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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 4.2: Multimodal alignment

* Co-lecturer: Paul Liang. Original course co-developed 

with Tadas Baltrusaitis. Spring 2021 and 2022 editions 

taught by Yonatan Bisk. 
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Administrative Stuff
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Classes Tuesday Lectures Thursday Lectures
Week 1
8/30 & 9/1

Course introduction 
● Multimodal core challenges
● Course syllabus 

Multimodal applications and datasets
● Research tasks and datasets
● Team projects

Week 2 
9/6 & 9/8
Read due: 9/9

Basic concepts: neural networks
● Loss functions and neural networks
● Gradient and optimization

Unimodal representations
● Dimensions of heterogeneity 
● Visual representations

Week 3 
9/13 & 9/15
Read due: 9/16
Proj. Due: 9/14

Unimodal representations
● Language representations
● Signals, graphs and other modalities

Multimodal representations
● Cross-modal interactions
● Multimodal fusion

Week 4
9/20 & 9/22
Proj. due: 9/25

Multimodal representations
● Coordinated representations
● Multimodal fission

Multimodal alignment
● Explicit alignment
● Multimodal grounding

Week 5 
9/27 & 9/29
Read due: 9/30

Project hours (Research ideas) Aligned representations
● Self-attention transformer models
● Masking and self-supervised learning

Week 6 
10/4 & 10/6
Proj. due: 10/9

Multimodal aligned representations
● Multimodal transformers
● Video and graph representations

Multimodal Reasoning
● Structured and hierarchical models
● Memory models

Lecture Schedule

Second assignment 

due on Sunday 10/9

First assignment due 

on Sunday 9/25



4

Classes Tuesday Lectures Thursday Lectures
Week 7
10/11 & 10/13
Read due: 10/14

Multimodal Reasoning
● Reinforcement learning
● Discrete structure learning

Multimodal Reasoning 
● Logical and causal inference
● External knowledge

Week 8 
10/18 & 10/20

Fall Break – No lectures

Week 9 
10/25 & 10/27
Proj. due: 10/30

Generation 
● Translation, summarization, creation
● Generative models: VAEs

Generation 
● GANs and diffusion models
● Model evaluation and ethics

Week 10 
11/1 & 11/3

Project presentations (midterm) Project presentations (midterm)

Week 11 
11/8 & 11/10
Read due: 11/12

Transference
● Modality transfer 
● Multimodal co-learning

Quantification
● Heterogeneity and interactions
● Biases and fairness

Week 12
11/15 & 11/17
Read due: 11/21

Project hours (Research ideas) New research directions 
● Recent approaches in multimodal ML

Lecture Schedule

Midterm assignment 

due on Sunday 10/30
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Classes Tuesday Lectures Thursday Lectures
Week 13
11/22 & 11/24

Thanksgiving Week – No Class –

Week 14 
11/30 & 12/2

Language, Vision, and Actions
● Robots, navigation and embodied AI
● Guest lecturer: Yonatan Bisk

Multimodal Language Grounding
● Grounded semantics and pragmatics
● Guest lecturer: Daniel Fried

Week 15 
12/6 & 12/8
Proj. due: 12/11

Project presentations (final) Project presentations (final)

Lecture Schedule

Final assignment due 

on Sunday 12/11
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Team Meetings with Instructor

Sign-up deadline: Sunday 9/25 at 11pm

▪ No lecture on Tuesday 9/27

▪ 15-mins meeting with instructor

▪ Optional, but highly suggested

▪ Not all teammates are required to attend

▪ Prepare 2 slides to summarize your research ideas

▪ Meetings on Tuesday 9/27 and Wednesday 9/28

▪ Signup form:

https://calendly.com/morency/student-meetings

https://calendly.com/morency/student-meetings
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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 4.2: Multimodal alignment

* Co-lecturer: Paul Liang. Original course co-developed 

with Tadas Baltrusaitis. Spring 2021 and 2022 editions 

taught by Yonatan Bisk. 
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Lecture objectives

▪ Fine-grained fission
▪ Cluster-based approach

▪ Discrete alignment
▪ Local alignment

▪ Coordinated representations; hard and soft attention

▪ Global alignment
▪ Assignment problem and optimal transport

▪ Continuous alignment
▪ Continuous warping

▪ Dynamic time warping

▪ Discretization and segmentation



Fine-Grained 

Fission
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Sub-Challenge 1c: Representation Fission

Definition: learning a new set of representations that 

reflects multimodal internal structure such 

as data factorization or clustering

Modality-level fission:

Modality A

Modality B

Fine-grained fission:

Modality A

Modality B

How to automatically discover these 

internal clusters, factors?
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Fine-Grained Fission – A Clustering Approach

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019

Unimodal Encoders

Localized activations for different objects
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Fine-Grained Fission – A Clustering Approach

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019

Unimodal Encoders Multimodal Fission

Explores different 

shared spaces (clusters)

Discovers

multiple 

audio-visual 

correspondences
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Challenge 1: Representation

Fusion Coordination Fission

Sub-challenges: 

Definition: Learning representations that reflect cross-modal interactions 

between individual elements, across different modalities
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Challenge 2: 

Alignment
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Challenge 2: Alignment

Sub-challenges: 

Definition: Identifying and modeling cross-modal connections between all 

elements of multiple modalities, building from the data structure

Discrete 

Alignment

Contextualized

Representation

Continuous 

Alignment

Discrete elements 

and connections
AlignmentSegmentation and 

continuous warping
+ representation 
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Sub-Challenge 2a: Discrete Alignment

Local Global

Definition: Identify and model connections 

between elements of multiple modalities

Undirected

Directed
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Semantic

Correspondence

e.g., grounding

laptop

Statistical

Association

e.g., correlation, 

co-occurrence

=

Connections

Why should 2 elements be connected? 

Dependency

e.g., causal, 

temporal

Relationship

used for

e.g., function
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Relationships and Dependencies will be 

discussed in more details in Reasoning challenge

Connections

Statistical Semantic

Association

e.g., correlation, 

co-occurrence

Dependency

e.g., causal, 

temporal

Correspondence

e.g., grounding

Relationship

= laptop used for

e.g., function

Why should 2 elements be connected? 
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Language Grounding

A woman reading newspaper

Statistical Semantic

Association

e.g., correlation, 

co-occurrence

Dependency

e.g., causal, 

temporal

Correspondence

e.g., grounding

Relationship

= laptop used for

e.g., function

Definition: Tying language (words, phrases,…) 

to non-linguistic elements, such as the 

visual world (objects, people, …)
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Local Alignment – Coordinated Representations

A woman reading newspaper

Supervision: Paired data

1

2

1

2

3

4

3

4

Visual

Language

Modality A

Modality B

encoder

encoder

𝑓𝐴

𝑓𝐵 𝒛𝐵

𝒛𝐴

Learning coordinated representations:

or contrastive learning

𝑔 𝒛𝐴, 𝒛𝐵

Similarity 

function

Common 

information
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Directed Alignment

A woman is throwing a frisbee
(query)

(key)

2 Hard attention

1 Soft attention

Modality A

Modality B Which 

object?

Attention
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Directed Alignment – Image Captioning

Should we always use the final layer of 

the CNN for all generated words?

A woman is throwing(query)

(key)

Modality A

Modality B
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Directed Alignment – Image Captioning

Distribution 

over L 

locations

Expectation over 

features: D

𝑎1

𝑠0 𝑠1

𝑧1 𝑦0

𝑎2 𝑑1

𝑠2

𝑧2 𝑦1

𝑎3 𝑑2

First word

Output 

word
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Attention Gates

Before:

𝑝 𝑦𝑖 𝑦1, … , 𝑦𝑖−1, 𝒙 = 𝑔(𝑦𝑖−1, 𝒔𝑖 , 𝒛), 

where 𝒛 = 𝒉𝑇, last encoder state and 𝒔𝑖 is the current state of the decoder

Now:

𝑝 𝑦𝑖 𝑦1, … , 𝑦𝑖−1, 𝒙 = 𝑔(𝑦𝑖−1, 𝒔𝑖 , 𝒛𝑖)

Have an attention “gate” 

▪ A different context 𝒛𝑖 used at each time step!

▪ 𝒛𝑖 = σ𝑗=𝑖
𝑇𝑥 𝛼𝑖𝑗𝒉𝑗

𝛼𝑖𝑗 is the (scalar) attention for word j at generation step i
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Attention Gates

So how do we determine 𝛼𝑖𝑗?

𝛼𝑖,𝑗 =
exp(𝑒𝑖𝑗)

σ
𝑘=1
𝑇𝑥 exp(𝑒𝑖𝑘)

=>  softmax, making sure they sum to 1

where:

𝑒𝑖𝑗 = 𝒗𝑇 𝜎 𝑊𝑠𝑖−1 + 𝑈ℎ𝑗
a feedforward network that can tell us how important the current encoding is

𝒗, 𝑊,𝑈– learnable weights

𝑧𝑖 = σ𝑗=𝑖
𝑇𝑥 𝛼𝑖𝑗ℎ𝑗

expectation of the context (a fancy way to 

say it’s a weighted average)
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Example – Image Captioning

[Show, Attend and Tell: Neural 

Image Caption Generation with 

Visual Attention, Xu et al., 2015] 



27

27

Hard attention - Example
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Hard Attention – Recurrent Model of Visual Attention

location

what

where

image
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Global Alignment

Visual

Language

Modality A

Modality B

encoder

encoder

𝑓𝐴

𝑓𝐵 𝒛𝐵

𝒛𝐴

(representation)

𝑔 𝒛𝐴, 𝒛𝐵

Coordination 

function

(global alignment)

Jointly optimize representation + global alignment:

𝑔 𝒛𝐴, 𝒛𝐵

Latent pairing information
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Assignment Problem

𝑔 𝒛𝐴, 𝒛𝐵

Bipartite Graph

𝐵𝐴

Similarity weights:

Assignment: 𝑓: 𝐴 → 𝐵

𝑤(𝑖,𝑓 𝑖 ) = 𝑔(𝒛𝐴
𝑖 , 𝒛𝐵

𝑓(𝑖)
)

max
𝑓∈Perm(𝑁)

෍

𝑖=1

𝑁

𝑤𝑖,𝑓 𝑖Maximize:

Initial assumptions: 

• Same number of elements in A and B modalities 

• 1-to-1 “hard” alignment between elements

• All elements assigned (aka “perfect matching”)

(vector of indices)

How to solve?

Naive solution: check all assignments

Better solution: Linear Programming

𝑥𝑖𝑗 = 1 when matching connection, otherwise 0

𝑤(𝑖,𝑗) = 𝑔(𝒛𝐴
𝑖 , 𝒛𝐵

𝑗
)

max
{𝑥𝑖𝑗}

෍

(𝑖,𝑗)∈𝐴×𝐵

𝑤𝑖,𝑗𝑥𝑖𝑗
Can be solved with 

simplex algorithm
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Optimal transport

𝑔 𝒛𝐴, 𝒛𝐵

Bipartite Graph

𝐵𝐴

New assumptions: 

• Different number of elements in A and B modalities 

• Many-to-many “soft” alignment between elements

Similarity weights:

Assignments:

Maximize:

𝑤(𝑖,𝑗) = 𝑔(𝒛𝐴
𝑖 , 𝒛𝐵

𝑗
)

𝑥(𝑖,𝑗): soft alignment between 𝒛𝐴
𝑖 and 𝒛𝐵

𝑗

max
{𝑥𝑖𝑗}

෍

(𝑖,𝑗)∈𝐴×𝐵

𝑤𝑖,𝑗𝑥𝑖𝑗

It can be seen as “transporting” elements 

from modality A to modality B (and vice-versa) 

Wassertein distance 

give optimal transport
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Continuous 

Alignment
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Challenge 2b: Continuous Alignment

Definition: Model alignment between modalities with 

continuous signals and no explicit elements

Continuous 

warping
Discretization

(segmentation)
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Continuous Warping – Example 

Aligning video sequences
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Dynamic Time Warping (DTW)

We have two unaligned temporal unimodal signals

▪ 𝐗 = 𝒙1, 𝒙2, … , 𝒙𝑛𝑥 ∈ ℝ𝑑×𝑛𝑥

▪ 𝐘 = 𝒚1, 𝒚2, … , 𝒚𝑛𝑦 ∈ ℝ𝑑×𝑛𝑦

𝐿(𝒑𝑥, 𝒑𝑦) = ෍

𝑡=1

𝑙

𝒙𝒑𝑡𝑥 − 𝒚𝒑𝑡
𝑦

2

2

Find set of indices to minimize the alignment difference:

Dynamic Time Warping is designed to find these index vectors!

where 𝒑𝑥and 𝒑𝑦are index vectors of same length
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Dynamic Time Warping (DTW)

(𝒑1
𝑥, 𝒑1

𝑦
)

(𝒑𝑙
𝑥, 𝒑𝒍

𝑦
)

(𝒑𝑡
𝑥 , 𝒑𝒕

𝑦
)

Lowest cost path in a cost matrix

▪ Restrictions?
▪ Monotonicity – no going back in time

▪ Continuity  - no gaps

▪ Boundary conditions - start and end at the 

same points

▪ Warping window - don’t get too far from 

diagonal

▪ Slope constraint – do not insert or skip too 

much

Solved using dynamic programming 

while respecting the restrictions
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DTW alternative formulation

Replication doesn’t change the objective!

𝐿(𝒑𝑥 , 𝒑
𝑦
) = ෍

𝑡=1

𝑙

𝒙𝒑𝑡𝑥
− 𝒚𝒑𝑡

𝑦

2

2

= 𝐗𝐖𝑥
=

= 𝐘𝐖y

Alternative objective:

𝐿(𝑾𝒙,𝑾𝒚) = 𝑿𝑾𝑥 − 𝒀𝑾𝑦 𝐹

2
𝑿, 𝒀 – original signals (same #rows, possibly 

different #columns) 

𝑾𝑥,𝑾𝑦 - alignment matrices

Frobenius norm 𝑨 𝐹
2 = σ𝑖σ𝑗 𝑎𝑖,𝑗

2

𝑾𝒙

𝑾𝒚

A differentiable version of DTW also exists… 

https://arxiv.org/pdf/1703.01541.pdf

https://arxiv.org/pdf/1703.01541.pdf
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Canonical Correlation Analysis – Reminder 

CCA loss can also be re-written as:

𝐿(𝑼, 𝑽) = 𝐔𝑇𝐗 − 𝐕𝑇𝐘 𝐹
2

· · · · · ·

Text Image

𝒀𝑿

projection of X

p
ro

je
c
ti
o
n

 o
f 
Y

𝑼 𝑽

· · · · · ·

𝑯𝒙 𝑯𝒚subject to:

𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰, 𝒖(𝑗)
𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎
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Canonical Time Warping

Dynamic Time Warping + Canonical Correlation Analysis = Canonical Time 

Warping

Allows to align multi-modal or multi-view (same modality but from a different 

point of view)

▪ 𝑾𝒙,𝑾𝒚 – temporal alignment

▪ 𝑼,𝑽 – cross-modal (spatial) alignment

[Canonical Time Warping for Alignment of Human Behavior, Zhou and De la Tore, 2009]

𝐿(𝑼, 𝑽,𝑾𝒙,𝑾𝒚) = 𝐔𝑇𝐗𝐖𝐱 − 𝐕𝑇𝐘𝐖𝐲 𝐹

2
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Premise: we have paired video sequences 

that can be be temporally aligned 

Temporal Alignment and Neural Representation Learning

How can we define a loss function to enforce 

the alignment between sequences while at the 

same time learning good representations?
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Solution: Representation learning by enforcing Cycle consistency

Temporal Cycle-Consistency Learning

Main idea: My closest neighbor also views me as their closest neighbor
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Compute “soft” / “weighted” nearest neighbour:

Temporal Cycle-Consistency Learning

distances: Soft nearest neighbor:

Find the nearest neighbor the other way and then penalize the distance:

penalty!
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Discretization (aka Segmentation)

objects

Common assumptions: Segmented elements1

Images

? ? ?

???

SignalsMedical imaging

Examples:
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t  ah  m  aa  t  ow

Discretization – Example 

Spectogram

Phonemes

How can we predict the sequence 

of phoneme labels?

Sequence Labeling and Alignment
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Discretization – Example 

t  ah  m  aa  t  ow

Spectogram

Phonemes Challenge: many-to-1 alignment

t   ah       m   aa 

How can we predict the sequence 

of phoneme labels?

Sequence Labeling and Alignment
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Discretization – A Classification Approach

t  ah  m  aa  t  ow

Spectogram (𝒙)

Phonemes (𝒛)

softmax1 Output activations (distribution):

C
T

C

𝑦1
𝑡

… … … … …𝑦𝐿
𝑡
𝑦𝐿+1
𝑡

2 Path 𝝅 over the activations:

3 Predicted labels 𝒍

𝒍
4 Most probable sequence labels

for ‘blank’ or no label

Connectionist Temporal Classification

Grave et al., Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks, ICML 2006
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Discretization and Representation – Cluster-based Approaches

Self-attention Transformer

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

K-mean

clustering

𝑐1 𝑐2 𝑐1 𝑐3 𝑐2

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

linearlinear

HUBERT: Hidden-Unit BERT

Hsu et al., HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units, arxiv 2021

Speech
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Challenge 2: Alignment

Sub-challenges: 

Definition: Identifying and modeling cross-modal connections between all 

elements of multiple modalities, building from the data structure

Discrete 

Alignment

Contextualized

Representation

Continuous 

Alignment

Discrete elements 

and connections

Implicit alignmentSegmentation and 

continuous warping + representation 

Next week!


