

Multimodal Machine Learning

Lecture 5.2: Aligned Representations

Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yanatan Bisk.

Administrative Stuff

Deadline

Please submit your feedback about this course before this Wednesday 10/5

Optional, but greatly appreciated! ©

Anonymous, by default.

 You can optionally share your email address if you want us to follow-up with you directly.

Main goals:

- 1. Help clarify and expand your research ideas
 - Build qualitative intuitions by directly studying the original data
 - Perform analyses on your dataset, relevant to your research ideas
- 2. Understand the structure in your data and modalities
 - Perform analyses and visualizations to understand each modality
 - Study representations from CNNs, word2vec, BERT, ...

Two types of analyses:

- Idea-oriented analyses
- Modality-oriented analyses

Examples of idea-oriented analyses:

- What external knowledge is needed when performing the task?
- How often multimodal information is needed? How is it integrated?
- What biases may be present in the data? Which modalities?

Examples of **modality-oriented** analyses:

- What are the different verbs used in the VQA questions?
- What objects do not get detected? Are they important?
- Visualize face embeddings with respect of emotion labels

5

Idea-oriented analyses:

- Human simulations: Instead of a computer, try to do the same task as a human. Gather notes on how you perform the task.
- Data analysis: study the multimodal data (e.g., using statistical methods) to clarify your hypotheses related to your research ideas

Modality oriented analyses:

- Language modality: explore the language structure in your dataset.
 You can compare word-level and sentence-level embeddings.
- Visual modality: study visual representations for your dataset. You visualize how your visual features successfully model your labels.

Number of analyses:

- Teams of 3 or 4 students: 2 analyses (4 pages)
- Teams of 5 or 6 students: 3 analyses (6 pages)
- > You can mix and match between idea-oriented and modality-oriented
- > Be sure to talk with your TA about formalizing your analysis plan
- > Each analysis need a separate discussion section

Detailed instructions on Piazza (Resources section)

Multimodal Machine Learning

Lecture 5.2: Aligned Representations

Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

Objectives of today's class

- Contextualized sequence representations
- Transformer networks
 - Self-attention
 - Multi-head attention
 - Position embeddings
 - Sequence-to-sequence modeling
- Multimodal contextualized embeddings
- Language pre-training
 - BERT pre-training and fine-tuning

Contextualized Sequence Representations

Sequence Encoding - Contextualization

How to encode this sequence while modeling the interaction between elements (e.g., words)?

Option 1: Bi-directional LSTM:

(e.g., ELMO)

But harder to parallelize...

Sequence Encoding - Contextualization

Option 2: Convolutions

Can be parallelized!

But modeling long-range dependencies require multiple layers

And convolutional kernels are static

Sequence Encoding - Contextualization

Option 3: Self-attention

Can be parallelized!

Long-range dependencies

Dynamic attention weights

Self-Attention

Self-Attention

Self-Attention

What if we want to attend simultaneously to multiple subspaces of x?

What happens if the words are shuffled?

Position embeddings

☐ Position information is not encoded in a self-attention module

How can we encode position information?

Simple approach: one-hot encoding

Position embeddings

☐ Position information is not encoded in a self-attention module

How can we encode position information?

Transformer – Residual Connection

Sequence-to-Sequence Using Transformer

Sequence-to-Sequence Modeling

How should we connect the encoder and decoder self-attention to the transformer attention?

Language Pre-training

Token-level and Sentence-level Embeddings

Token-level embeddings

Sentence-level embedding

Pre-Training and Fine-Tuning

BERT: Bidirectional Encoder Representations from Transformers

Advantages:

- Jointly learn representation for token-level and sentence level
- 2 Same network architecture for pre-training and fine-tuning

BERT: Bidirectional Encoder Representations from Transformers

Advantages: Jointly learn representation for token-level and sentence level Same network architecture for pre-training and fine-tuning Can be used learn relationship between sentences Models bidirectional and long-range interactions between tokens h_5 h_{sep} h_{S} How can we do all this? do like it not enjoy

41

BERT: Bidirectional Encoder Representations from Transformers

Advantages:

- 1 Jointly learn representation for token-level and sentence level
- Same network architecture for pre-training and fine-tuning
- 3 Can be used learn relationship between sentences
- Models bidirectional interactions between tokens

Pre-training BERT Model

Randomly mask input tokens and then try to predict them

What is the loss function?

Pre-training BERT Model

Given two sentences, predict if this is the next one or not

What is the loss function?

Three Embeddings: Token + Position + Sentence

1 Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification

How?

1 Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification

2 Token-level classification for only one sentence

Examples: part-of-speech tagging, slot filling

How to compare two sentences?

48

3 Sentence-level classification for two sentences

Examples: natural language inference

Question-answering: find start/end of the answer in the document

Paragraph: "... Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society—the species were relatively rare—and little opposition was raised."

Question 1: "Which laws faced significant opposition?"

Plausible Answer: later laws

Question 2: "What was the name of the 1937 treaty?"

Plausible Answer: Bald Eagle Protection Act

Language Technologies Institute

4 Question-answering: find start/end of the answer in the document

And Many More... Next week!

