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Administrative Stuff
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First Project Assignment

Due date: Sunday 9/25 at 8m

Four main sections: related work and research ideas
= [ntroduction
= Related work i teammates = # research ideas
= Experimental setup
= Research ideas Page limit depends on team size:

Follows ICML paper format
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Team Meetings with Instructor

= No lecture on Tuesday 9/27

= 15-mins meeting with instructor
= Optional, but highly suggested
= Not all teammates are required to attend
= Prepare 2 slides to summarize your research ideas

= Meetings on Tuesday 9/27 and Wednesday 9/28
= Signhup form:
https://calendly.com/morency/student-meetings
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Objectives of today’s class

= Representation fusion
=  Multimodal auto-encoder
= Fusion from raw modalities

= Representation coordination

= Coordination functions
= Kernel similarity functions
= Canonical correlation analysis

= Contrastive learning
= Representation fission
» Factorized multimodal representations
= [nformation, entropy and mutual information
= Clustering and fine-grained fission

Language Technologies Institute 9



Multimodal
Representation



Challenge 1: Representation

Definition: Learning representations that reflect cross-modal interactions
between individual elements, across different modalities

Sub-challenges:

Fusion Coordination Fission
A © A © A ©
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Sub-Challenge la: Representation Fusion

I Definition: Learn a joint representation that models
cross-modal interactions between
)\ Individual elements of different modalities

A ©
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Learning Fusion Representations

\
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HOw to learn fusion models®
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Learning Fusion Representations

Multimodal Autoencoder

N
Modality A [N
XA

Audio Reconstruction  Video Reconstruction
00 +++ 00) (00 +++ 00)

Modality B (RN , T S T ‘
Xp 00 e ] |00 00]

/:hared

How to learn tusion modaels® OO . OO Representation

Vhat will be the loss function (D e 00
Can it hallucinate the other modality* Q0 & 00

Audio Input Video Input

Ngiam et al, Multimodal Deep Learning, 2011

Language Technologies Institute




Learning Fusion Representations
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Linear Classifier

Training Testing

Ngiam et al, Multimodal Deep Learning, 2011
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Multimodal Autoencoder
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Fusion with Raw Modalities

Modality A A

Modality B @

Example: From Early Fusion...

\
Visual encoder [T11]

Acoustic ﬁ_ === M cncoder NN
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Fusion with Raw Modalities

Modality A A

Open Challenge!

Modality B @

Example: From Early Fusion... to Very Early Fusion (inspired by human brain)
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Barnum, et al. “On the Benefits of Early Fusion in Multimodal Representation Learning." arxiv 2022
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Representation
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Sub-Challenge 1b: Representation Coordination

I<_,I Definition: Learn multimodally-contextualized
representations that are coordinated
| ‘ through their cross-modal interactions

A ©

Strong Coordination: Partial Coordination:

Modality A BB~ Modality A [ —— [

: !

Modality B _/- Modality B (RN —— NN
—
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Coordination Function

Zy Coordination tunction
Modality A A\ e”Oder — Learning with coordination function:
A4 g(ZAJ ZB)
| L= g(fa(M), (@)

Modality B . encoder
Zp with model parameters 6,, 6, and 8¢,

/B
s Requires paired data

Examples of coordination function:
Zy ' Zp

1z4llllzg ]l

@ Cosine similarity:

9(z4,2p) = Strong coordination!

wsp For normalized inputs (e.g., z, — Z,) , equivalent to Pearson correlation coefficient
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Coordination Function

Zy Coordination functior
Modality A A [BlernD EEmm
f Learning with coordination function:
A g(ZA, ZB)

(TTT] ng(fA(A)rfB(.))

Zp

Modality B . encoder

I

with model parameters 6,, 6, and 6;,_

-

Examples of coordination runction:

@ Kernel similarity functions:

(24,25) = k(z4,25) 4 * Linear wp All these examples bring
9\Zy,Zp A ZB | . 9
+ Polynomial relatively strong coordination
y EEPFO”e”t'a' between modalities
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Kernel Function

A kernel function: Acts as a similarity metric between data points

K(xi,xj) — ¢(xl,)T¢(xj) - <¢(xi)» ¢(xj)) ;> ¢(x) can be high-dimensional space!

A .
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\%
Not linearly separable in x space Same data, but now linearly separable in ¢(x) space
) &~ T AL = T = »lI® ] A IF 1A & .
Radial Basis Function (RBF) Kernel
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Coordination Function

Zy Coordination function
Modality A A encoder @ |
f Learning with coordination function:
A g(ZA, ZB)
L= g(fa(M), f:(@®)

1111
Zp

Modality B . encoder

I

with model parameters 6,, 6, and 6;,_

Examples of coordination function:
@ Canonical Correlation Analysis (CCA):

argmax corr(z,, Zg)
VrUrfArfB

s CCA includes multiple projections,
all orthogonal with each others
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Correlated Projection

Learn two linear projections, one for each view,
that are maximally correlated:

(u*,v*) = argmax corr(uf X, v'Y)

u,v
ATR vl
SEE =

Two views X, Y where same instances have the same color

s Remember that X and Y consist of paired data
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Canonical Correlation Analysis

We want these multiple projection pairs to be orthogonal
(“canonical”) to each other:

u{l)szvU) = u{j)szv(i) =0 for [ :/:_]

|UszV| = tT(UZXyV) where U = [U(l),u(z),..., u(k)]
and V = [v(1), V(2. .-, V()]

@ Since this objective function is invariant to scaling, we
can constraint the projections to have unit variance:

UTsyyU=1 VIZV=I
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Deep Canonically Correlated Autoencoders (DCCAE)

XI
Text
I BT [

@@ 00

—‘—
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—’—
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U] v
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W] v,uf%vx,wy (He Hy) w,
(rasan
Text Image
X Y

Wang et al., On deep multi-view representation learning, PMLR 2015
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Multi-view Latent “Intact” Space

Given multiple views z; from the same “object”:

View Space Z;

View Space Z,
57 aceds maip

Latent Intact Space

1) There is an “intact” representation which is complete and not damaged

2) The views z; are partial (and possibly degenerated) representations
of the intact representation

Xu et al., Multi-View Intact Space Learning, TPAMI 2015
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Auto-Encoder in Auto-Encoder Network

Reconstructed Text Reconstructed Image
7(M,1) Latent Intact 7(M,2)
00 00 Representation I EET)

2 ¥ GLD H GL2) <,
S/ (09 9@ D) @ e o B @ ) ( ]\
f ©ilee @ oo @ f
\10‘56 SunHelanlk P Lo
o ge el 8 oY
dv@e o0 € %% |9 2% 9 @8 9997
| Degradation Degradation |
QG .- ® Q network network ( o ]

00 - -00] |
Input Text Input Image
x@ x2)

Zhang et al., AE2-Nets: Autoencoder in Autoencoder Networks, CVPR 2019
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Gated Coordination

4

Zy
Modality A/ /BEEE & H mp [TTT] zy = ga(xa,Xp) * X4
XA

N Gated coordination:

zg = gp(xy4,xp) - Xp

Modality B\ NN & H» [TTT]
\J\:B Zp msp Related to attention modules in transformers
J

Viore about it next week!
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Coordination with Contrastive Learning

Contrastive loss:

ey brings closer and
pushes negative pairs apart

Modality A A encoder

fa

Modality B . encoder @
1B Zp Simple contrastive loss:
Paired data: {A ., @} max{0, a + sim(zs, Z5) — Sim(zA'ili)B
(e.g., images and text descriptions) negative pair
A O
B O
A © —
A O N) [t sy Similar to hinge loss
A e — egative pairs
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Example — Visual-Semantic Embeddings

Two contrastive loss terms:

fi I max{0, a + sim(z;, z7) — sim(z,, z;)}

Visual " Y encoder + max{0, a + sim(zy, z]) — sim(zy, z;)}

(image)

Nearest images

- blue + red =

- blue + yellow = SREEESS ‘

R & B
m - bowl + box =

-

JE——

ﬂ - box + bowl =

Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, NIPS 2014

- yellow + red =

- white + red =
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Example — CLIP (Contrastive Language—Image Pre-training)

Language A [ELLL] Popular contrastive loss: InfoNCE

fL

N
. 1 z l sim(zy,z%)
=1

Visual encoder [—j ;
(image) ‘ fV Zy ZI,y:lSrlm(qu,Zé) \,
negative pairs

Positive and negative pairs: and

0o I — wp CLIP encoders (f, and f,) are

7 < T great for language-vision tasks

E z L > b || LTy LT | LT| . |LTy ‘

Sa W L2 e D | R s I s Z;, and z, are coordinated but not

R identical representation spaces

Radford et al., Learning Transferable Visual Models From Natural Language Supervision, arxiv 2021
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Representation
Fission



Sub-Challenge 1c: Representation Fission

Definition: learning a new set of representations that
reflects multimodal internal structure such

>‘< as data factorization or clustering
A ©
Modality-level fission: Fine-grained fission:

Modality A A [LTT] Modality A A
EEEE
Modality B @ (1T Modality B @
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Modality-Level Fission

Information primarily in language modality

« Syntactic structure
« Vocabulary, morphology

Language A

Information in both modalities

» Described people, objects, actions
* |llustrative gestures, motion

Visual O

(image)

Information primarily in visual modality

« Texture, visual appearance
« Depth, perspective, motion
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Modality-Level Fission

Language A I How to learn factorized
I multimodal representations?
Visual O I
(image)
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A Discriminative Approach — Factorized Multimodal Representations

e=z) |
L

_/ proper factorization®

Modality A A

Modality B @
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A Generative-Discriminative Approach

Lo
zAI A
A,/J — "/’,' *‘r /‘,J 7iﬁ A,/,':
[ -

Modality A A

/. /4
~1 ~1
Zyl »)
Lo
. ! ..
Modality B @ C [

e - — e e

Separate priors
for z,, zg and zy

Tsai et al., Learning Factorized Multimodal Representations, ICLR 2019
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Modality-Level Fission — Information Theory

Information primarily in language modality

« Syntactic structure
« Vocabulary, morphology

Language A

Information in both modalities

» Described people, objects, actions
* |llustrative gestures, motion

Visual O

(image)

Information primarily in visual modality

« Texture, visual appearance
« Depth, perspective, motion
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Information and Entropy — Information Theory

Language A How much information in the modality?

X Information Theory ,..non. 1048)
Main Intuitior

x. 12, 34, 45, 62 was not a winning combination” Information content /(x)

:> Not surprising... So, low information I(x)~ ! ;> But how
o o p(x) to scale?
x. “11, 28, 38, 58 was a winning combination”

;; Low chances... So, higher information

1
I(x) =log (ﬁ) = —log(p(x))

Shannon, A Mathematical Theory of Communication, 1948
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Information and Entropy — Information Theory

Language A How much information in the modality?

X Information Theory ,..non. 1048)

Information content 1(X) = —log(p(X))

® For discrete alphabet X, then X is discrete random variable

Entropy: weighted average of all possible outcomes from X

H(X) = EII(0)] = El-log(p(X))] == ) p(Nlog(p(X))

XEX

o Entropy can also be defined for continuous random variables
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Entropy with Two Modalities

7

If no overlapping But in most real-world scenario
information modalities are inter-connected

Modality A A A teacup on the right of a laptop

in a clean room.

Modality B @

Statistical Semantic

Association Dependency Correspondence  Relationship
used for

A=0 A0 AZ%9 ASO
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Entropy with Two Modalities

Modality A A

o

Modality B @

H(®)
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Entropy with Two Modalities

H(A)

Modality A A HA®) Conditional entropy H(Y|X)

?.\\ H(Y|X) = —Exy[logp(y|x)]
Modality B @ o o p(x,y)
il(.m) = Thxy llog p(x) ]

H(®)
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Entropy with Two Modalities

Mutual information I(X;Y)

I(X;Y) = H(X) — HX|Y)
Modality A A

. ny(x, y)
= bxy [l"g PO %8P, ]
o PXY(-X' y)

5 P )Py (7)

Modality B @

I(X, Y) — ]EX,Y [l

I(X;Y) = Dgp (Pxy (x,y) I Px(x)Py(¥))
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Multimodal Fusion with Mutual Information

Assumption?
Information present in both
modalities is most important

for the downstream task

Modality A A ) .
o /4
[(TTT1
YA

Modality B @ )

Colombo et al., Improving Multimodal fusion via Mutual Dependency Maximisation, EMNLP 2021
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Link with Self-Supervised Learning

1) Maximize the mutual information

[(z;@®) and 1(z;A)

®) Related to contrastive learning
Data X

o
e

Information theory gives us a path towards
disentangled representation learning

Tsai et al., Self-Supervised Learning from a Multi-View Perspective, ICLR 2021

2 ) Minimize the conditional entropy

H(z|®) and H(z|A)

Language Technologies Institute 45




Fine-Grained Fission

Modality A A\ How to automatically discover

these internal clusters, factors?

Modality B @
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Fine-Grained Fission — A Clustering Approach

\
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Input Image Feature Maps

Audio ConvNet

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019
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_ _ o _ Discovers
Fine-Grained Fission — A Clustering Approach multiple

audio-visual
Multimodal Fission correspondences

- oEe e S S MmN N SE N We am

Visual ConvNet

Audiovisual
)>

D

W Tl T "m
&his }
g gt P = e [ U

|’ i
kot |

Audio ConvNet
\_ ) \_ Shared C

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019
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Challenge 1: Representation

Definition: Learning representations that reflect cross-modal interactions
between individual elements, across different modalities

Sub-challenges:

Fusion Coordination Fission

A © A © A ©
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