

Language Technologies Institute

Multimodal Machine Learning

Lecture 3.2: Multimodal Representations (Part 1) Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yanatan Bisk. Some slides from Jeffrey Girard.

Administrative Stuff

Week 3 reading assignment was posted

- 1. Friday 8pm: Post your summary
- 2. Monday 8pm: End of the reading assignment

Be sure to post your discussion comments before Monday 8pm!

Primary TAs

- Each team will have one primary TA
- Meetings with primary TA will be scheduled for next week
 - Feedback for the pre-proposals
- Contact your primary TA anytime (piazza or email)
 - Groups will be created in Piazza for each team
- Some projects may have a secondary TA, with complementary expertise

First Project Assignment

Due date: Sunday 9/25 at 8m

Four main sections:

- Introduction
- Related work
- Experimental setup
- Research ideas

Follows ICML paper format

The two main sections are related work and research ideas

teammates = # research ideas

- Page limit depends on team size:
- 3 students : 4 pages + references
- 4 students : 4.5 pages + references
- 5 students : 5 pages + references
- 6 students : 5.5 pages + references

Language Technologies Institute

Multimodal Machine Learning

Lecture 3.2: Multimodal Representations (Part 1) Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk. Some slides from Jeffrey Girard.

- Multimodal representations
 - Cross-modal interactions
- Representation fusion
 - Additive and multiplicative fusion
 - Tensor and polynomial fusion
 - Gated fusion
 - Modality-shift fusion
 - Dynamic fusion
 - Fusion on raw modalities
 - Multimodal autoencoder
- Measuring non-additive interactions

Multimodal Representation

Multimodal Machine Learning

Acoustic

Vision

Multimodal Machine Learning

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

> This is a core building block for most multimodal modeling problems!

Individual elements:

It can be seen as a "local" representation or representation using holistic features **Definition:** Learning representations that reflect cross-modal interactions between individual elements, across different modalities

🐞 Language Technologies Institute

Cross-modal Interactions

Interconnected Modalities

Is this

a living

room?

劎

Interconnected Modalities

Is this

a

living

room?

劎

Taxonomy of Interaction Responses – A Behavioral Science View

Partan and Marler (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166(2)

Cross-modal Interactions – A Taxonomy

Cross-modal Interactions – Representation Fusion

Representation Fusion

Sub-Challenge 1a: Representation Fusion

Definition: Learn a joint representation that models cross-modal interactions between individual elements of different modalities

Basic fusion:

Raw-modality fusion:

Fusion with Unimodal Encoders

> Unimodal encoders can be jointly learned with fusion network, or pre-trained

Early and Late Fusion – A historical View

Late fusion:

Basic Concepts for Representation Fusion (aka, Basic Fusion)

Goal: Model *cross-modal interactions* between the multimodal elements

Let's study the univariate case first (only 1-dimensional features)

Linear regression:

$$z = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

intercept Additive Additive terms Multiplicative error
(bias term) terms term (residual term)

Linear regression is used to test research hypotheses, over a whole dataset

300 book reviews

- *y*: audience score
- x_A : percentage of smiling

x_B: professional status (0=non-critic, 1=critic)

Linear regression:

$$y = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

intercept Additive Multiplicative error
(bias term) terms term (residual term)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

 w_0 : average score when x_A and x_B are zero w_1 : effect from x_A variable only w_2 : effect from x_B variable only w_3 : effect from x_A and x_B interaction only ϵ : residual not modeled by w_0 , w_1 , w_2 or w_3

Linear regression is used to test research hypotheses, over a whole dataset

300 book reviews

- y: audience score
- x_A : percentage of smiling

x_B: professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

contained within this interval"

Linear regression:

Confidence interval: "95% confident that w parameter is

Confidence interval does not contain 0, so effect is significant p-values would be another way to test hypothesis

溯

Linear regression is used to test research hypotheses, over a whole dataset

300 book reviews

- y: audience score
- x_A : percentage of smiling
- *x_B*: professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

	Estimate	95% CI	
<i>W</i> ₀	5.29	[4.86, 5.73]	
W_1	1.19	[0.85, 1.53]	Positive effect
<i>W</i> ₂	-1.69	[-2.14, -1.24] 💻	Negative effect

Carnegie Mellon University

勜

Linear regression is used to test research hypotheses, over a whole dataset

300 book reviews

- y: audience score
- x_A : percentage of smiling
- *x_B*: professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

$$z = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) +$$

 χ^{2}_{A}

smile

勜

Basic Concepts for Representation Fusion (aka, Basic Fusion)

Goal: Model *cross-modal interactions* between the multimodal elements

Let's study the univariate case first

Linear regression:

$$z = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

intercept Additive Multiplicative error
(bias term) terms term (residual term)

(1) Additive terms: $z = w_1 x_A + w_2 x_B + \epsilon$

2 Multiplicative "interaction" term: $z = w_3(x_A \times x_b) + \epsilon$

3 Additive and multiplicative terms: $z = w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$

With unimodal encoders:

Modality A \bigwedge encoder f_A Modality B encoder f_B

Additive fusion:

$$\boldsymbol{z} = f_A(\boldsymbol{\triangle}) + f_B(\boldsymbol{\bigcirc})$$

It could be seen as an ensemble approach (late fusion)

can be seen as additive

勞

Multiplicative Fusion

Simple multiplicative fusion:

$$\boldsymbol{z} = \boldsymbol{w}(\boldsymbol{x}_A \times \boldsymbol{x}_B)$$

Bilinear Fusion:

$$\boldsymbol{Z} = \boldsymbol{W}(\boldsymbol{x}_A^T \cdot \boldsymbol{x}_B)$$

Jayakumar et al., Multiplicative Interactions and Where to Find Them, ICLR 2020

Tensor Fusion

Zadeh et al., Tensor Fusion Network for Multimodal Sentiment Analysis, EMNLP 2017

Carnegie Mellon University

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Carnegie Mellon University

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Low-rank Fusion with Trimodal Input

Tensor Fusion

Low-rank Fusion :

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Carnegie Mellon Universit

Going Beyond Additive and Multiplicative Fusion

Additive interaction:

 $z = w_1 x_A + w_2 x_B$

First-order polynomial

Additive and multiplicative interaction:

 $z = w_1 x_A + w_2 x_B + w_3 (x_A \times x_B)$

Second-order polynomial

High-Order Polynomial Fusion

Hou et al., Deep Multimodal Multilinear Fusion with High-order Polynomial Pooling, Neurips 2019

Carnegie Mellon University

Gated Fusion

Arevalo et al., Gated Multimodal Units for information fusion, ICLR-workshop 2017

Gating Module (aka, attention module)

Chen et al., Multimodal Sentiment Analysis with Word-level Fusion and Reinforcement Learning, ICMI 2017

Modality-Shifting Fusion

Example with language modality:

Primary modality: language

Secondary modalities: acoustic and visual

Wang et al., Words Can Shift: Dynamically Adjusting Word Representations Using Nonverbal Behaviors, AAAI 2019 Rahman et al., Integrating Multimodal Information in Large Pretrained Transformers, ACL 2020

Dynamic Fusion

Zadeh et al., Multimodal Language Analysis in the Wild: CMU-MOSEI Dataset and Interpretable Dynamic Fusion Graph, ACL 2018 Xu et al., MUFASA: Multimodal Fusion Architecture Search for Electronic Health Records, AAAI 2021

Carnegie Mellon University

Nonlinear Fusion

Nonlinear fusion: $\widehat{y} = f(x_A, x_B) \in \mathbb{R}^d$

> where *f* could be a multi-layer perceptron or any nonlinear model

 \Rightarrow This could be seen as early fusion:

 $\widehat{\boldsymbol{y}} = f([\boldsymbol{x}_A, \boldsymbol{x}_B])$

... but will our neural network learn the nonlinear interactions?

Measuring Non-Additive Interactions

Hessel and Lee, Does my multimodal model learn cross-modal interactions? It's harder to tell than you might think!, EMNLP 2020 -> introduced the EMAP method

Measuring Non-Additive Interactions

Projection from nonlinear to additive (using EMAP):

$$\tilde{f}(\boldsymbol{x}_{A}, \boldsymbol{x}_{B}) = \underset{\boldsymbol{x}_{B}}{\mathbb{E}}[f(\boldsymbol{x}_{A}, \boldsymbol{x}_{B})] + \underset{\boldsymbol{x}_{A}}{\mathbb{E}}[f(\boldsymbol{x}_{A}, \boldsymbol{x}_{B})] - \underset{\boldsymbol{x}_{A}, \boldsymbol{x}_{B}}{\mathbb{E}}[f(\boldsymbol{x}_{A}, \boldsymbol{x}_{B})]$$

$$f_{A}(\boldsymbol{x}_{A}) \qquad f_{B}(\boldsymbol{x}_{B}) \qquad \boldsymbol{\mu}$$
The expectations \mathbb{E} can be approximated with summation over training data:
$$\hat{f}_{A}(\boldsymbol{x}_{A}) = \frac{1}{N} \sum_{j=1}^{N} f(\boldsymbol{x}_{A,j}, \boldsymbol{x}_{B,j})$$

Hessel and Lee, Does my multimodal model learn cross-modal interactions? It's harder to tell than you might think!, EMNLP 2020 → introduced the EMAP method

Measuring Non-Additive Interactions

	I-INT	I-SEM	I-CTX	T-VIS	R-POP	T-ST1	T-ST2	
Nonlinear 🦛 Neural Network	90.4	69.2	78.5	51.1	63.5	71.1	79.9	
Polynomial 🦛 Polykernel SVM	,91.3	,74.4	,81.5	50.8	_	72.1	,80.9	
Nonlinear 🦛 FT LXMERT	83.0	68.5	76.3	53.0	63.0	66.4	78.6	
Nonlinear 🦛 🕁 + Linear Logits	89.9	73.0	80.7	53.4	64.1	75.5	80.3	Always a
Additive 🖛 Linear Model	90.4	72.8	80.9	51.3	63.7	75.6	76.1	good baseli
Best Model	91.3 [×]	74.4	81.5 [×]	53.4 ^v	64.2 [×]	75.5 ^v	80.9	Differences
Additive 🖛 🗸 + EMAP	* 91.1	*74.2	* 81.3	* 51.0	* 64.1	*75.9	*80.7 🖌	are small!!!

Hessel and Lee, Does my multimodal model learn cross-modal interactions? It's harder to tell than you might think!, EMNLP 2020 → introduced the EMAP method

Learning Fusion Representations

How to learn fusion models?

Learning Fusion Representations

How to learn fusion models?

What will be the loss function?

Can it hallucinate the other modality?

Multimodal Autoencoder

Ngiam et al, Multimodal Deep Learning, 2011

Learning Fusion Representations

Interesting experiment: "Hearing to see"

Multimodal Autoencoder

Ngiam et al, Multimodal Deep Learning, 2011

Fusion with Raw Modalities

Open Challenge!

Example: From Early Fusion...

Carnegie Mellon University

Fusion with Raw Modalities

Example: From Early Fusion... to Very Early Fusion (inspired by human brain)

Barnum, et al. "On the Benefits of Early Fusion in Multimodal Representation Learning." arxiv 2022

Sub-Challenge 1a: Representation Fusion

Definition: Learn a joint representation that models cross-modal interactions between individual elements of different modalities

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

