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Lecture 3.1: Unimodal Representations (Part 2)

* Co-lecturer: Paul Liang. Original course co-developed 

with Tadas Baltrusaitis. Spring 2021 and 2022 editions 

taught by Yonatan Bisk



Administrative Stuff
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Lecture Highlights - Reminder

IMPORTANT: Be sure you received an email after your submission 

(or revisit the form and your answers should be there).
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Pre-proposals – Due tomorrow 9/15 

▪ Everyone should part of submission!

▪ Main content:

▪ Dataset and research problem

▪ Initial research ideas

▪ Teammates and resources

Submit via Canvas before 8PM ET
If you are still looking for teammates, you should 

still submit a pre-proposals. We will help you!



5

Some Clarifications about Course Project

# teammates   =  # research ideas

Do not plan to have only 1 research task for the whole team

Select dataset that enables multiple research ideas

New dataset

Do not plan to create a new dataset for this course

Baseline models should exist for your dataset
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Upcoming Deadlines

Week 3 reading assignment was posted 

1. Wednesday 8pm: Select your paper

2. Friday 8pm: Post your summary

3. Monday 8pm: End of the reading assignment

Preproposal deadline: Wednesday 8pm

If you registered late, you still need to complete 

Week 2 Reading Assignment. Contact us on Piazza
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AWS Credits – TODAY at 8pm

New procedure this semester!

▪ We need your 12-Digit AWS Account IDs (deadline: Today 8pm)

▪ Max $150 credit for the whole semester. No exception.

▪ More details in the Piazza post

Alternative: Amazon SageMaker Studio Lab

▪ Similar to Google Colab (link)

▪ No cost, easy access to JupyterLab-based user interface

▪ Access to some GPU instances

https://studiolab.sagemaker.aws/
https://colab.research.google.com/
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Lecture Objectives

▪ Region-based CNNs

▪ Object detection and recognition

▪ Word representations

▪ Distributional hypothesis

▪ Word vector space

▪ Sentence Modeling

▪ Recurrent neural networks

▪ Language models and pretraining

▪ Syntax and language structure

▪ Recursive neural networks



Region-based CNNs
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Convolutional Neural Network

Translation invariance is enabled by the pooling layer  
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ImageNet

Objects already centered, ready for training

Hierarchy similar to FrameNet (originally designed for words)
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Object Detection (and Segmentation)

Input image Detected Objects

One option: Sliding window

?
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Object Detection (and Segmentation)

Input image Detected ObjectsRegion Proposals

A better option: Start by Identifying hundreds of region 

proposals and then apply our CNN object detector

How to efficiently identify region proposals?
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Selective Search [Uijlings et al., IJCV 2013]

Image segmentation
(using superpixels)

And then merge 

similar regions

Create box 

region proposals
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R-CNN [Girshick et al., CVPR 2014]

• Select ~2000 region proposals 

• Warp each region

• Apply CNN to each region

Fast R-CNN: Applies CNN only once, and then extracts regions

Time consuming!

Time consuming!

Faster R-CNN: Region selection on the Conv5 response map
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Word 

Representations
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Simple Word Representation
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𝒙𝒊 = number of words in dictionary
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What is the meaning of “bardiwac”?

▪ He handed her her glass of bardiwac.

▪ Beef dishes are made to complement the bardiwacs.

▪ Nigel staggered to his feet, face flushed from too much bardiwac.

▪ Malbec, one of the lesser-known bardiwac grapes, responds well to
Australia’s sunshine.

▪ I dined off bread and cheese and this excellent bardiwac.

▪ The drinks were delicious: blood-red bardiwac as well as light, sweet
Rhenish.

 bardiwac is a heavy red alcoholic beverage made from grapes

19
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How to learn (word) features/representations?

Distribution hypothesis: Approximate the 

word meaning by its surrounding words

Words used in a similar context will lie close together

He was walking away because …

He was running away because …

Instead of capturing co-occurrence counts directly, 

predict surrounding words of every word
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Geometric interpretation

▪ row vector xdog

describes usage of

word dog in the

corpus

▪ can be seen as

coordinates of point in 

n-dimensional 

Euclidean space Rn

21
Stefan Evert 2010
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Distance and similarity  

▪ illustrated for two 

dimensions: get and 

use: xdog = (115, 10)

▪ similarity = spatial 

proximity (Euclidean 

distance)

▪ location depends on 

frequency of noun 

(fdog  2.7 · fcat)

Stefan Evert 2010
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Angle and similarity  

▪ direction more 

important than 

location

▪ normalise “length” 

||xdog|| of vector

▪ or use angle  as 

distance measure

Stefan Evert 2010


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x W1 W2 y

[0; 0; 0; 0;….; 0; 0; 1; 0;…; 0; 0] [0; 1; 0; 0;….; 0; 0; 0; 0;…; 0; 0]

[0; 0; 0; 1;….; 0; 0; 0; 0;…; 0; 0]

[0; 0; 0; 0;….; 1; 0; 0; 0;…; 0; 0]

[0; 0; 0; 0;….; 0; 0; 0; 0;…; 0; 1]

walking

He was walking away because …

He was running away because …

He

Was

Away

because

How to learn (word) features/representations?

300d 300d

1
0

0
 0

0
0

d

1
0

0
 0

0
0

d

Word2vec algorithm: https://code.google.com/p/word2vec/
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How to use these word representations

Classic NLP:

Walking:        [0; 0; 0; 0;….; 0; 0; 1; 0;…; 0; 0]

Running:          [0; 0; 0; 0;….; 0; 0; 0; 0;…; 1; 0]

Goal:

Walking:         [0,1; 0,0003; 0;….; 0,02; 0.08; 0,05]

Running:        [0,1; 0,0004; 0;….; 0,01; 0.09; 0,05]

Similarity = 0.0

Similarity = 0.9

If we would have a vocabulary of 100 000 words:

100 000 dimensional vector

300 dimensional vector

x W1

300d

1
0
0
 0

0
0
d

Transform: x’=x*W
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Vector space models of words

While learning these word representations, we are 

actually building a vector space in which all words 

reside with certain relationships between them

This vector space allows for algebraic operations:

Vec(king) – vec(man) + vec(woman) ≈ vec(queen)

Encodes both syntactic and semantic relationships
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Vector space models of words: semantic relationships

Trained on the Google news corpus with over 300 billion words
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Word Representation Resources

Word-level representations:

Word2Vec (Google, 2013)

https://code.google.com/archive/p/word2vec/

Glove (Stanford, 2014)

https://nlp.stanford.edu/projects/glove/

FastText (Facebook, 2017)

https://fasttext.cc/

Sentence-level representations:

ELMO (Allen Institute for AI, 2018)

https://allennlp.org/elmo

BERT (Google, 2018)

https://github.com/google-research/bert

RoBERTa (Facebook, 2019)

https://github.com/pytorch/fairseq

Word representations 

are contextualized 

using all the words in 

the sentence.

More details later 

in this lecture and 

during Week 5

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://allennlp.org/elmo
https://github.com/google-research/bert
https://github.com/pytorch/fairseq
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Lexicon-based Word Representation

LIWC: Language Inquiry & Word Count

Manually created dictionaries for different topics and categories:
▪ Function words: pronouns, preposition, negation…

▪ Affect words: positive, negative emotions

▪ Social words: family, friends, referents

▪ Cognitive processes: Insight, cause, …

▪ Perceptual processes: Seeing, hearing, feeling

▪ Biological processes: Body, health/illness,…

▪ Drives and needs:  Affiliation, achievement, …

▪ Time orientation: past, present, future

▪ Relativity: motion, space, time

▪ Personal concerns: work, leisure, money, religion …

▪ Informal speech: swear words, fillers, assent,…

LIWC can encode individual words or full sentences.

https://liwc.wpengine.com/
Commercial software. Contact TAs in 

advance if you would like to use it.

https://liwc.wpengine.com/
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Other Lexicon Resources

Lexicons
• General Inquirer (Stone et al., 1966)
• OpinionFinder lexicon (Wiebe & Riloff, 2005)
• SentiWordNet (Esuli & Sebastiani, 2006)
• LIWC (Pennebaker)

Other Tools

• LightSIDE

• Stanford NLP toolbox

• IBM Watson Tone Analyzer

• Google Cloud Natural Language

• Microsoft Azure Text Analytics
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Sentence Modeling

and Recurrent Networks
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Sentence Modeling: Sequence Prediction

Part-of-speech ?
(noun, verb,…)Prediction

Ideal for anyone with an interest in disguises

POS? POS? POS? POS? POS? POS? POS? POS?

Sentiment ?
(positive or negative)
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RNN for Sequence Prediction

P(word is 

positive)

Ideal for anyone disguises

𝑳 =
𝟏

𝑵
෍

𝒕

𝑳(𝒕) =
𝟏

𝑵
෍

𝒕

−𝒍𝒐𝒈𝑷(𝒀 = 𝒚(𝒕)|𝒛(𝒕))

P(word is 

positive)

P(word is 

positive)

P(word is 

positive)

What is the loss?
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Recurrent Neural Network

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)
𝑽

𝑼

𝐿(𝑡)

𝑦(𝑡)
𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙(𝑡))

Feedforward Neural Network
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Recurrent Neural Networks

𝑾

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)
𝑽

𝑼

𝐿(𝑡)

𝑦(𝑡)
𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙 𝑡 +𝑾𝒉(𝑡−1))

𝐿 =෍

𝑡

𝐿(𝑡)
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Recurrent Neural Networks - Unrolling

𝒙(1)

𝒛(𝟏)

𝒉(1)
𝑽

𝑼

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝒉(2)

𝐿(2)

𝑦(2)

𝑾

𝒙(3)

𝒛(3)

𝒉(3)

𝐿(3)

𝑦(3)

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)
𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙 𝑡 +𝑾𝒉(𝑡−1))

Same model parameters are used for all time parts.

𝐿 =෍

𝑡

𝐿(𝑡)
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Sentence Modeling: Sequence Label Prediction

Sentiment ?
(positive or negative)

Prediction

Ideal for anyone with an interest in disguises

Sentiment label?
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RNN for Sequence Prediction

P(sequence is 

positive)

Ideal for anyone disguises

𝑳 = 𝑳(𝑵) = −𝒍𝒐𝒈𝑷(𝒀 = 𝒚(𝑵)|𝒛(𝑵))What is the loss?
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Language Models
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Sentence Modeling: Language Model

Next wordPrediction 

Ideal for anyone with

Next word?

an interest in disguises
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Language Model Application: Speech Recognition

)(

)()|(
maxarg

acousticsP

cewordsequenPcewordsequenacousticsP

cewordsequen



Language model

=)|(maxarg acousticscewordsequenP
cewordsequen

)()|(maxarg cewordsequenPcewordsequenacousticsP
cewordsequen


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RNN for Language Model

1-of-N encoding 

of “START”
1-of-N encoding 

of “dog”

1-of-N encoding 

of “on”
1-of-N encoding 

of “nice”

P(next word is 

“dog”)
P(next word is 

“on”)
P(next word is 

“the”)
P(next word is 

“beach”)
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RNN for Sequence Representation (Encoder)

1-of-N encoding 

of “START”
1-of-N encoding 

of “dog”

1-of-N encoding 

of “on”
1-of-N encoding 

of “nice”

Sequence

Representation
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Bi-Directional RNN

𝑍𝐴

Sequence

Representation

𝑍𝐵

𝑍𝐴𝑍𝐵
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Pre-training and “Masking”

“The” “dog” MASKED “the”

P(masked word 

is “on”)

“beach”

(short-lived) ELMO was a bi-directional pretrained language model
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RNN-based for Machine Translation 

1-of-N encoding 

of “le”
1-of-N encoding 

of “chien”

1-of-N encoding 

of “la”
1-of-N encoding 

of “plage”

1-of-N encoding 

of “sur”

Le chien sur la plage The dog on the beach
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Encoder-Decoder Architecture

1-of-N encoding 

of “le”
1-of-N encoding 

of “chien”

1-of-N encoding 

of “la”
1-of-N encoding 

of “plage”

1-of-N encoding 

of “sur”

Context

What is the loss function?
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And There Are More Ways To Model Sequences…

Self-attention Models
(e.g., BERT, RoBERTa)
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Syntax and 

Language Structure
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Syntax and Language Structure

What can you tell about this sentence?

VerbNoun Adjective

Alice   ate    yellow       squash

Noun

Noun phrase

Verb phrase

Sentence

Noun 

phrase

1 Part-of-speech tags

2 Syntactic parse tree

Phrase-structure Grammar
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Syntax and Language Structure

What can you tell about this sentence?

VerbNoun Adjective

Alice   ate    yellow       squash

Noun 1 Part-of-speech tags

2 Syntactic parse tree

Phrase-structure Grammar

Dependency Grammar

subject

object

attribute

3

Noun phrase

Verb phrase

Sentence

Noun 

phrase
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Ambiguity in Syntactic Parsing

“Like” can be a verb or a preposition

▪ I like/VBP candy.

▪ Time flies like/IN an arrow.

“Around” can be a preposition, particle, or adverb

▪ I bought it at the shop around/IN the corner.

▪ I never got around/RP to getting a car.

▪ A new Prius costs around/RB $25K.

52
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Language Ambiguity

SS

NP NP

NP NPNP  

VP VP

V VN N

N N N NDet Det

Salesmen   sold    the   dog    biscuits Salesmen    sold the  dog   biscuits
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Det Noun Verb Det Noun Prep Det Noun  

The   boy    saw  the   dog in     the  park

S

VP

NP NP

Det N V Det N  
The boy saw the dog

The     boy     saw     the   dog

Language Syntax – Examples 

Subject

Object

Det.

Det.

Dependency ParsingConstituency Parsing

Part of Speech tagging

ROOT

How to take advantage of syntax when modeling 

language with neural networks?
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Recursive Neural 

Network
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How to Model Syntax with RNNs?

S

VP

NP NP

Det N V Det N  
The boy likes the cars

The  boy likes  the cars

?

We could use Part-of-Speech tags.
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Tree-based RNNs (or Recursive Neural Network)

S

VP

NP NP

Det N V Det N  
The boy likes the cars The  boy likes  the cars
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Recursive Neural Unit

Pair-wise combination of two input features

W

300d

6
0
0
d X

1
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t
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3
0
0
d

Activation function
3
0
0
d

3
0
0
d

The   boy
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Recursive Neural Network for Sentiment Analysis

Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, EMNLP 2013
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Recursive Neural Network for Sentiment Analysis

Classification of a sentence using tree-based compositionality of words

Demo: http://nlp.stanford.edu/sentiment/

Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, EMNLP 2013

http://nlp.stanford.edu/sentiment/
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Stack Recurrent Network

Dyer et al., Transition-Based Dependency Parsing with Stack Long Short-Term Memory, 2015

stack of partially 
constructed 

dependency subtrees

buffer of words 
remaining to be 

processed

stack representing the 
history of actions taken 

by the parser
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Stack Recurrent Network

Dyer et al., Transition-Based Dependency Parsing with Stack Long Short-Term Memory, 2015

P
o
p

P
u
s
h


