

Language Technologies Institute

Lecture 3.2: Multimodal Representations (Part 1)

Louis-Philippe Morency

[^0]
Administrative Stuff

Reading Assignments - Reminder

Week 3 reading assignment was posted

1. Friday 8pm: Post your summary
2. Monday 8pm: End of the reading assignment

Be sure to post your discussion comments before Monday 8pm!

Start the discussion early ©
Late submissions will be accounted

Primary TAs

- Each team will have one primary TA
- Meetings with primary TA will be scheduled for next week
- Feedback for the pre-proposals
- Contact your primary TA anytime (piazza or email)
- Groups will be created in Piazza for each team
- Some projects may have a secondary TA, with complementary expertise

First Project Assignment

Due date: Sunday $9 / 25$ at 8 m

Four main sections:

- Introduction
- Related work
- Experimental setup
- Research ideas

Follows ICML paper format

The two main sections are related work and research ideas

\# teammates = \# research ideas

Page limit depends on team size:

- 3 students : 4 pages + references
- 4 students : 4.5 pages + references
- 5 students : 5 pages + references
- 6 students : 5.5 pages + references

Language Technologies Institute

Lecture 3.2: Multimodal Representations (Part 1)

Louis-Philippe Morency

[^1]
Lecture Objectives

- Multimodal representations
- Cross-modal interactions
- Representation fusion
- Additive and multiplicative fusion
- Tensor and polynomial fusion
- Gated fusion
- Modality-shift fusion
- Dynamic fusion
- Fusion on raw modalities
- Multimodal autoencoder
- Measuring non-additive interactions

Multimodal Representation

Multimodal Machine Learning

Multimodal Machine Learning

Challenge 1: Representation

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

This is a core building block for most multimodal modeling problems!

Individual elements:

Modality A

Modality B

It can be seen as a "local" representation
or
representation using holistic features

Challenge 1: Representation

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

Sub-challenges:

Coordination

Fission

Cross-modal Interactions

- Representation fusion
- Prediction task
- Modality translation

Interconnected Modalities

Unimodal

Non-redundancy

Is this a living room?

A teacup on the right of a laptop in a clean room.
inference
No, probably study room.

Interconnected Modalities

Unimodal Non-redundancy

Multimodal dominance

Taxonomy of Interaction Responses - A Behavioral Science View

$>$ signal response \quad signal response

Equivalence
Enhancement
Multimodal Communication

H

Nonredundancy

$\mathrm{a}+\mathrm{b} \rightarrow \square$ and \bigcirc		Independence
$\mathrm{a}+\mathrm{b} \rightarrow \square$		Dominance
$\mathrm{a}+\mathrm{b} \rightarrow \square$ (or $\square)$	Modulation	
$\mathrm{a}+\mathrm{b} \rightarrow \Delta$		Emergence

Partan and Marler (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166(2)

Cross-modal Interactions - A Taxonomy

(5) Connections

- Association
- Dependency
- Correspondence
- Relationship

(2) Modalities

- Unimodal
- Bimodal
- Trimodal
- High-modal,

(1) Responses

- Redundancy
- Non-redundancy
- Dominance
- Emergence

Cross-modal Interactions - Representation Fusion

Next week

(5) Connections

- Association
- Dependency
- Correspondence
- Relationship
(2) Modalities
- Unimodal
- Bimodal
- Trimodal
- High-modal,

(4) Context
- Structure context
- Task relevance
- Context dependence
(1) Responses
- Redundancy
- Non-redundancy
- Dominance
- Emergence

Today

Representation Fusion

Sub-Challenge 1a: Representation Fusion

Definition: Learn a joint representation that models cross-modal interactions between individual elements of different modalities

Basic fusion:

Raw-modality fusion:

Fusion with Unimodal Encoders

Example:

\Rightarrow Unimodal encoders can be jointly learned with fusion network, or pre-trained

Early and Late Fusion - A historical View

Early fusion:

Late fusion:

Basic Concepts for Representation Fusion (aka, Basic Fusion)

Goal: Model cross-modal interactions between the multimodal elements
\Rightarrow Let's study the univariate case first
\longrightarrow (only 1 -dimensional features)

Linear regression:

```
z = w
    (bias term) terms term (residual term)
```


Linear Regression

Linear regression is used to test research hypotheses, over a whole dataset

y : audience score
x_{A} : percentage of smiling
x_{B} : professional status
($0=$ non-critic, $1=$ critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

w_{0} : average score when x_{A} and x_{B} are zero
w_{1} : effect from x_{A} variable only
w_{2} : effect from x_{B} variable only
w_{3} : effect from x_{A} and x_{B} interaction only
ϵ : residual not modeled by w_{0}, w_{1}, w_{2} or w_{3}

Linear Regression

Linear regression is used to test research hypotheses, over a whole dataset

y : audience score
x_{A} : percentage of smiling
x_{B} : professional status
($0=$ non-critic, $1=$ critic)
H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

$$
z=w_{0}+w_{1} x_{\text {slope }}+\epsilon
$$

Confidence interval: " 95% confident that w parameter is contained within this interval"

Linear Regression

Linear regression is used to test research hypotheses, over a whole dataset

300 book reviews | y : audience score |
| :--- |
| $x_{A}:$ percentage of smiling |
| $x_{B}:$ professional status |
| $(0=$ non-critic, $1=$ critic $)$ |

Linear regression:
$z=w_{0}+w_{1} x_{A}+w_{2} x_{B}+\epsilon$

	Estimate	$\mathbf{9 5 \%} \mathbf{~ C l}$		
w_{0}	5.29	$[4.86,5.73]$		
w_{1}	1.19	$[0.85,1.53]$		
:---				
w_{2}	$-1.69 \quad[-2.14,-1.24] \longrightarrow$ Positive effect Negative effect			

H2: Does the effect of smiling depend on professional status?

Linear Regression

Linear regression is used to test research hypotheses, over a whole dataset

y : audience score
x_{A} : percentage of smiling
x_{B} : professional status
($0=$ non-critic, $1=$ critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

$z=w_{0}+w_{1} x_{A}+w_{2} x_{B}+w_{3}\left(x_{A} \times x_{b}\right)+\epsilon$

	Estimate	$\mathbf{9 5 \%} \mathbf{~ C I}$	
w_{0}	5.79	$[5.29,6.29]$	
w_{1}	0.68	$[0.25,1.11]$	
w_{2}	-2.94	$[-3.73,-2.15]$	
w_{3}	1.29	$[0.61,1.97]$	Multiplicative interaction!

Basic Concepts for Representation Fusion (aka, Basic Fusion)

Goal: Model cross-modal interactions between the multimodal elements
\Rightarrow Let's study the univariate case first
\longrightarrow (only 1 -dimensional features)

Linear regression:

(1) Additive terms:

$$
z=w_{1} x_{A}+w_{2} x_{B}+\epsilon
$$

(2) Multiplicative "interaction" term:

$$
z=w_{3}\left(x_{A} \times x_{b}\right)+\epsilon
$$

(3) Additive and multiplicative terms:

$$
z=w_{1} x_{A}+w_{2} x_{B}+w_{3}\left(x_{A} \times x_{b}\right)+\epsilon
$$

Additive Fusion $\quad \Rightarrow$ Back to multivariate case!

\longrightarrow (multi-dimensional features)

Additive fusion:

$$
\begin{aligned}
& z=w_{1} x_{A}+w_{2} x_{B} \\
& 1 \text {-layer neural network } \\
& \text { can be seen as additive }
\end{aligned}
$$

With unimodal encoders:

Additive fusion:

$$
z=f_{A}(\Delta)+f_{B}(\bigcirc)
$$

It could be seen as an ensemble approach (late fusion)

Multiplicative Fusion

Simple multiplicative fusion:

$$
z=w\left(\boldsymbol{x}_{A} \times \boldsymbol{x}_{B}\right)
$$

Bilinear Fusion:

$$
\boldsymbol{Z}=\boldsymbol{W}\left(\boldsymbol{x}_{A}^{T} \cdot \boldsymbol{x}_{B}\right)
$$

Tensor Fusion

[^2]
Low-rank Fusion

[^3]
Low-rank Fusion

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Low-rank Fusion

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Low-rank Fusion

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Low-rank Fusion with Trimodal Input

Low-rank Fusion :

Tensor Fusion

[^4]
Going Beyond Additive and Multiplicative Fusion

Additive interaction:

$$
z=w_{1} x_{A}+w_{2} x_{B}
$$

\Longleftarrow First-order polynomial

Additive and multiplicative interaction:

$$
z=w_{1} x_{A}+w_{2} x_{B}+w_{3}\left(x_{A} \times x_{B}\right)
$$

\rightleftharpoons Second-order polynomial

Trimodal fusion (e.g., tensor fusion):

Can we add higher-order interaction terms?

For example: $\quad+w_{8}\left(x_{A}^{2} \times x_{B}^{2} \times x_{C}^{2}\right)$
$+w_{9}\left(x_{A}^{3} \times x_{B}\right)$
$+w_{10}\left(x_{B}^{3} \times x_{C}^{3}\right)$

High-Order Polynomial Fusion

[^5]
Gated Fusion

[^6]
Gating Module (aka, attention module)

[^7]
Modality-Shifting Fusion

Wang et al., Words Can Shift: Dynamically Adjusting Word Representations Using Nonverbal Behaviors, AAAI 2019
Rahman et al., Integrating Multimodal Information in Large Pretrained Transformers, ACL 2020

Dynamic Fusion

Zadeh et al., Multimodal Language Analysis in the Wild: CMU-MOSEI Dataset and Interpretable Dynamic Fusion Graph, ACL 2018
Xu et al., MUFASA: Multimodal Fusion Architecture Search for Electronic Health Records, AAAI 2021

Nonlinear Fusion

Nonlinear fusion:

$$
\widehat{y}=f\left(x_{A}, x_{B}\right) \in \mathbb{R}^{d}
$$

where f could be a multi-layer perceptron or any nonlinear model

This could be seen as early fusion:

$$
\widehat{\boldsymbol{y}}=f\left(\left[\boldsymbol{x}_{A}, \boldsymbol{x}_{B}\right]\right)
$$

> .. but will our neural network learn the nonlinear interactions?

Measuring Non-Additive Interactions

Nonlinear fusion:

$$
\widehat{\boldsymbol{y}}=f\left(\boldsymbol{x}_{A}, \boldsymbol{x}_{B}\right)
$$

Additive fusion:

$$
\widehat{\boldsymbol{y}}=f_{A}\left(\boldsymbol{x}_{A}\right)+f_{B}\left(\boldsymbol{x}_{B}\right)
$$

Measuring Non-Additive Interactions

Nonlinear fusion:

$$
\widehat{\boldsymbol{y}}=f\left(\boldsymbol{x}_{A}, \boldsymbol{x}_{B}\right)
$$

Additive fusion:

$$
\widehat{\boldsymbol{y}}^{\prime}=f_{A}\left(\boldsymbol{x}_{A}\right)+f_{B}\left(\boldsymbol{x}_{B}\right)
$$

Projection from nonlinear to additive (using EMAP):

$$
\begin{gathered}
\tilde{f}\left(\boldsymbol{x}_{A}, \boldsymbol{x}_{B}\right)=\underbrace{\mathbb{E}\left[f\left(\boldsymbol{x}_{A}, \boldsymbol{x}_{B}\right)\right]}_{f_{A}\left(\boldsymbol{x}_{A}\right)}+\underbrace{\underset{\boldsymbol{x}_{B}}{\mathbb{E}}\left[f\left(\boldsymbol{x}_{A}, \boldsymbol{x}_{B}\right)\right]}_{f_{B}\left(\boldsymbol{x}_{B}\right)}-\underbrace{\underset{\boldsymbol{x}_{A}, \boldsymbol{x}_{B}}{\mathbb{E}}\left[f\left(\boldsymbol{x}_{A}, \boldsymbol{x}_{B}\right)\right]}_{\boldsymbol{\mu}} \\
\sim \\
\begin{array}{c}
\text { The expectations } \mathbb{E} \text { can be approximated } \\
\text { with summation over training data: }
\end{array} \hat{f}_{A}\left(\boldsymbol{x}_{A}\right)=\frac{1}{N} \sum_{j=1}^{N} f\left(\boldsymbol{x}_{A, j}, \boldsymbol{x}_{B, j}\right)
\end{gathered}
$$

Measuring Non-Additive Interactions

Nonlinear fusion:

$$
\begin{aligned}
& \qquad \hat{\boldsymbol{y}}=f\left(\boldsymbol{x}_{A}, \boldsymbol{x}_{B}\right) \\
& \text { Additive fusion: }
\end{aligned}
$$

$$
\widehat{\boldsymbol{y}}^{\prime}=\hat{f}_{A}\left(\boldsymbol{x}_{A}\right)+\hat{f}_{B}\left(\boldsymbol{x}_{B}\right)+\widehat{\boldsymbol{\mu}}
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& I-INT \& I-SEM \& I-CTX \& T-VIS \& R-POP \& T-ST1 \& T-ST2

\hline Nonlinear \Longleftarrow Neural Network \& 90.4 \& 69.2 \& 78.5 \& 51.1 \& 63.5 \& 71.1 \& 79.9

\hline Polynomial \Longleftarrow Polykernel SVM \& 91.3 \& 74.4 \& \& 50.8 \& - \& 72.1 \&

\hline Nonlinear \Leftarrow FT LXMERT \& 83.0 \& 68.5 \& (76.3 \& 53.0 \& 63.0 \& $$
66.4
$$ \& $$
/ 78.6
$$

\hline Nonlinear $\longleftarrow\llcorner+$ Linear Logits \& 89.9 \& 73.0 \& 80.7 \& ${ }^{53.4}$ \& ${ }^{64.1}$ \& ${ }^{75.5}$ \& 80.3

\hline Additive $\Longleftarrow \begin{aligned} & \text { Linear Model } \\ & \text { Best Model }\end{aligned}$ \& ${ }_{90.4} 9$ \& 72.8 ${ }^{74.4}$ \& 80.9
$\mathbf{8 1 . 5}$ \& 51.3 ${ }^{53}$ \& 63.7) \& 75.6 ${ }^{75}$ \& 76.1
80.9

\hline Additive $\longleftarrow \begin{aligned} & \text { Best Model } \\ & \\ & \text { + EMAP }\end{aligned}$ \& 91.3
-91.1 \& 74.4
74.2 \& 81.5
81.3 \& 53.4
+51.0 \& 64.2

64.1 \& $$
\begin{array}{r}
75.5 \\
-75.9
\end{array}
$$ \& \[

$$
\begin{array}{r}
\mathbf{8 0 . 9} \\
80.7
\end{array}
$$
\]

\hline
\end{tabular}

Learning Fusion Representations

How to learn fusion models?

Learning Fusion Representations

How to learn fusion models?
What will be the loss function?
Can it hallucinate the other modality?

Multimodal Autoencoder

Learning Fusion Representations

Interesting experiment: "Hearing to see"

Multimodal Autoencoder

Fusion with Raw Modalities

Open Challenge!

Example: From Early Fusion...

Fusion with Raw Modalities

Example: From Early Fusion... to Very Early Fusion (inspired by human brain)

Barnum, et al. "On the Benefits of Early Fusion in Multimodal Representation Learning." arxiv 2022

Sub-Challenge 1a: Representation Fusion

Definition: Learn a joint representation that models cross-modal interactions between individual elements of different modalities

Homogenous modalities

Multiplicative fusion
Tensor fusion
Polynomial fusion Gated fusion Dynamic fusion Nonlinear fusion Very early fusion

Challenge 1: Representation

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

Sub-challenges:

[^0]: * Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions
 taught by Yanatan Bisk. Some slides from Jeffrey Girard.

[^1]: * Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions
 taught by Yanatan Bisk. Some slides from Jeffrey Girard.

[^2]: Zadeh et al., Tensor Fusion Network for Multimodal Sentiment Analysis, EMNLP 2017

[^3]: Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

[^4]: Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

[^5]: Hou et al., Deep Multimodal Multilinear Fusion with High-order Polynomial Pooling, Neurips 2019

[^6]: Arevalo et al., Gated Multimodal Units for information fusion, ICLR-workshop 2017

[^7]: Chen et al., Multimodal Sentiment Analysis with Word-level Fusion and Reinforcement Learning, ICMI 2017

