
Paul Liang

Multimodal Machine Learning
Lecture 6.2: Reasoning 1
Structure + Compositionality

* Original course co-developed with Tadas Baltrusaitis.  
Spring 2021 edition taught by Yonatan Bisk
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Reasoning

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

Modality A

Modality B

+ Aligned representation

Reasoning 𝒚

Local representation
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The Challenge of Compositionality

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

[Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality. CVPR 2022]

CLIP, ViLT, ViLBERT, etc.
All random chance 

1. Structure: <subject> <verb> <object>
2. Concepts: ‘plants’, ‘lightbulb’
3. Inference: ‘surrounding’ – spatial relation
4. Knowledge: from humans!

Compositional Generalization
to novel combinations outside 

of training data
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The Challenge of Compositionality

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

[Saharia et al., Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. arXiv 2022]
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Many Debates Surrounding Reasoning

Fully
data-driven
Bottom-up

Fully domain 
knowledge
Top-downHybrid/neuro-symbolic

1. Differentiable?
2. Discrete or continuous

concepts or representations?
3. Best mix of knowledge and data?

Implications on: interpretability, 
robustness, fairness, data + model 

efficiency, etc.
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Sub-Challenge 3a: Structure Modeling

Structure
Single-step Temporal Hierarchical Interactive

Multi-step

Discovery

𝒚

𝒚

Definition: Defining or learning the relationships over which reasoning occurs.
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Structure

Concepts

Single-step Multi-step

Continuous

Discrete

Sub-Challenge 3b: Intermediate Concepts

Definition: The parameterization of individual multimodal concepts in the reasoning process.

or

or

words
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Structure

Concepts

Single-step Multi-step

Sub-Challenge 3c: Inference Paradigm

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

∧

Inference

Representation

Causal

Logical

𝑡𝑟𝑢𝑒

𝑧

Continuous

Discrete
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Sub-Challenge 3d: External Knowledge

Structure

Concepts

Inference

Single-step Multi-step

Knowledge

Definition: Leveraging external knowledge in the study of structure, concepts, and inference.

Representation

Logical

Causal

Continuous

Discrete
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Reasoning

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

∧ 𝑡𝑟𝑢𝑒

𝑧
or

or

words
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Roadmap for Next 3 Lectures

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

Causal
LogicalNext Thursday

Today Temporal
Hierarchical Continuous 

Interactive
DiscoveryNext Tuesday

Knowledge 
Commonsense

Discrete 
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Reasoning

Recall representation fusion!
Basic fusion:

Modality A

Modality B

FusionHomogenous

Complex fusion:

Modality A

Modality B

FusionHeterogenous

Ideas also apply here, but can we be explicitly interpretable and robust?

Structure
Single-step

Concepts
Inference

Dense
Representation
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Sub-Challenge 3a: Structure Modeling
Definition: Defining or learning the relationships over which composition occurs.  

Structure
Single-step Temporal Hierarchical Interactive

Multi-step

Discovery

𝒚

𝒚
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Sub-Challenge 3a: Structure Modeling

Single-step

Concepts

Dense

Temporal

Multi-step

Structure

Inference

Representation
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Temporal Structure

Temporal structure in multi-view sequences

How can we capture cross-modal interactions across time?

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻...

Connections + interactions
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Temporal Structure

Temporal structure in multi-view sequences

Key ideas: memory to capture cross-modal interactions across time

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻

Multimodal 
memory

Multimodal 
memory

Multimodal 
memory

Multimodal 
memory

...

...

𝒚

Connections + interactions
Many choices:

RNN, LSTM
Transformer

Key-value memory
Episodic memory
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Temporal Structure

Temporal structure in multi-view sequences

Key ideas: memory to capture cross-modal interactions across time

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑

Multimodal 
memory

Multimodal 
memory

Multimodal 
memory M locations

D dimensions
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Temporal Structure

Temporal structure in multi-view sequences

[Wang et al., Multimodal Memory Modelling for Video Captioning. CVPR 2018]

Input1

𝒘' = 𝑠𝑖𝑚 𝒙',𝑴' = 𝑴'𝒙'

Input1 Coordination function measuring similarity between input and memory to weight input:

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻

Multimodal 
memory

Multimodal 
memory

...

Input = 𝒘'𝒙'( Recall representation coordination, attention 
models, Transformers, LSTMs etc. 

Normalized vector of M entries
-> weights over M memory locations  

Input is M x D
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Temporal Structure

Temporal structure in multi-view sequences

Input1

𝑴')* = 1 − 𝜶' 𝑴' + 𝜶'Input

Write2 Weighted function to write new addition into memory

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻

Multimodal 
memory

Multimodal 
memory

...

Multimodal 
memory

...
Write2

[Xiong et al., Dynamic Memory Networks for Visual and Textual Question Answering. arXiv 2016]

Together, enables modeling of
cross-modal interactions across time.

𝜶' learnable in LSTM/RNN/Transformers,
or similarity function in parameterized memory.
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Temporal Structure

Temporal structure in multi-view sequences

[Hazarika et al., ICON: Interactive Conversational Memory Network for Multimodal Emotion Detection. EMNLP 2018]

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻

Multimodal 
memory

Multimodal 
memory

Multimodal 
memory

Multimodal 
memory

...

...

𝒚
Read3

Input1

Write2

Read3 Summary function to read multimodal information

Read = 𝜷(𝑴( 𝜷( learnable in LSTM/ Transformers, 
or similarity function in memory.
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Some Extensions

1. Input: Different addressing mechanisms

[Graves et al., Neural Turing Machines. arXiv 2014]

Input1

𝒘' = 𝑠𝑖𝑚 𝒙',𝑴' = 𝑴'𝒙'

Input1 Coordination function measuring similarity between input and memory to weight input:

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻

Multimodal 
memory

Multimodal 
memory

...

Input =𝒘'𝒙'(
Okay if different timesteps provide different 

information – get added to different memory cells
(i.e., non-redundancy)

What about redundant case?
Time-steps provide similar or reinforcing information?
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Some Extensions

1. Input: Different addressing mechanisms – by location

[Graves et al., Neural Turing Machines. arXiv 2014]

Input1

𝒘' = 𝑠𝑖𝑚 𝒙',𝑴' = 𝑴'𝒙'

Input1 Coordination function measuring similarity between input and memory to weight input, 
while also keeping previous input indices into account:

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻

Multimodal 
memory

Multimodal 
memory

...

Input =𝒘'𝒙'(

Idea: take previous input indices into account,
apply rotation to new indices upon repetition

Leads to a contiguous block of similar 
representations in memory.

𝒘' = 𝑟𝑜𝑡𝑎𝑡𝑒(𝒘', 𝒘'+*)



23

23

Some Extensions

2. Writing: Including both erase and write functions 

[Graves et al., Neural Turing Machines. arXiv 2014]

Input1

𝑴')* = 𝑴' + 𝜶'Input

Erase + write2

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻

Multimodal 
memory

Multimodal 
memory

...

Multimodal 
memory

...
Erase + Write2

𝑴' = 𝑴'[1 − 𝜶'Erase] Erase: learnable vector of [0,1]
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Some Extensions

3. More exponential moving average

[Ma et al., Mega: Moving Average Equipped Gated Attention. arXiv 2022]

Input1

𝑴')* = 1 − 𝜶' 𝑴' + 𝜶'Input

Write2 Write new addition into memory

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻

Multimodal 
memory

Multimodal 
memory

...

Multimodal 
memory

...
Write2

Exponential moving average function
- Smooth out short-term fluctuations
- Highlight long-term trends
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Some Extensions

3. More exponential moving average + combine with Transformers

[Ma et al., Mega: Moving Average Equipped Gated Attention. arXiv 2022]

𝑴')* = 1 − 𝜶' 𝑴' + 𝜶'Input

Write2 Write new addition into memory Exponential moving average function
- Smooth out short-term fluctuations
- Highlight long-term trends
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Some Extensions

4. From recurrent to parallel convolutions

[Gu et al., Efficiently Modeling Long Sequences with Structured State Spaces. ICLR 2022]
[Ma et al., Mega: Moving Average Equipped Gated Attention. arXiv 2022]

A lot of what we presented seemed to be recurrent, which may not seem easily parallelizable. 

But many of these have equivalent formulations in convolutional representations.

Key idea: exponential moving average can be implemented as convolution.

𝑴')* = 1 − 𝜶' 𝑴' + 𝜶'Input

Write2 Write new addition into memory

BUT: 𝑲 will be huge, the size of the entire sequence.

𝑴( = 𝑲 ∗ [Input_1, … Input_T]

Many approximations, optimizations, see references below.
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Memory for Multimodal Sequences

1. Memory + representation

[Rajagopalan et al., Extending Long Short-Term Memory for Multi-View Structured Learning. ECCV 2016]

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻

Multimodal 
memory

Multimodal 
memory

Multimodal 
memory

Multimodal 
memory

...

...

𝒚

We’ve seen early fusion of raw modalities
Structuring multimodal memory: ideas from representation fusion, coordination, and fission
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Memory for Multimodal Sequences

1. Memory + representation

[Rajagopalan et al., Extending Long Short-Term Memory for Multi-View Structured Learning. ECCV 2016]

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻...

𝑴')* = 1 − 𝜶 𝑴' + 𝜶 Input + 𝜷 Input
Write2 Write new addition into memory

𝑴')* = 1 − 𝜶 𝑴' + 𝜶 Input + 𝜷 Input

Memory 1 Memory 1 Memory 1 Memory 1...

Memory 2 Memory 2 Memory 2 Memory 2...

Representation can be learned not just prior to memory but also inside memory cells 
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Memory for Multimodal Sequences

1. Memory + representation

[Rajagopalan et al., Extending Long Short-Term Memory for Multi-View Structured Learning. ECCV 2016]

Fully unimodal
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Memory for Multimodal Sequences

1. Memory + representation

[Rajagopalan et al., Extending Long Short-Term Memory for Multi-View Structured Learning. ECCV 2016]

Fully fusion
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Memory for Multimodal Sequences

1. Memory + representation

[Rajagopalan et al., Extending Long Short-Term Memory for Multi-View Structured Learning. ECCV 2016]

Hybrid 
fusion + 
fission
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Memory for Multimodal Sequences

1. Memory + representation

[Zadeh et al., Memory Fusion Network for Multi-view Sequential Learning. AAAI 2018]

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻...

𝑴')* = 1 − 𝜶' 𝑴' + 𝜶'Input + 𝜷'Input
Write2 Write new addition into memory

𝑴')* = 1 − 𝜶' 𝑴' + 𝜶'Input + 𝜷'Input

Memory 1 Memory 1 Memory 1 Memory 1...

Memory 2 Memory 2 Memory 2 Memory 2...

Representation can be learned not just prior to memory but also inside memory cells 

𝜶!, 𝜷! can be dynamic and 
learnable, e.g., self-attention, 
similarity, etc.



33

33

Memory for Multimodal Sequences

2. Memory + aligned contextualized representations

[Chen et al., History Aware Multimodal Transformer for Vision-and-Language Navigation. NeurIPS 2021]
[Lin et al., Multimodal Transformer with Variable-length Memory for Vision-and-Language Navigation. ECCV 2022]

Where have I visited previously?

v
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Memory for Multimodal Sequences

2. Memory + aligned contextualized representations

[Chen et al., History Aware Multimodal Transformer for Vision-and-Language Navigation. NeurIPS 2021]
[Lin et al., Multimodal Transformer with Variable-length Memory for Vision-and-Language Navigation. ECCV 2022]

Where have I visited previously?

+ Contextualized representations
+ Memory mechanisms
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Use Cases

1. Tasks involving repeating input data in a specific way

[Graves et al., Neural Turing Machines. arXiv 2014]

Direct copy Repeat copy Associative recall Sorting

51867 -> 51867 51867, 3 -> 51867 51867 51867 51867 -> 1567851867, 8 -> 6
1 -> 8
6 -> 7

Much better than methods without memory
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Use Cases

2. Extremely long-range sequences

[Gu et al., Efficiently Modeling Long Sequences with Structured State Spaces. ICLR 2022]
[Goel et al., It's Raw! Audio Generation with State-Space Models. ICML 2022]

- List operations: mean, max, sum, etc T = 2K
- Long document classification and retrieval T = 4K
- Image classification via sequence of pixels T = 1K
- Pathfinder T = 1K
- (Generating) long speech signals T = 128K

(Pathfinder)

Some audio samples:
https://hazyresearch.stanford.edu/sashimi-examples/

https://hazyresearch.stanford.edu/sashimi-examples/
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Use Cases

3. Changing information across time
Can be implemented by explicitly writing and reading from memory, in contrast to fully 
neural models which are typically uncontrollable

[Wu et al., Memorizing Transformers. ICLR 2022]
[Dhingra et al., Time-Aware Language Models as Temporal Knowledge Bases. TACL 2022]
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Key Takeaways

[Liang et al., Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions. arXiv 2022]

Temporal structure in multi-view sequences

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻

Multimodal 
memory

Multimodal 
memory

Multimodal 
memory

Multimodal 
memory

...

...

𝒚
Read3

Input1

Write2

Key ideas: memory to capture cross-modal interactions across time
Connections + interactions

Combine with:
- Representation
- Alignment

Most useful for:
- Copying/storing
- Long-range interactions
- Controlling internal 
information
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Open Challenges

1. Long-range multimodal sequences: good benchmarks with interactions across a long range.
2. To what extent do pre-trained models already capture memory (i.e., memorize and enable retrieval),
vs explicit memory mechanisms?
3. More, see https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/schedule/

[Petroni et al., Language Models as Knowledge Bases? EMNLP 2019]
[Liang et al., Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions. arXiv 2022]

https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/schedule/
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Sub-Challenge 3a: Structure Modeling

Single-step

Concepts

Dense

Temporal Hierarchical

Multi-step

Structure

Inference

Representation
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Hierarchical Structure

Leverage syntactic structure of language

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]

Skis of man 
in red jacket.

Parse

Object 
detection
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Hierarchical Structure

Leverage syntactic structure of language

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]

Skis of man 
in red jacket.

Parse

Object 
detection Coordination
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Hierarchical Structure

Leverage syntactic structure of language

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]

Skis of man 
in red jacket.

Parse

Object 
detection

Coordination
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Hierarchical Structure

Leverage syntactic structure of language

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]

Skis of man 
in red jacket.

Parse

Object 
detection

Composition
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Hierarchical Structure

Leverage syntactic structure of language

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]

Skis of man 
in red jacket.

Parse

Object 
detection

Composition
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Tree and Graph Networks

From linear chain models to tree and graph-structured models

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graphs – Supervised Task

Human 
or bot?

e.g., an online social network 

Goal: Learn from labels associated with a 
subset of nodes (or with all nodes)

? ?

?
?

?

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graphs – Unsupervised Task

similarity(u, v) ⇡ z>v zu

Goal: Learn an embedding space where

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Assume we have a graph G:
V is the set of vertices
A is the binary adjacency matrix
X is a matrix of node features:

• Categorical attributes, text, image data
e.g. profile information in a social network

• …
Y is a vector of node labels (optional)

Graph Neural Nets

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graph Neural Nets 

Key idea: Generate node embeddings 
based on local neighborhoods

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

in a recursive manner

Neural 
network

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graph Neural Nets

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 51

Every node defines a unique 
computation graph!

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graph Neural Nets 

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural 
network

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural 
network

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural 
network

And multiple layers!
Layer 2 Layer 1 Layer 0

“layer-0” is the input feature xu

Shared parameters within a 
specific layer

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]



53

Graph Neural Nets – Neighborhood Aggregation

zA

How to 
aggregate 
multiple 

neighbors?
hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A

hk
v = �

0

@Wk

X

u2N(v)[v

hk�1
up

|N(u)||N(v)|

1

A

Average pooling

Graph Convolution Network

Graph Attention Network

(Scarselli et al., 2005)

(Kipf et al., 2017)

(Velickovic et al., 2018)

Different weights 
for neighbors 
and self

Same weights
Different 
normalization

Very similar to a self-attention transformer

It can be efficiently implemented

hk
v = �

0

@Wk

X

u2N(v)[v

hk�1
up

|N(u)||N(v)|

1

Ahk
v = �

0

@Wk

X

u2N(v)[v

hk�1
up

|N(u)||N(v)|

1

A𝛼-.

Attention 
weights

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]

K is num layers
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Graph Neural Nets – Supervised Training

L =
X

v2V

yv log(�(z
>
v ✓)) + (1� yv) log(1� �(z>v ✓))

output node 
embedding

classification 
weights

node class label

zA

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Experiments

From linear chain models to tree models

[Tai et al., Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. ACL 2015]
[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]
[Wang et al., Tree Transformer: Integrating Tree Structures into Self-Attention. EMNLP 2019]

RefCOCO

Accounting for syntactic structure also improves language-based 
sentiment analysis, semantic matching, question-answering, 
language modeling, interpreting attention scores, etc.
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How do Graph Nets Work?

Empirically graph nets work well over less structured networks, but why?

[Xu et al., What Can Neural Networks Reason About?. ICLR 2020]

Key idea: algorithmic alignment - link compositional structure required for task with 
computational structure of prediction model 
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How do Graph Nets Work?

Empirically graph nets work well over less structured networks, but why?

[Xu et al., What Can Neural Networks Reason About?. ICLR 2020]

Key idea: algorithmic alignment - link compositional structure required for task with 
computational structure of prediction model 

DeepSets

K-layer GNN

MLP
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How do Graph Nets Work?

Empirically graph nets work well over less structured networks, but why?

[Xu et al., What Can Neural Networks Reason About?. ICLR 2020]

Key idea: algorithmic alignment - link compositional structure required for task with 
computational structure of prediction model 

DeepSets 1-layer GNN K-layer GNN None L

Many multimodal reasoning problems here:
intuitive physics, visual question answering, shortest paths
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How do Graph Nets Work?

Empirically graph nets work well over less structured networks, but why?

[Xu et al., What Can Neural Networks Reason About?. ICLR 2020]

Key idea: algorithmic alignment - link compositional structure required for task with 
computational structure of prediction model 
How graph neural nets capture dynamic programming:

MLPs have to learn entire for loops L
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How do Graph Nets Work?

Empirically: datasets that require multiple steps of relational reasoning

1. Sudoku: number interactions, multi-step, backtracking, 
2. Relational VQA: CLEVR -> Sort-of-CLEVR -> Pretty-CLEVR (‘which object is closest/k-steps away’)

[Santoro et al., A Simple Neural Network Module for Relational Reasoning. NeurIPS 2017] 
[Palm et al., Recurrent Relational Network. NeurIPS 2018]
[Xu et al., What Can Neural Networks Reason About?. ICLR 2020]
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Key Takeaways & Open Challenges

1. Relations are between elements from same modality, so distances and representations are well-defined.
-> how to handle cross-modal interconnections at the same time?

2. Heterogeneous graph nets, where nodes come from different modalities.
3. Formal connections between cross-modal interactions and relational reasoning.
4. Quantifying the reasoning required by decomposing datasets into perception vs reasoning.
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Summary

Reasoning is about compositionality, and compositionality requires knowing the structure.

In the continuous case (i.e., if structure is given or can be learned easily in a differentiable manner):

Mem Mem Mem
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Sub-Challenge 3b: Intermediate Concepts

Concepts

Continuous

Discrete

Definition: The parameterization of individual multimodal concepts in the reasoning process.

or

or

words

Structure
Single-step Multi-step

𝒚
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Neuro-symbolic Concepts

[Andreas et al., Neural Module Networks. CVPR 2016]

Hand-crafted concepts based on domain knowledge

Is there a red shape 
above a circle?
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Neuro-symbolic Concepts

[Andreas et al., Neural Module Networks. CVPR 2016]

Hand-crafted concepts based on domain knowledge

Is there a red shape 
above a circle?

Attend [red]

“red”

Local composition with 
interpretable output concepts

Attend [red]
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Neuro-symbolic Concepts

[Andreas et al., Neural Module Networks. CVPR 2016]

Hand-crafted concepts based on domain knowledge

Is there a red shape 
above a circle?

Attend [red]

“circle”

Local composition with 
interpretable output concepts

Attend [circle]

Attend [circle]
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Neuro-symbolic Concepts

[Andreas et al., Neural Module Networks. CVPR 2016]

Hand-crafted concepts based on domain knowledge

Is there a red shape 
above a circle?

Attend [red]

Attend [circle] Re-attend [above]

Local composition with 
interpretable output concepts

Re-attend [above]
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Neuro-symbolic Concepts

[Andreas et al., Neural Module Networks. CVPR 2016]

Hand-crafted concepts based on domain knowledge

Is there a red shape 
above a circle?

Attend [red]

Attend [circle] Re-attend [above]

Combine [and]

Local composition with 
interpretable output concepts

Combine [and]
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Neuro-symbolic Concepts

[Andreas et al., Neural Module Networks. CVPR 2016]

Hand-crafted concepts based on domain knowledge

Is there a red shape 
above a circle?

Combine [and]Attend [red]

Attend [circle]

Measure [is]

Re-attend [above]

YES

Recall structure - leverage syntactic structure of language
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More Neuro-symbolic Concepts

[Yi et al., Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. NeurIPS 2018]

Hand-crafted concepts based on domain knowledge
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More Neuro-symbolic Concepts

[Yi et al., Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. NeurIPS 2018]

Hand-crafted concepts based on domain knowledge
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More Neuro-symbolic Concepts

[Yi et al., Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. NeurIPS 2018]

Hand-crafted concepts based on domain knowledge
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More Neuro-symbolic Concepts

[Yi et al., Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. NeurIPS 2018]

Hand-crafted concepts based on domain knowledge

Pros:
- Robust (either it works or it doesn’t)
- Data-efficient
- Human-interpretable

Cons:
- More engineered, specialized models
- Sometimes not fully differentiable (structure or concepts)
- Sometimes not perfect compatible with large-scale pre-training

More in next 
lecture!
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Summary: Reasoning Part 1

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

Modality A

Modality B

+ Aligned representation

Reasoning 𝒚

Local representation
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Summary: Reasoning Part 1

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

[Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality. CVPR 2022]

CLIP, ViLT, ViLBERT, etc.
All random chance 

1. Structure: <subject> <verb> <object>
2. Concepts: ‘plants’, ‘lightbulb’
3. Inference: ‘surrounding’ – spatial relation
4. Knowledge: from humans!

Compositional Generalization
to novel combinations outside 

of training data
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Summary: Reasoning Part 1

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

∧ 𝑡𝑟𝑢𝑒

𝑧
or

or

words
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Summary: Reasoning Part 1

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

Today Temporal
Hierarchical Continuous 

Dense or attention maps

Tree and graph networks

Memory and temporal networks
*Structure is given or can be learned 
easily in a differentiable manner.
* In the continuous case.
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Roadmap for Next 3 Lectures

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

Causal
LogicalNext Thursday

Today Temporal
Hierarchical Continuous 

Interactive
DiscoveryNext Tuesday

Knowledge 
Commonsense

Discrete 


