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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 4.1: Multimodal Representations (Part 2)

* Co-lecturer: Paul Liang. Original course co-developed 

with Tadas Baltrusaitis. Spring 2021 and 2022 editions 

taught by Yonatan Bisk. 
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Administrative Stuff
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First Project Assignment

Due date: Sunday 9/25 at 8m

Four main sections:

▪ Introduction

▪ Related work

▪ Experimental setup

▪ Research ideas

Follows ICML paper format

The two main sections are 

related work and research ideas

Page limit depends on team size:
• 3 students : 4 pages + references

• 4 students : 4.5 pages + references

• 5 students : 5 pages + references

• 6 students : 5.5 pages + references

# teammates = # research ideas
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Team Meetings with Instructor

▪ No lecture on Tuesday 9/27

▪ 15-mins meeting with instructor

▪ Optional, but highly suggested

▪ Not all teammates are required to attend

▪ Prepare 2 slides to summarize your research ideas

▪ Meetings on Tuesday 9/27 and Wednesday 9/28

▪ Signup form:

https://calendly.com/morency/student-meetings

https://calendly.com/morency/student-meetings
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Objectives of today’s class

▪ Representation fusion

▪ Multimodal auto-encoder

▪ Fusion from raw modalities

▪ Representation coordination

▪ Coordination functions

▪ Kernel similarity functions

▪ Canonical correlation analysis

▪ Contrastive learning

▪ Representation fission

▪ Factorized multimodal representations

▪ Information, entropy and mutual information

▪ Clustering and fine-grained fission



Multimodal 

Representation
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Challenge 1: Representation

Fusion Coordination Fission

Sub-challenges: 

Definition: Learning representations that reflect cross-modal interactions 

between individual elements, across different modalities
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Sub-Challenge 1a: Representation Fusion

Definition: Learn a joint representation that models 

cross-modal interactions between 

individual elements of different modalities
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Learning Fusion Representations

Modality A

Modality B

Fusion
𝒙𝐴

𝒙𝐵

𝒛

How to learn fusion models?

ෝ𝒚Prediction
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Learning Fusion Representations

Modality A

Modality B

Fusion
𝒙𝐴

𝒙𝐵

𝒛

How to learn fusion models?

Ngiam et al, Multimodal Deep Learning, 2011

Multimodal Autoencoder

What will be the loss function?

Can it hallucinate the other modality?
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Learning Fusion Representations

Modality A

Modality B

Fusion
𝒙𝐴

𝒙𝐵

𝒛

Ngiam et al, Multimodal Deep Learning, 2011

Multimodal Autoencoder

Interesting experiment: “Hearing to see”
(zero-shot cross-modal adaptation)
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Fusion with Raw Modalities

Modality A

Modality B

FusionHeterogeneous

encoder

encoder

Fusion

concatenate
(for early fusion)

Visual

Acoustic

Example: From Early Fusion…
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Fusion with Raw Modalities

Modality A

Modality B

FusionHeterogeneous

Barnum, et al. “On the Benefits of Early Fusion in Multimodal Representation Learning." arxiv 2022

Visual

Acoustic

Example: From Early Fusion… to Very Early Fusion (inspired by human brain) 
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Sub-Challenge 1b: Representation Coordination

Definition: Learn multimodally-contextualized 

representations that are coordinated 

through their cross-modal interactions

Strong Coordination:

Modality A

Modality B

Closer

Partial Coordination:

Modality A

Modality B

Further
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Coordination Function

Modality A

Modality B

encoder

encoder

𝑓𝐴

𝑓𝐵

𝑔 𝒛𝐴, 𝒛𝐵

𝒛𝐵

𝒛𝐴
Learning with coordination function:

ℒ = 𝑔 𝑓𝐴 , 𝑓𝐵

with model parameters 𝜃𝑔, 𝜃𝑓𝐴 and 𝜃𝑓𝐵

Coordination function

Examples of coordination function:

𝑔 𝒛𝐴, 𝒛𝐵 =
𝒛𝐴 ∙ 𝒛𝐵

‖𝒛𝐴‖ 𝒛𝐵

Cosine similarity:1
Strong coordination!

For normalized inputs (e.g., 𝒛𝐴 − 𝒛𝐴) , equivalent to Pearson correlation coefficient

Requires paired data
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Coordination Function

Modality A

Modality B

encoder

encoder

𝑓𝐴

𝑓𝐵

𝑔 𝒛𝐴, 𝒛𝐵

𝒛𝐵

𝒛𝐴

Examples of coordination function:

Kernel similarity functions:2

𝑔 𝒛𝐴, 𝒛𝐵 = 𝑘(𝒛𝐴, 𝒛𝐵) • Linear

• Polynomial

• Exponential

• RBF

Learning with coordination function:

ℒ = 𝑔 𝑓𝐴 , 𝑓𝐵

with model parameters 𝜃𝑔, 𝜃𝑓𝐴 and 𝜃𝑓𝐵

Coordination function

All these examples bring 

relatively strong coordination 

between modalities
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Kernel Function

A kernel function: Acts as a similarity metric between data points

Not linearly separable in 𝑥 space Same data, but now linearly separable in 𝜙(𝒙)  space 

𝐾 𝒙𝑖 , 𝒙𝑗 = 𝜙 𝒙𝑖
𝑇𝜙(𝒙𝑗) = 𝜙 𝒙𝑖 , 𝜙(𝒙𝑗) 𝜙 𝒙 can be high-dimensional space!

𝐾 𝑥𝑖 , 𝑥𝑗 = exp−
1

2𝜎2
𝑥𝑖 − 𝑥𝑗

2
Radial Basis Function (RBF) Kernel : 
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Coordination Function

Modality A

Modality B

encoder

encoder

𝑓𝐴

𝑓𝐵

𝑔 𝒛𝐴, 𝒛𝐵

𝒛𝐵

𝒛𝐴

Examples of coordination function:

Canonical Correlation Analysis (CCA):3

argmax
𝑽,𝑼,𝑓𝐴,𝑓𝐵

𝑐𝑜𝑟𝑟 𝒛𝐴, 𝒛𝐵

𝑓𝐴 𝑓𝐵

𝑼 𝑽

View 𝒛𝐵

V
ie

w
 𝒛
𝐴

Learning with coordination function:

ℒ = 𝑔 𝑓𝐴 , 𝑓𝐵

with model parameters 𝜃𝑔, 𝜃𝑓𝐴 and 𝜃𝑓𝐵

Coordination function

CCA includes multiple projections, 

all orthogonal with each others
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Correlated Projection

1 Learn two linear projections, one for each view, 

that are maximally correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀

𝑿
𝒀

𝒖
𝒗

Two views 𝑿,𝒀 where same instances have the same color

Remember that 𝑋 and 𝑌 consist of paired data

𝑓𝐴 𝑓𝐵

𝑼 𝑽

View 𝒛𝐵

V
ie

w
 𝒛
𝐴
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Canonical Correlation Analysis

2 We want these multiple projection pairs to be orthogonal 

(“canonical”) to each other:

𝒖(𝑖)
𝑻 𝚺𝑿𝒀𝒗(𝑗) = 𝒖(𝑗)

𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎 for 𝑖 ≠ 𝑗

𝑼𝚺𝑿𝒀𝑽 = 𝑡𝑟(𝑼𝚺𝑿𝒀𝑽) where 𝑼 = [𝒖 1 , 𝒖 2 ,…, 𝒖 𝑘 ]

and 𝑽 = [𝒗 1 , 𝒗 2 ,…, 𝒗 𝑘 ]

3 Since this objective function is invariant to scaling, we 

can constraint the projections to have unit variance:

𝑼𝑻𝚺𝑿𝑿𝑼 = 𝑰 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰

𝑓𝐴 𝑓𝐵

𝑼 𝑽

View 𝒛𝐵

V
ie

w
 𝒛
𝐴
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Deep Canonically Correlated Autoencoders (DCCAE)

· · ·

Text
𝑿

𝑼
· · ·𝑯𝒙

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · ·
𝑾𝒙

· · ·

· · ·

Text
𝑿′

· · ·

Image
𝒀

𝑽
· · · 𝑯𝒚

· · ·
𝑾𝒚

· · ·

· · ·

Image
𝒀′

Wang et al., On deep multi-view representation learning, PMLR 2015

argmax
𝑽,𝑼,𝑾𝒙,𝑾𝒚

𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚
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Multi-view Latent “Intact” Space

Given multiple views 𝑧𝑖 from the same “object”:

1) There is an “intact” representation which is complete and not damaged

2) The views 𝑧𝑖 are partial (and possibly degenerated) representations 

of the intact representation

Xu et al., Multi-View Intact Space Learning, TPAMI 2015
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Auto-Encoder in Auto-Encoder Network

· · · · · ·

Input Text Input Image

𝑿(𝟐)𝑿(𝟏)

· · · · · ·

· · · · · ·

· · ·

· · ·

· · ·

· · ·

Reconstructed Text Reconstructed Image

𝒁(𝑴,𝟏)

··
·

Latent Intact

Representation
𝑯

···

···

··· ··
·

··
·

··
·

Degradation 

network

Degradation 

network

𝒁(𝑴,𝟐)

𝒁(
𝑴
𝟐 ,𝟏) 𝒁(

𝑴
𝟐 ,𝟐)

𝑮(𝑳,𝟏) 𝑮(𝑳,𝟐)

Zhang et al., AE2-Nets: Autoencoder in Autoencoder Networks, CVPR 2019
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Gated Coordination

Modality A

Modality B

𝒙𝐴

𝒙𝐵

gate

gate

Gated coordination:

𝒛𝐴 = 𝑔𝐴 𝒙𝐴, 𝒙𝐵 ∙ 𝒙𝐴

Related to attention modules in transformers𝒛𝐵

𝒛𝐴

𝒛𝐵 = 𝑔𝐵 𝒙𝐴, 𝒙𝐵 ∙ 𝒙𝐵

More about it next week!
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Coordination with Contrastive Learning

Modality A

Modality B

encoder

encoder

𝑓𝐴

𝑓𝐵 𝒛𝐵

𝒛𝐴

Paired data: {     ,     }
(e.g., images and text descriptions)

1

2

1

2

3

4

5

3

4

5

Positive pairs

Negative pairs

Contrastive loss:

brings positive pairs closer and 

pushes negative pairs apart

Simple contrastive loss:

positive pairs negative pair

Similarity functions are 

often cosine similarity

max 0, 𝛼 + 𝑠𝑖𝑚 𝒛𝐴, 𝒛𝐵
+ − 𝑠𝑖𝑚(𝒛𝐴, 𝒛𝐵

−)

Similar to hinge loss
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Example – Visual-Semantic Embeddings 

Language

Visual

encoder

encoder

𝑓𝐿

𝑓𝑉 𝒛𝑉

𝒛𝐿

ℒ

(image)

Two contrastive loss terms:

max 0, 𝛼 + 𝑠𝑖𝑚 𝒛𝐿 , 𝒛𝑉
+ − 𝑠𝑖𝑚(𝒛𝐿 , 𝒛𝑉

−)

+max 0, 𝛼 + 𝑠𝑖𝑚 𝒛𝑉, 𝒛𝐿
+ − 𝑠𝑖𝑚(𝒛𝑉, 𝒛𝐿

−)

Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, NIPS 2014
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Example – CLIP (Contrastive Language–Image Pre-training)

Language

Visual

encoder

encoder

𝑓𝐿

𝑓𝑉 𝒛𝑉

𝒛𝐿

ℒ

Positive and negative pairs:

C
o
n
tr

a
s
ti
v
e
 

p
re

-t
ra

in
in

g CLIP encoders (𝑓𝐿 and 𝑓𝑉) are 

great for language-vision tasks

𝒛𝐿 and 𝒛𝑉 are coordinated but not 

identical representation spaces

(image)

Popular contrastive loss: InfoNCE

ℒ = −
1

𝑁


𝑖=1

𝑁

𝑙𝑜𝑔
𝑠𝑖𝑚(𝒛𝐴

𝑖 , 𝒛𝐵
𝑖 )

σ𝑗=1
𝑁 𝑠𝑖𝑚(𝒛𝐴

𝑖 , 𝒛𝐵
𝑗
)

positive pairs

and positive pairs

negative pairs
Similarity function can 

be cosine similarity

Radford et al., Learning Transferable Visual Models From Natural Language Supervision, arxiv 2021
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Sub-Challenge 1c: Representation Fission

Definition: learning a new set of representations that 

reflects multimodal internal structure such 

as data factorization or clustering

Modality-level fission:

Modality A

Modality B

Fine-grained fission:

Modality A

Modality B
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Modality-Level Fission

Language

Visual
(image)

Information primarily in language modality

Information primarily in visual modality

• Syntactic structure

• Vocabulary, morphology

• …

• Texture, visual appearance

• Depth, perspective, motion

• …

Information in both modalities
• Described people, objects, actions

• Illustrative gestures, motion

• …
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Modality-Level Fission

Language

Visual
(image)

How to learn factorized 

multimodal representations?
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A Discriminative Approach – Factorized Multimodal Representations

Modality A

Modality B

encoder

encoder

encoder 𝑦prediction

ℒ

But how to ensure 

proper factorization?
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A Generative-Discriminative Approach

Modality A

Modality B

encoder

encoder

encoder

decoder

decoder

𝑦prediction

Tsai et al., Learning Factorized Multimodal Representations, ICLR 2019

ℒ3

ℒ3

ℒ2

ℒ2

ℒ1

ℒ = ℒ1 + ℒ2 + ℒ3

ℒ3: no overlap

ℒ2: generative

ℒ1: discriminative

𝑧𝐴

𝑧𝑌

𝑧𝐵

Separate priors 

for 𝑧𝐴, 𝑧𝐵 and 𝑧𝑌
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Modality-Level Fission – Information Theory

Language

Visual
(image)

Information primarily in language modality

Information primarily in visual modality

• Syntactic structure

• Vocabulary, morphology

• …

• Texture, visual appearance

• Depth, perspective, motion

• …

Information in both modalities
• Described people, objects, actions

• Illustrative gestures, motion

• …



38

38

Information and Entropy – Information Theory

Language
How much information in the modality?

Shannon, A Mathematical Theory of Communication, 1948

𝑥 Information Theory

Main intuition: “Information value” of a communicated message 𝑥
depends on how surprising its content is

(Shannon, 1948)

𝑥: “12, 34, 45, 62 was not a winning combination”

𝑥: “11, 28, 38, 58 was a winning combination”

Not surprising… So, low information

Low chances… So, higher information

𝐼(𝑥)~
1

𝑝(𝑥)

Information content 𝐼(𝑥)

But how 

to scale?

𝐼 𝑥 = log
1

𝑝(𝑥)
= −log 𝑝(𝑥)
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Information and Entropy – Information Theory

Language
𝑥

How much information in the modality?

Information Theory
(Shannon, 1948)

Information content   𝐼 𝑋 = −log 𝑝(𝑋)

For discrete alphabet 𝒳, then 𝑋 is discrete random variable

Entropy: weighted average of all possible outcomes from 𝒳

𝐻 𝑋 = 𝔼 𝐼(𝑋) = 𝔼 −log 𝑝(𝑋) = −

𝑥∈𝒳

𝑝(𝑋)log 𝑝(𝑋)

𝐻 𝑋

Entropy can also be defined for continuous random variables
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Entropy with Two Modalities

Modality A

Modality B

𝐻( )

𝐻( )

If no overlapping 

information

But in most real-world scenarios, 

modalities are inter-connected

A teacup on the right of a laptop

in a clean room.

Statistical

Association Dependency

=

Semantic

Correspondence Relationship

laptop used for
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Entropy with Two Modalities

Modality A

Modality B

𝐻( )

𝐻( )
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Entropy with Two Modalities

Modality A

Modality B

𝐻( )

𝐻( )

𝐻 )

𝐻 )

Conditional entropy  𝐻(𝑌|𝑋)

𝐻 𝑌|𝑋 = −𝔼𝑋,𝑌 log 𝑝(𝑦|𝑥)

= −𝔼𝑋,𝑌 log
𝑝(𝑥, 𝑦)

𝑝(𝑥)
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Entropy with Two Modalities

Modality A

Modality B

𝐻( )

𝐻( )

𝐻 )

𝐻 )

Mutual information 𝐼 𝑋; 𝑌

𝐼 𝑋; 𝑌 = 𝐷𝐾𝐿 𝑃𝑋𝑌(𝑥, 𝑦) ∥ 𝑃𝑋(𝑥)𝑃𝑌(𝑦)

𝐼( ; )

𝐼 𝑋; 𝑌 = 𝔼𝑋,𝑌 log
𝑃𝑋𝑌 𝑥, 𝑦

𝑃𝑋 𝑥 𝑃𝑌(𝑦)

𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)

= 𝔼𝑋,𝑌 log
1

𝑃𝑋 𝑥
+ log

𝑃𝑋𝑌 𝑥, 𝑦

𝑃𝑌(𝑦)

using KL-divergence
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Multimodal Fusion with Mutual Information

Modality A

Modality B

𝐼( ; )
Add

𝒛
Fusion

ෝ𝒚

P
re

d
ic

ti
o

n

Colombo et al., Improving Multimodal fusion via Mutual Dependency Maximisation, EMNLP 2021

ℒ𝑀𝐼

ℒ𝑑𝑜𝑤𝑛

Assumption?

Information present in both 

modalities is most important 

for the downstream task
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Link with Self-Supervised Learning

Data 𝑿

𝒛

Tsai et al., Self-Supervised Learning from a Multi-View Perspective, ICLR 2021

1 Maximize the mutual information 

𝐼(𝒛; ) 𝐼(𝒛; )and

2 Minimize the conditional entropy

𝐻(𝒛| ) 𝐻(𝒛| )and

Information theory gives us a path towards 

disentangled representation learning

𝒛
Related to contrastive learning
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Fine-Grained Fission

Modality A

Modality B

How to automatically discover 

these internal clusters, factors?
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Fine-Grained Fission – A Clustering Approach

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019

Unimodal Encoders

Localized activations for different objects



48

48

Fine-Grained Fission – A Clustering Approach

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019

Unimodal Encoders Multimodal Fission

Explores different 

shared spaces (clusters)

Discovers

multiple 

audio-visual 

correspondences
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Challenge 1: Representation

Fusion Coordination Fission

Sub-challenges: 

Definition: Learning representations that reflect cross-modal interactions 

between individual elements, across different modalities


