuff

Lecture Highlights - Reminder

Last 20+ mins - Su *	immary - At least two points (full sentences , numbered) 2	points
Your answer		
Your personal take numbered) *	aaways from the lecture - Two takeaways (full sentences, 2)	points
Your answer		
(Optional) Any que	estion? Please include slide number(s).	
Your answer		
(Optional) Sugges	tions and Comments	
Your answer		
. copy of your respon	ses will be emailed to Imorency@andrew.cmu.edu.	
Submit	rough Google Forms.	
This f	orm was created inside of Carnegie Mellon University. <u>Report Abuse</u> Google Forms	
		D

IMPORTANT: Be sure you received an email after your submission (or revisit the form and your answers should be there).

Pre-proposals – Due tomorrow 9/15

- Everyone should part of submission!
- Main content:
 - Dataset and research problem
 - Initial research ideas
 - Teammates and resources

Submit via Canvas before 8PM ET

If you are still looking for teammates, you should still submit a pre-proposals. We will help you!

teammates = # research ideas

Do not plan to have only 1 research task for the whole team

Select dataset that enables multiple research ideas

Do not plan to create a new dataset for this course

Baseline models should exist for your dataset

Week 3 reading assignment was posted

- 1. Wednesday 8pm: Select your paper
- 2. Friday 8pm: Post your summary
- 3. Monday 8pm: End of the reading assignment

Preproposal deadline: Wednesday 8pm

If you registered late, you still need to complete Week 2 Reading Assignment. Contact us on Piazza New procedure this semester!

- We need your 12-Digit AWS Account IDs (deadline: Today 8pm)
- Max \$150 credit for the whole semester. No exception.
- More details in the Piazza post

Alternative: <u>Amazon SageMaker Studio Lab</u>

- Similar to Google Colab (<u>link</u>)
- No cost, easy access to JupyterLab-based user interface
- Access to some GPU instances

Language Technologies Institute

Multimodal Machine Learning Lecture 3.1: Unimodal Representations (Part 2) Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk

- Region-based CNNs
 - Object detection and recognition
- Word representations
 - Distributional hypothesis
 - Word vector space
- Sentence Modeling
 - Recurrent neural networks
- Language models and pretraining
- Syntax and language structure
 - Recursive neural networks

Region-based CNNs

Convolutional Neural Network

Translation invariance is enabled by the pooling layer

Carnegie Mellon Universit

ImageNet

Objects already centered, ready for training

Hierarchy similar to FrameNet (originally designed for words)

Object Detection (and Segmentation)

?

Input image

Detected Objects

One option: Sliding window

Object Detection (and Segmentation)

A better option: Start by Identifying hundreds of region proposals and then apply our CNN object detector

How to efficiently identify region proposals?

Selective Search [Uijlings et al., IJCV 2013]

R-CNN [Girshick et al., CVPR 2014]

- Warp each region
- Apply CNN to each region Time consuming!

Fast R-CNN: Applies CNN only once, and then extracts regions **Faster R-CNN:** Region selection on the Conv5 response map

Word Representations

Simple Word Representation

Written language

Masterful! By Antony Witheyman - January 12, 2006 Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner. 0 of 4 people found this review helpful

 $|x_i|$ = number of words in dictionary

What is the meaning of "bardiwac"?

- He handed her her glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac.
- The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.
- \Rightarrow bardiwac is a heavy red alcoholic beverage made from grapes

How to learn (word) features/representations?

Distribution hypothesis: Approximate the word meaning by its surrounding words

Words used in a similar context will lie close together

Instead of capturing co-occurrence counts directly,

predict surrounding words of every word

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j} | w_t)$$

Geometric interpretation

- row vector X_{dog} describes usage of word *dog* in the corpus
- can be seen as coordinates of point in *n*-dimensional Euclidean space Rⁿ

	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

co-occurrence matrix M

劎

Distance and similarity

- illustrated for two dimensions: get and use: x_{dog} = (115, 10)
- similarity = spatial proximity (Euclidean distance)
- location depends on frequency of noun $(f_{dog} \approx 2.7 \cdot f_{cat})$

Two dimensions of English V-Obj DSM

勜

Angle and similarity

- direction more important than location
- normalise "length"
 ||X_{dog}|| of vector
- or use angle α as distance measure

Two dimensions of English V-Obj DSM

How to learn (word) features/representations?

勜

Carnegie Mellon University

If we would have a vocabulary of 100 000 words:

- While learning these word representations, we are actually building a vector space in which all words reside with certain relationships between them
- Encodes both syntactic and semantic relationships
 - This vector space allows for algebraic operations:

Vec(king) – vec(man) + vec(woman) ≈ vec(queen)

Vector space models of words: semantic relationships

Trained on the Google news corpus with over 300 billion words

Carnegie Mellon Universit

Word-level representations: Word2Vec (Google, 2013) https://code.google.com/archive/p/word2vec/ Glove (Stanford, 2014) https://nlp.stanford.edu/projects/glove/ FastText (Facebook, 2017) https://fasttext.cc/ Sentence-level representations: ELMO (Allen Institute for AI, 2018) https://allennlp.org/elmo BERT (Google, 2018) https://github.com/google-research/bert RoBERTa (Facebook, 2019) https://github.com/pytorch/fairseq

Word representations are contextualized using all the words in the sentence.

> More details later in this lecture and during Week 5

LIWC: Language Inquiry & Word Count

Manually created dictionaries for different topics and categories:

- Function words: pronouns, preposition, negation...
- Affect words: positive, negative emotions
- Social words: family, friends, referents
- Cognitive processes: Insight, cause, ...
- Perceptual processes: Seeing, hearing, feeling
- Biological processes: *Body, health/illness,...*
- Drives and needs: Affiliation, achievement,
- Time orientation: past, present, future
- Relativity: motion, space, time
- Personal concerns: work, leisure, money, religion
- Informal speech: swear words, fillers, assent,...

LIWC can encode individual words or full sentences.

https://liwc.wpengine.com/

Commercial software. Contact TAs in advance if you would like to use it.

Carnegie Mellon Universit

Other Lexicon Resources

Lexicons

- General Inquirer (Stone et al., 1966)
- OpinionFinder lexicon (Wiebe & Riloff, 2005)
- SentiWordNet (Esuli & Sebastiani, 2006)
- LIWC (Pennebaker)

Other Tools

- LightSIDE
- Stanford NLP toolbox

30

- IBM Watson Tone Analyzer
- Google Cloud Natural Language
- Microsoft Azure Text Analytics

勞

Carnegie Mellon Universit

Sentence Modeling and Recurrent Networks

Sentence Modeling: Sequence Prediction

🐞 Language Technologies Institute

Carnegie Mellon University

RNN for Sequence Prediction

劎

Carnegie Mellon Universit

Feedforward Neural Network

Recurrent Neural Networks

$$L = \sum_{t} L^{(t)}$$

$$L^{(t)} L^{(t)} = -logP(Y = y^{(t)} | z^{(t)})$$

$$z^{(t)} z^{(t)} = matmult(h^{(t)}, V)$$

$$W$$

$$h^{(t)} = tanh(Ux^{(t)} + Wh^{(t-1)})$$

Recurrent Neural Networks - Unrolling

Same model parameters are used for all time parts.

Sentence Modeling: Sequence Label Prediction

RNN for Sequence Prediction

劎

Language Models

Sentence Modeling: Language Model

★★★★★ Masterful!

By Antony Witheyman - January 12, 2006 Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

0 of 4 people found this review helpful

Next word?

Language Model Application: Speech Recognition

arg max P(wordsequence | acoustics) = wordsequence

 $\underset{wordsequence}{\operatorname{arg\,max}} \frac{P(acoustics \mid wordsequence) \times P(wordsequence)}{P(acoustics)}$

 $\underset{wordsequence}{arg max} P(acoustics | wordsequence) \times P(wordsequence)$

RNN for Language Model

瘚

RNN for Sequence Representation (Encoder)

Bi-Directional RNN

Carnegie Mellon University

Pre-training and "Masking"

(short-lived) ELMO was a bi-directional pretrained language model

RNN-based for Machine Translation

劵

Carnegie Mellon University

Encoder-Decoder Architecture

勞

And There Are More Ways To Model Sequences...

Self-attention Models (e.g., BERT, RoBERTa)

🚸 Language Technologies Institute

Syntax and Language Structure

Syntax and Language Structure

Sentence **Phrase-structure Grammar** Noun Verb phrase phrase 2 Syntactic parse tree Noun phrase Part-of-speech tags Adjective Noun Noun Verb Alice ate yellow squash

What can you tell about this sentence?

Syntax and Language Structure

What can you tell about this sentence?

"Like" can be a verb or a preposition

- I like/VBP candy.
- Time flies like/IN an arrow.

"Around" can be a preposition, particle, or adverb

- I bought it at the shop around/IN the corner.
- I never got around/RP to getting a car.
- A new Prius costs around/RB \$25K.

Language Ambiguity

Language Syntax – Examples

劎

Carnegie Mellon University

Recursive Neural Network

How to Model Syntax with RNNs?

We could use Part-of-Speech tags.

Carnegie Mellon Universit

Tree-based RNNs (or Recursive Neural Network)

Carnegie Mellon University

Recursive Neural Unit

Pair-wise combination of two input features

Recursive Neural Network for Sentiment Analysis

Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, EMNLP 2013

Carnegie Mellon Universit

Recursive Neural Network for Sentiment Analysis

Classification of a sentence using tree-based compositionality of words

Demo: http://nlp.stanford.edu/sentiment/

Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, EMNLP 2013

Stack Recurrent Network

Dyer et al., Transition-Based Dependency Parsing with Stack Long Short-Term Memory, 2015

Stack Recurrent Network

Dyer et al., Transition-Based Dependency Parsing with Stack Long Short-Term Memory, 2015

Carnegie Mellon Universit