

Language Technologies Institute

## Lecture 6.2: Multimodal Aligned Representations

Louis-Philippe Morency

[^0]
## Administrative Stuff



Course Feedback - 11777 Fall 2022


## Deadline

Please submit your feedback about this course before this Wednesday 10/5

Optional, but greatly appreciated! :

Anonymous, by default.

- You can optionally share your email address if you want us to follow-up with you directly.


## Second Project Assignment (Due Monday 10/10)

## Main goals:

1. Help clarify and expand your research ideas

- Build qualitative intuitions by directly studying the original data
- Perform analyses on your dataset, relevant to your research ideas

2. Understand the structure in your data and modalities

- Perform analyses and visualizations to understand each modality
- Study representations from CNNs, word2vec, BERT, ...

Two types of analyses:

- Idea-oriented analyses
- Modality-oriented analyses


Language Technologies Institute

## Lecture 6.2: Alignment and Representation

Louis-Philippe Morency

[^1]
## Objectives of today's class

- Transformer pre-training
- BERT: Bidirectional Encoder Representations from Transformers
- Multimodal transformers (Image and language)
- Concatenated transformers (VisualBERT, Uniter)
- Crossmodal transformers (ViLBERT, LXMERT
- Modality-shift transformer (MAG-BERT)
- Video and language transformers (VideoBERT, ActBERT)
- Visual transformers
- Vision transformer, Masked Auto-Encoder
- Visual-and-language transformer (ViLT, ALBEF)


## BERT: Transformer Pre-training

## Transformer Self-Attention



## Transformer - Residual Connection



## BERT: Bidirectional Encoder Representations from Transformers

## Advantages:

(1) Jointly learn representation for token-level and sentence level
(2) Same network architecture for pre-training and fine-tuning


## BERT: Bidirectional Encoder Representations from Transformers



## BERT: Bidirectional Encoder Representations from Transformers

## Advantages:

(1) Jointly learn representation for token-level and sentence level
(2) Same network architecture for pre-training and fine-tuning
(3) Can be used learn relationship between sentences
(4) Models bidirectional interactions between tokens


## Pre-training BERT Model

(1) Masked Language Model

Randomly mask input tokens and then try to predict them What is the loss function?


## Pre-training BERT Model

(2) Next Sentence Prediction

Given two sentences, predict if this is the next one or not


Fine-Tuning BERT
(1) Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification
How?


## Fine-Tuning BERT

(1) Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification


Fine-Tuning BERT
(2) Token-level classification for only one sentence

Examples: part-of-speech tagging, slot filling


How to compare two
sentences?

## Fine-Tuning BERT

(4) Question-answering: find start/end of the answer in the document

Paragraph: " ... Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society-the species were relatively rare-and little opposition was raised."

Question 1: "Which laws faced significant opposition?" Plausible Answer: later laws

Question 2: "What was the name of the 1937 treaty?" Plausible Answer: Bald Eagle Protection Act


Fine-Tuning BERT
(4) Question-answering: find start/end of the answer in the document


## Other Fine-tuning Approaches



## Multimodal Transformers

## Multimodal Embeddings



Option 1: Concatenate modalities and learn BERT transformer

## Simple Solution: Contextualized Multimodal Embeddings



## VisualBERT



A person hits a ball with a tennis racket


Li, Liunian Harold, et al. "Visualbert: A simple and performant baseline for vision and language." arXiv (2019).

## UNITER

Similar Transformer architecture to BERT and VisualBERT... but with slightly different optimization


## Multimodal Embeddings



Option 2: Look at pairwise interactions between modalities

Multimodal Transformer - Pairwise Cross-Modal


Cross-Modal Transformer Module ( $V \rightarrow L$ )


Similarities:

## Cross-Modal Transformer Module ( $V \rightarrow L$ )



Cross-Modal Transformer Module $(\beta \rightarrow \alpha)$


Tsai et al., Multimodal Transformer for Unaligned Multimodal Language Sequences, ACL 2019

## ViLBERT



Lu, Jiasen, et al. "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." arXiv (August 6, 2019).

## LXMERT



Tan, Hao, and Mohit Bansal. "Lxmert: Learning cross-modality encoder representations from transformers." arXiv (August 20, 2019).

## Reminder: Modality-Shifting Fusion



## Modality-Shifting with Transformers

## Multimodal Adaptation Gate (MAG) + BERT



## Video-based Representation and Alignment

## HowTo100M benchmark dataset



| Category | Tasks | Videos | Clips |
| :--- | ---: | ---: | ---: |
| Food and Entertaining | 11504 | 497 k | 54.4 M |
| Home and Garden | 5068 | 270 k | 29.5 M |
| Hobbies and Crafts | 4273 | 251 k | 29.8 M |
| Cars \& Other Vehicles | 810 | 68 k | 7.8 M |
| Pets and Animals | 552 | 31 k | 3.5 M |
| Holidays and Traditions | 411 | 27 k | 3.0 M |
| Personal Care and Style | 181 | 16 k | 1.6 M |
| Sports and Fitness | 205 | 16 k | 2.0 M |
| Health | 172 | 15 k | 1.7 M |
| Education and Communications | 239 | 15 k | 1.6 M |
| Arts and Entertainment | 138 | 10 k | 1.2 M |
| Computers and Electronics | 58 | 5 k | 0.6 M |
| Total | 23.6 k | 1.22 M | 136.6 M |

## Visual Representations from Uncurated Instructional Videos

Goal: Learn better visual representations...
... by taking advantage of large-scale video+language resources

Instructional videos
(weakly-paired data)

it's turning into a much thicker mixture


The biggest mistake is not kneading it enough


End-to-End Learning of Visual Representations from Uncurated Instructional Videos
Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman - CVPR 2020

## Weakly Paired Data

Data point: "a short 3.2 seconds video clip ( 32 frames at 10 FPS) together with a small number of words (not exceeding 16)"


End-to-End Learning of Visual Representations from Uncurated Instructional Videos
Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman - CVPR 2020

## Another Approach for Weakly-Paired Video Data



## How do we get visual words now? K-mean clustering <br> + centroid

## ActBERT



Global stacked frames Local object regions

## Going Beyond CNNs...

 Vision Transformers (and more!)
## Replacing a CNN w/ Self-Attention



Convolution
Input

How well the query matches the keys? (How well the pixel matches its neighbors?)

https://arxiv.org/abs/1906.05909

## Replacing a CNN w/ Self-Attention



Position embedding is added to the key:

$$
y_{i j}=\sum_{a, b \in \mathcal{N}_{k}(i, j)} \operatorname{softmax}_{a b}\left(q_{i j}^{\top} k_{a b}+q_{i j}^{\top} r_{a-i, b-j}\right) v_{a b}
$$

## Vision Transformer (ViT)

## Vision Transformer (ViT)



Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv (2020).

## Masked Auto-Encoder (MAE)



He et al., Masked Autoencoders Are Scalable Vision Learners, CVPR 2022

## Masked Auto-Encoder (MAE)



He et al., Masked Autoencoders Are Scalable Vision Learners, CVPR 2022

## Visual Transformers for Multimodal Learning


( $\approx$ BERT + ViT $)$

## Visual-and-Language Transformer (ViLT) ( $\approx$ BERT + ViT)

## Optimal transport



## Visual-and-Language Transformer (ViLT)

## Example of alignment between modalities:


a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.

a room with a rug, a chair, a painting, and a plant.

https://arxiv.org/abs/2102.03334

## ALBEF: Align Before Fusion ( $\approx$ BERT + ViT + CLIP-ish $)$



Li et al., Align before Fuse: Vision and Language Representation Learning with Momentum Distillation, Neurips 2021


[^0]:    * Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions
    taught by Yanatan Bisk.

[^1]:    * Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yesnatan Bisk.

