

Language Technologies Institute

Multimodal Machine Learning

Lecture 4.1: Multimodal Representations (Part 2) Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

Administrative Stuff

First Project Assignment

Due date: Sunday 9/25 at 8m

Four main sections:

- Introduction
- Related work
- Experimental setup
- Research ideas

Follows ICML paper format

The two main sections are related work and research ideas

teammates = # research ideas

- Page limit depends on team size:
- 3 students : 4 pages + references
- 4 students : 4.5 pages + references
- 5 students : 5 pages + references
- 6 students : 5.5 pages + references

- No lecture on Tuesday 9/27
- 15-mins meeting with instructor
 - Optional, but highly suggested
 - Not all teammates are required to attend
 - Prepare 2 slides to summarize your research ideas
- Meetings on Tuesday 9/27 and Wednesday 9/28
- Signup form:

https://calendly.com/morency/student-meetings

Language Technologies Institute

Multimodal Machine Learning

Lecture 4.1: Multimodal Representations (Part 2) Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

Objectives of today's class

- Representation fusion
 - Multimodal auto-encoder
 - Fusion from raw modalities
- Representation coordination
 - Coordination functions
 - Kernel similarity functions
 - Canonical correlation analysis
 - Contrastive learning
- Representation fission
 - Factorized multimodal representations
 - Information, entropy and mutual information
 - Clustering and fine-grained fission

Multimodal Representation

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

Sub-challenges:

Sub-Challenge 1a: Representation Fusion

Definition: Learn a joint representation that models cross-modal interactions between individual elements of different modalities

Learning Fusion Representations

How to learn fusion models?

Carnegie Mellon University

Learning Fusion Representations

How to learn fusion models?

What will be the loss function?

Can it hallucinate the other modality?

Multimodal Autoencoder

Ngiam et al, Multimodal Deep Learning, 2011

Learning Fusion Representations

Ngiam et al, Multimodal Deep Learning, 2011

Carnegie Mellon University

Fusion with Raw Modalities

Example: From Early Fusion...

瘚

Language Technologies Institute 13

Fusion with Raw Modalities

Open Challenge!

Example: From Early Fusion... to Very Early Fusion (inspired by human brain)

Barnum, et al. "On the Benefits of Early Fusion in Multimodal Representation Learning." arxiv 2022

Representation Coordination

Sub-Challenge 1b: Representation Coordination

Definition: Learn multimodally-contextualized representations that are coordinated through their cross-modal interactions

Strong Coordination:

Partial Coordination:

Carnegie Mellon University

勜

Coordination Function

Coordination function

Learning with coordination function:

$$\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$$

with model parameters θ_g , θ_{f_A} and θ_{f_B}

Requires paired data

Examples of coordination function:

1) Cosine similarity:

$$g(\mathbf{z}_A, \mathbf{z}_B) = \frac{\mathbf{z}_A \cdot \mathbf{z}_B}{\|\mathbf{z}_A\| \|\mathbf{z}_B\|}$$
Strong coordination!

 \implies For normalized inputs (e.g., $z_A - \overline{z_A}$), equivalent to Pearson correlation coefficient

Coordination Function

Learning with coordination function:

$$\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$$

with model parameters θ_g , θ_{f_A} and θ_{f_B}

Examples of coordination function:

2 Kernel similarity functions:

$$g(\mathbf{z}_{A}, \mathbf{z}_{B}) = k(\mathbf{z}_{A}, \mathbf{z}_{B}) \begin{cases} \cdot \text{ Linear} \\ \cdot \text{ Polynomial} \\ \cdot \text{ Exponential} \\ \cdot \text{ RBF} \end{cases}$$

All these examples bring relatively strong coordination between modalities A kernel function: Acts as a similarity metric between data points

 $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle \implies \phi(\mathbf{x})$ can be high-dimensional space!

Not linearly separable in *x* space

Same data, but now linearly separable in $\phi(x)$ space

Radial Basis Function (RBF) Kernel :
$$K(x_i, x_j) = \exp -\frac{1}{2\sigma^2} ||x_i - x_j||^2$$

Coordination Function

Learning with coordination function:

$$\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$$

with model parameters θ_g , θ_{f_A} and θ_{f_B}

Examples of coordination function:

3 Canonical Correlation Analysis (CCA):

 $\underset{V,U,f_A,f_B}{\operatorname{argmax}} \operatorname{corr}(\mathbf{z}_A, \mathbf{z}_B)$

勜

Correlated Projection

Learn two linear projections, one for each view, that are maximally correlated: $(\boldsymbol{u}^*, \boldsymbol{v}^*) = \operatorname{argmax} corr(\boldsymbol{u}^T \boldsymbol{X}, \boldsymbol{v}^T \boldsymbol{Y})$ View \mathbf{z}_A u,v Y

Two views X, Y where same instances have the same color

 \implies Remember that X and Y consist of paired data

Canonical Correlation Analysis

We want these multiple projection pairs to be orthogonal ("canonical") to each other:

$$\boldsymbol{u}_{(i)}^T \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}} \boldsymbol{v}_{(j)} = \boldsymbol{u}_{(j)}^T \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}} \boldsymbol{v}_{(i)} = \boldsymbol{0} \quad \text{for } i \neq j$$

$$|U\Sigma_{XY}V| = tr(U\Sigma_{XY}V)$$
 where $U = [u_{(1)}, u_{(2)}, ..., u_{(k)}]$
and $V = [v_{(1)}, v_{(2)}, ..., v_{(k)}]$

Since this objective function is invariant to scaling, we can constraint the projections to have unit variance:

$$U^T \Sigma_{XX} U = I \qquad V^T \Sigma_{YY} V = I$$

View \mathbf{z}_A

Deep Canonically Correlated Autoencoders (DCCAE)

Wang et al., On deep multi-view representation learning, PMLR 2015

Multi-view Latent "Intact" Space

Given multiple views z_i from the same "object":

There is an "intact" representation which is *complete* and *not damaged* The views *z_i* are partial (and possibly degenerated) representations of the intact representation

Xu et al., Multi-View Intact Space Learning, TPAMI 2015

Carnegie Mellon University

Auto-Encoder in Auto-Encoder Network

Zhang et al., AE2-Nets: Autoencoder in Autoencoder Networks, CVPR 2019

Gated Coordination

Gated coordination:

$$\mathbf{z}_A = g_A(\mathbf{x}_A, \mathbf{x}_B) \cdot \mathbf{x}_A$$
$$\mathbf{z}_B = g_B(\mathbf{x}_A, \mathbf{x}_B) \cdot \mathbf{x}_B$$

Related to attention modules in transformers

More about it next week!

Coordination with Contrastive Learning

Paired data: $\{ \blacktriangle, \bigcirc \}$

(e.g., images and text descriptions)

Contrastive loss:

brings positive pairs closer and pushes negative pairs apart

Simple contrastive loss:

勜

Example – Visual-Semantic Embeddings

Two contrastive loss terms:

$$\max\{0, \alpha + sim(\mathbf{z}_L, \mathbf{z}_V^+) - sim(\mathbf{z}_L, \mathbf{z}_V^-)\}$$

+ max{0,
$$\alpha$$
 + sim($\mathbf{z}_V, \mathbf{z}_L$) - sim($\mathbf{z}_V, \mathbf{z}_L$)}

Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, NIPS 2014

Carnegie Mellon University

Example – CLIP (Contrastive Language–Image Pre-training)

Positive and negative pairs:

Popular contrastive loss: InfoNCE

CLIP encoders (f_L and f_V) are great for language-vision tasks

 z_L and z_V are coordinated but not identical representation spaces

Radford et al., Learning Transferable Visual Models From Natural Language Supervision, arxiv 2021

Representation Fission

Sub-Challenge 1c: Representation Fission

Definition: learning a new set of representations that reflects multimodal internal structure such as data factorization or clustering

Modality-level fission:

Fine-grained fission:

Modality-Level Fission

Information primarily in language modality

- Syntactic structure
- Vocabulary, morphology

Information in both modalities

- Described people, objects, actions
- Illustrative gestures, motion

Information primarily in visual modality

- Texture, visual appearance
- Depth, perspective, motion

. . .

Modality-Level Fission

How to learn factorized multimodal representations?

🚸 Language Technologies Institute

Carnegie Mellon University

A Discriminative Approach – Factorized Multimodal Representations

A Generative-Discriminative Approach

Tsai et al., Learning Factorized Multimodal Representations, ICLR 2019

Modality-Level Fission – Information Theory

Information primarily in language modality

- Syntactic structure
- Vocabulary, morphology

Information in both modalities

- Described people, objects, actions
- Illustrative gestures, motion

Information primarily in visual modality

- Texture, visual appearance
- Depth, perspective, motion

勜

. . .

. . .

Information and Entropy – Information TheoryLanguage xxxHow much information in the modality?Information Theory (Shannon, 1948)

Main intuition: "Information value" of a communicated message *x* depends on how surprising its content is

x: "12, 34, 45, 62 was not a winning combination"
 Not surprising... So, low information

x: "11, 28, 38, 58 was a winning combination" \Rightarrow Low chances... So, higher information

Information content
$$I(x)$$

 $I(x) \sim \frac{1}{p(x)} \implies \text{But how}$
to scale?
 $I(x) = \log\left(\frac{1}{p(x)}\right) = -\log(p(x))$

Shannon, A Mathematical Theory of Communication, 1948

Information and Entropy – Information Theory

How much information in the modality?

Information Theory (Shannon, 1948)

Information content $I(X) = -\log(p(X))$

For discrete alphabet \mathcal{X} , then X is discrete random variable

Entropy: weighted average of all possible outcomes from ${\mathcal X}$

$$H(X) = \mathbb{E}[I(X)] = \mathbb{E}[-\log(p(X))] = -\sum_{x \in \mathcal{X}} p(X)\log(p(X))$$

Entropy can also be defined for continuous random variables

勜

Carnegie Mellon University

Conditional entropy H(Y|X)

 $H(Y|X) = -\mathbb{E}_{X,Y}[\log p(y|x)]$

$$= -\mathbb{E}_{X,Y}\left[\log\frac{p(x,y)}{p(x)}\right]$$

勜

Multimodal Fusion with Mutual Information

Assumption?

Information present in both modalities is most important for the downstream task

Colombo et al., Improving Multimodal fusion via Mutual Dependency Maximisation, EMNLP 2021

Link with Self-Supervised Learning

1 Maximize the mutual information

 $I(\mathbf{z}; \bigcirc)$ and $I(\mathbf{z}; \bigtriangleup)$

Related to contrastive learning

2 Minimize the conditional entropy

 $H(\mathbf{z}|)$ and $H(\mathbf{z}|)$

Information theory gives us a path towards disentangled representation learning

Tsai et al., Self-Supervised Learning from a Multi-View Perspective, ICLR 2021

How to automatically discover these internal clusters, factors?

Fine-Grained Fission – A Clustering Approach

Unimodal Encoders

Localized activations for different objects

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019

Carnegie Mellon Universit

🐞 Language Technologies Institute

Carnegie Mellon Universit

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

Sub-challenges:

