

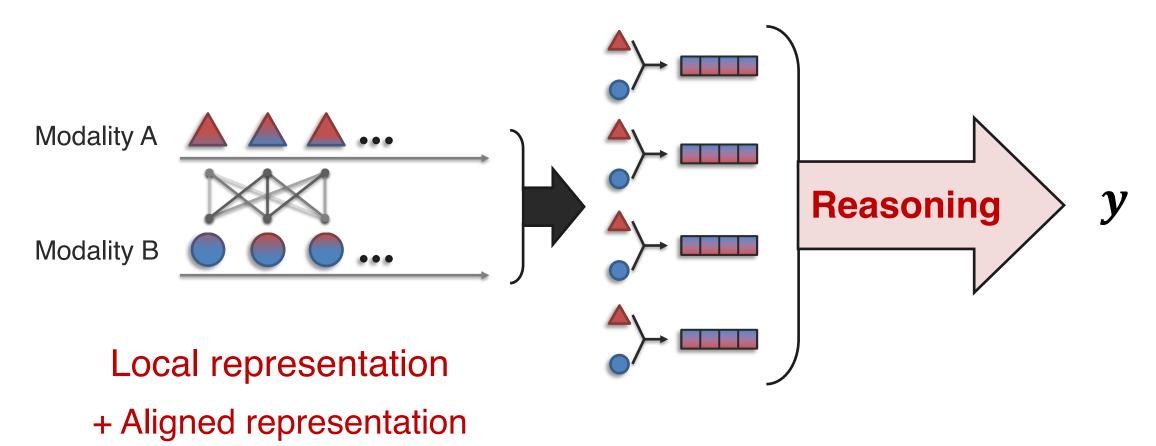
Language Technologies Institute

Multimodal Machine Learning

Lecture 6.2: Reasoning 1 Structure + Compositionality

Paul Liang

* Original course co-developed with Tadas Baltrusaitis. Spring 2021 edition taught by Yonatan Bisk **Definition:** Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.



勜

The Challenge of Compositionality

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.

(a) some plants surrounding a lightbulb

(b) a lightbulb surrounding some plants

CLIP, ViLT, ViLBERT, etc. All random chance

Compositional Generalization to novel combinations outside of training data

Structure: <subject> <verb> <object>
 Concepts: 'plants', 'lightbulb'
 Inference: 'surrounding' – spatial relation
 Knowledge: from humans!

[Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality. CVPR 2022]

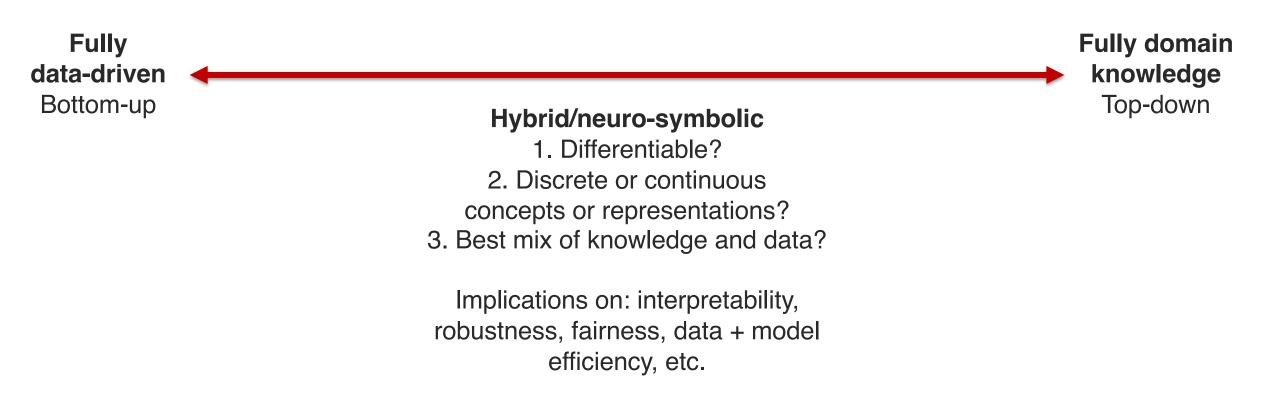
The Challenge of Compositionality

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.

A horse riding an astronaut.

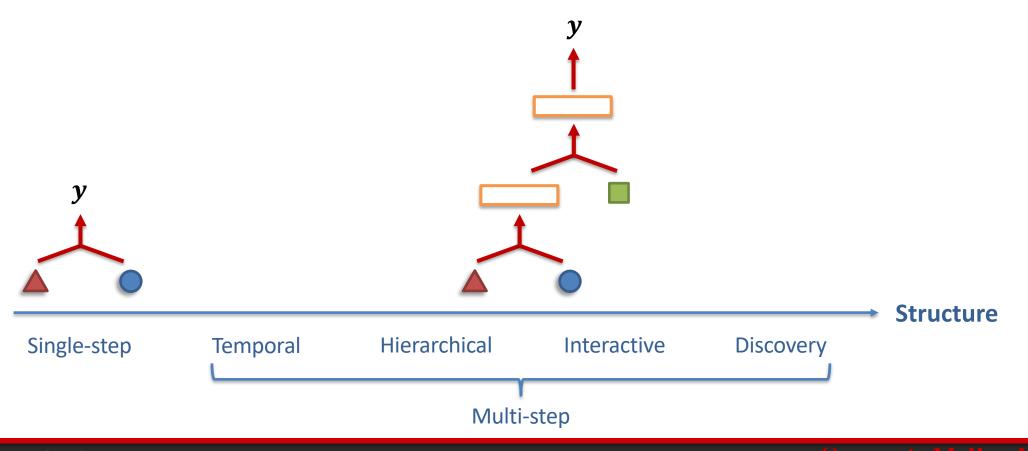
[Saharia et al., Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. arXiv 2022]

Many Debates Surrounding Reasoning



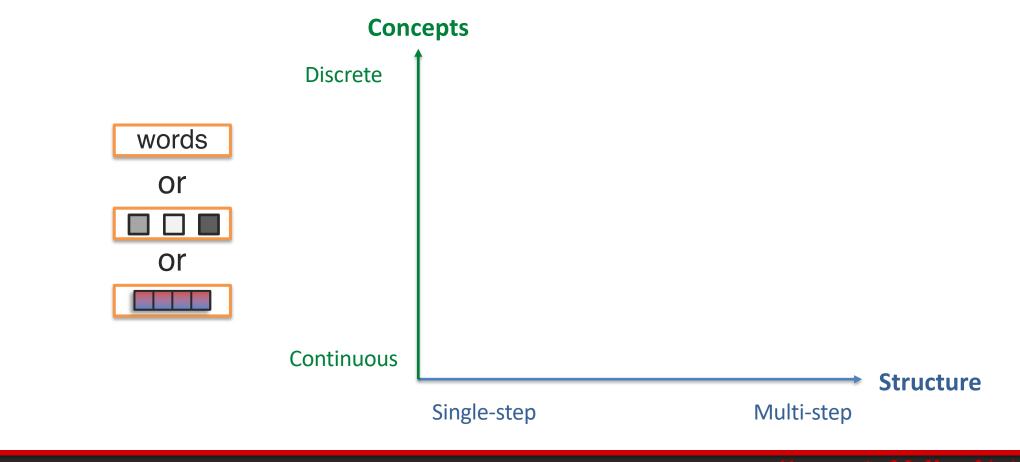
Sub-Challenge 3a: Structure Modeling

Definition: Defining or learning the relationships over which reasoning occurs.



Sub-Challenge 3b: Intermediate Concepts

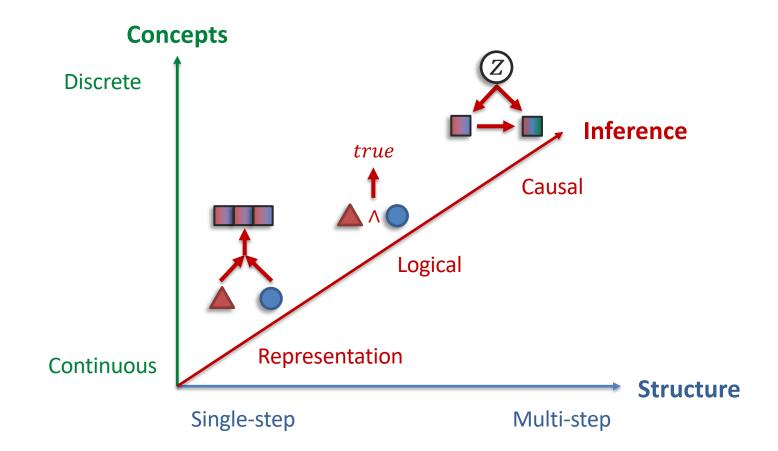
Definition: The parameterization of individual multimodal concepts in the reasoning process.



俲

Sub-Challenge 3c: Inference Paradigm

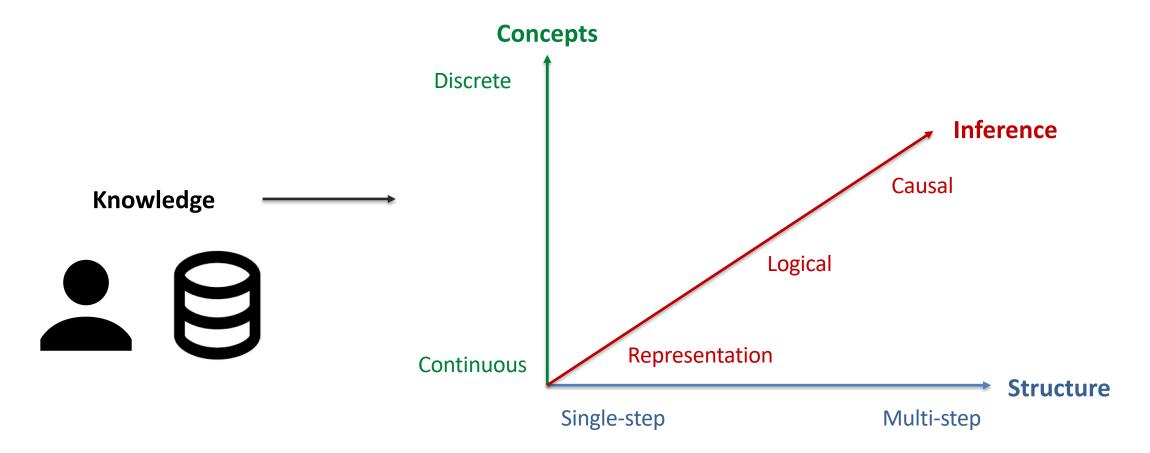
Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.



瘚

Sub-Challenge 3d: External Knowledge

Definition: Leveraging external knowledge in the study of structure, concepts, and inference.

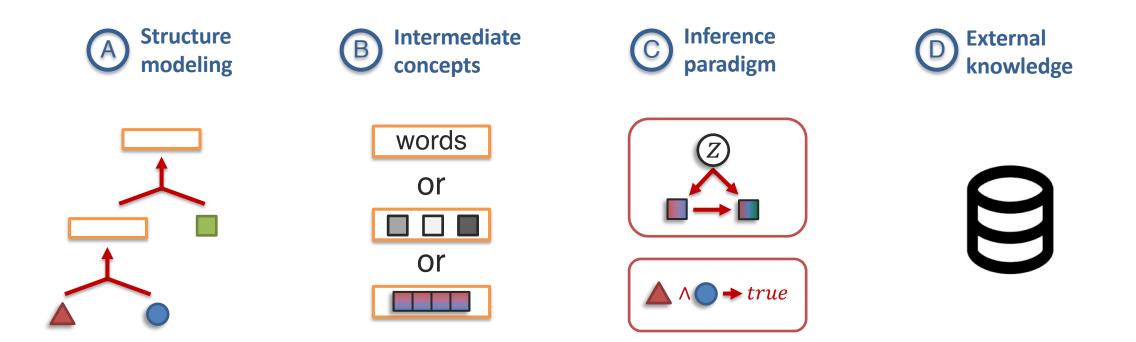


Language Technologies Institute

瘚

Carnegie Mellon University

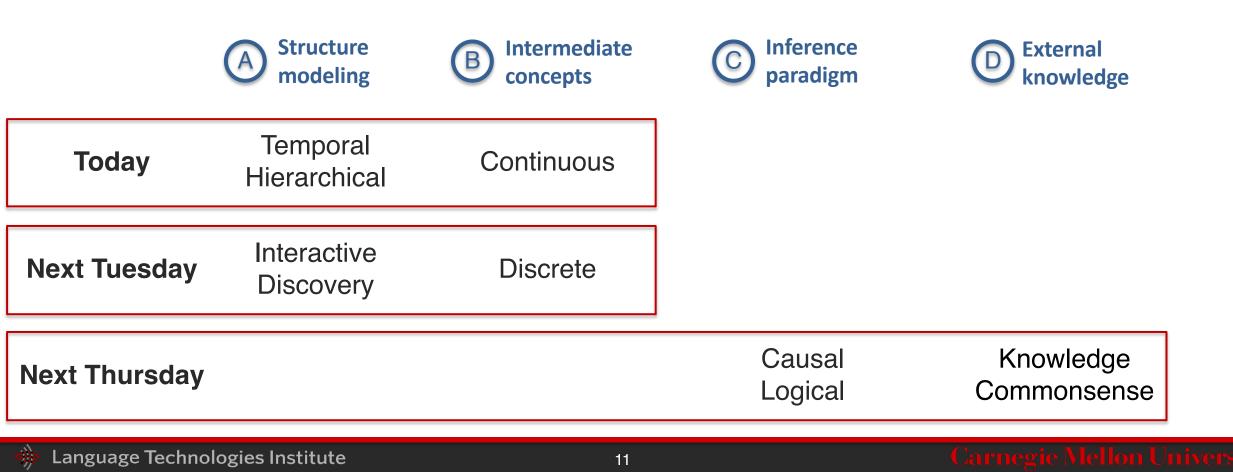
Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.



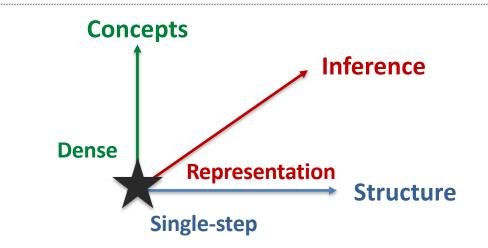
俲

Roadmap for Next 3 Lectures

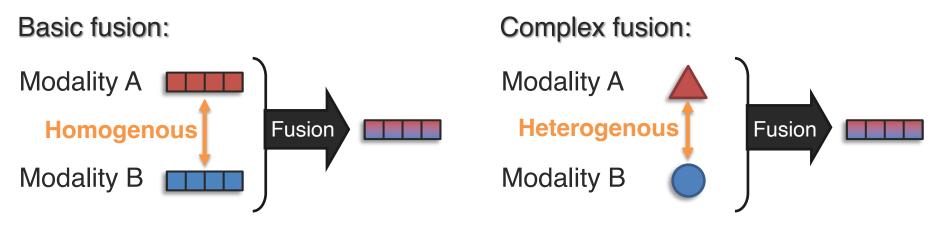
Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.



Reasoning



Recall representation fusion!

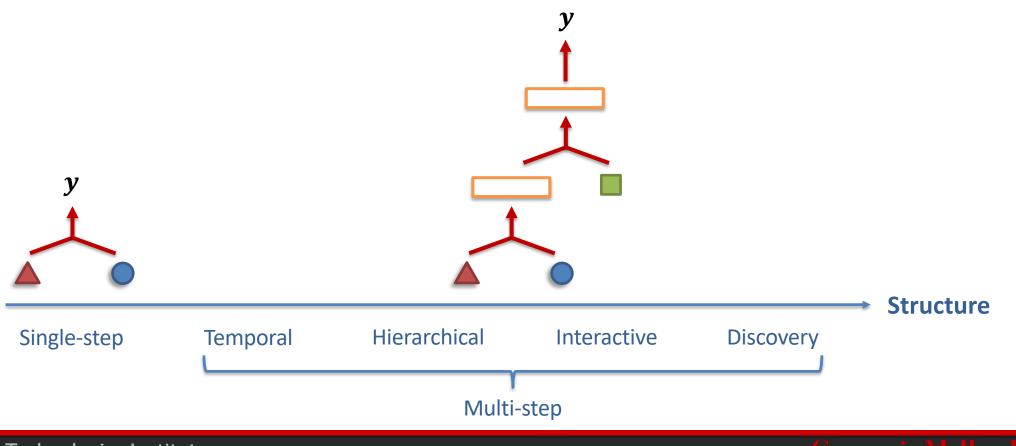


Ideas also apply here, but can we be explicitly interpretable and robust?

瘚

Sub-Challenge 3a: Structure Modeling

Definition: Defining or learning the relationships over which composition occurs.

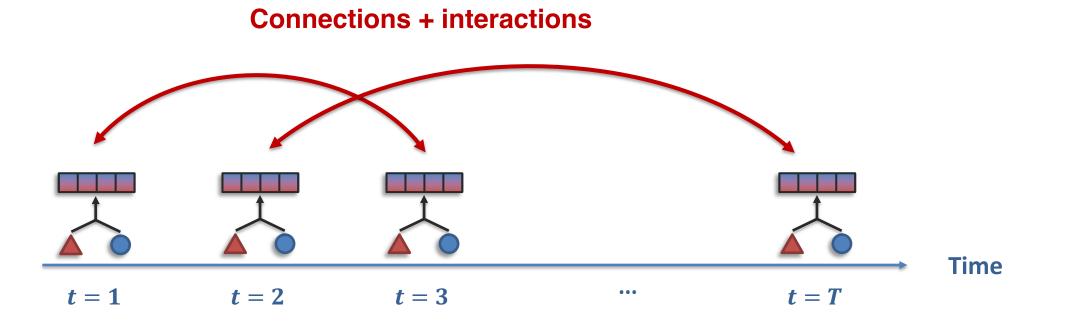


Sub-Challenge 3a: Structure Modeling



Temporal structure in multi-view sequences

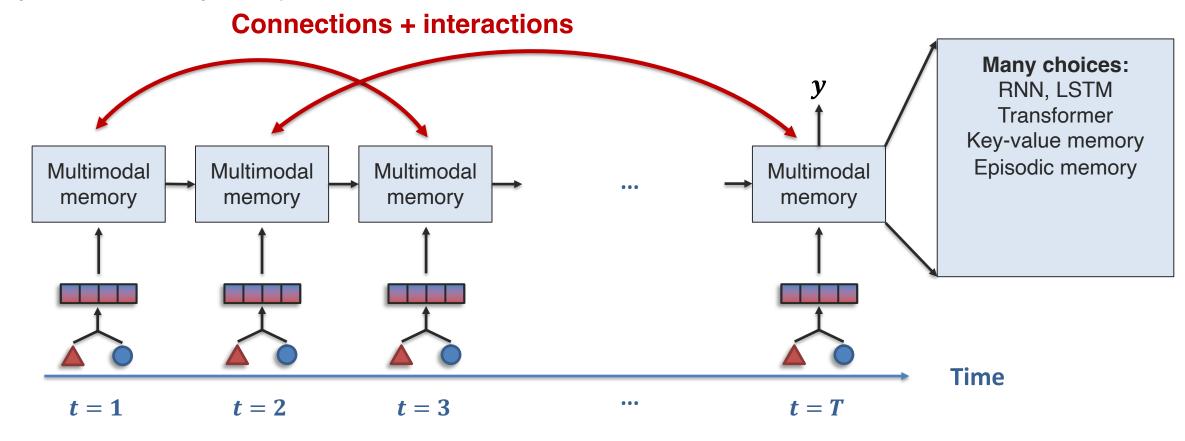
How can we capture cross-modal interactions across time?



瘚

Temporal structure in multi-view sequences

Key ideas: memory to capture cross-modal interactions across time

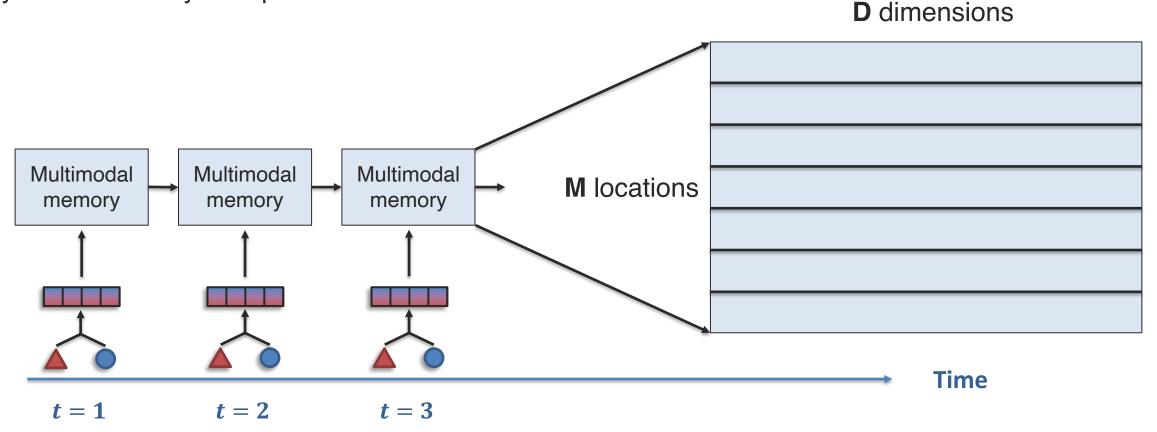


勜

Temporal structure in multi-view sequences

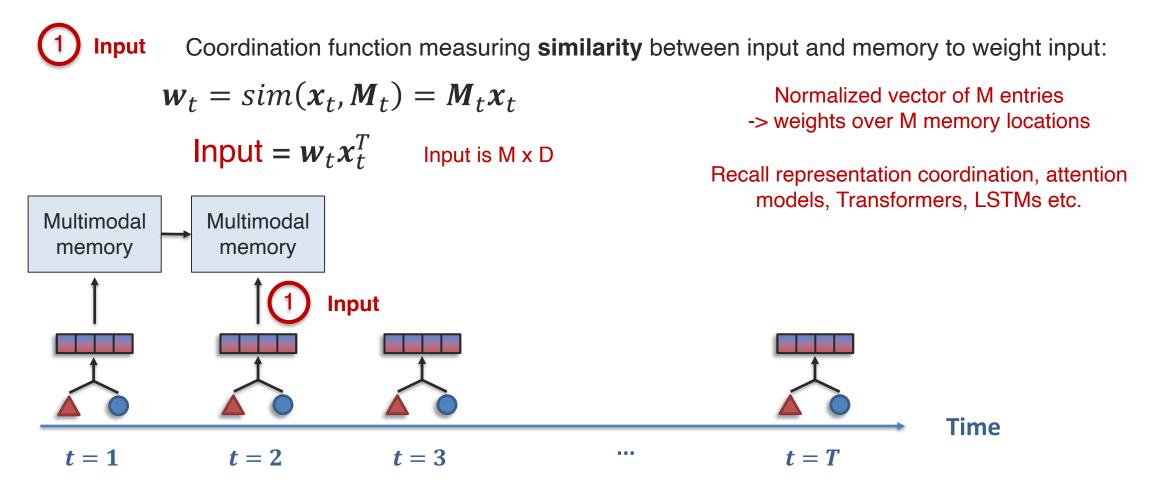
Temporal Structure

Key ideas: memory to capture cross-modal interactions across time



俲

Temporal structure in multi-view sequences



[Wang et al., Multimodal Memory Modelling for Video Captioning. CVPR 2018]

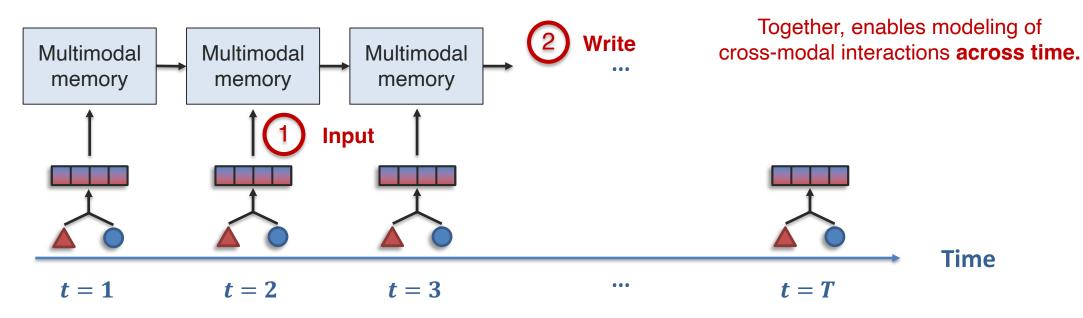
Write

Temporal structure in multi-view sequences

Weighted function to write new addition into memory

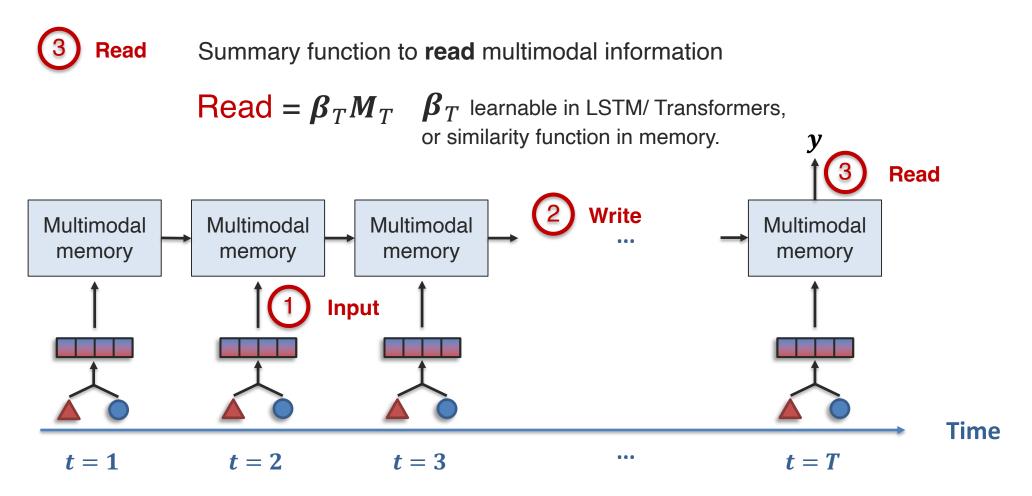
$$M_{t+1} = (1 - \alpha_t)M_t + \alpha_t \ln \mu t$$

 α_t learnable in LSTM/RNN/Transformers, or similarity function in parameterized memory.



[Xiong et al., Dynamic Memory Networks for Visual and Textual Question Answering. arXiv 2016]

Temporal structure in multi-view sequences



[Hazarika et al., ICON: Interactive Conversational Memory Network for Multimodal Emotion Detection. EMNLP 2018]

Some Extensions

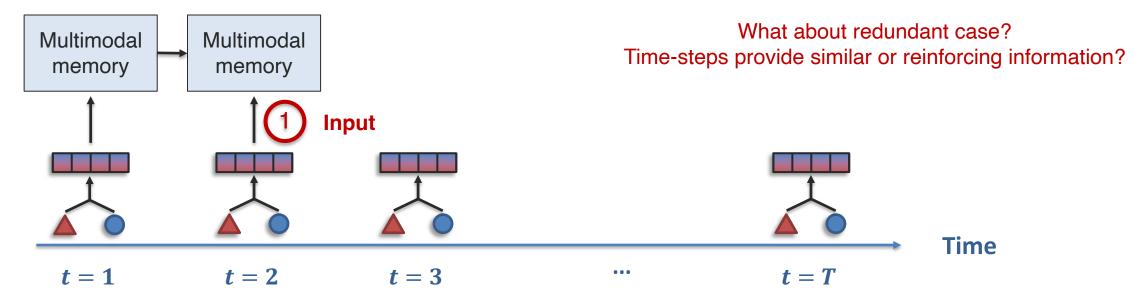
1. Input: Different addressing mechanisms

Input Coordination function measuring **similarity** between input and memory to weight input:

$$w_t = sim(x_t, M_t) = M_t x_t$$

Input = $w_t x_t^T$

Okay if different timesteps provide different information – get added to different memory cells (i.e., non-redundancy)



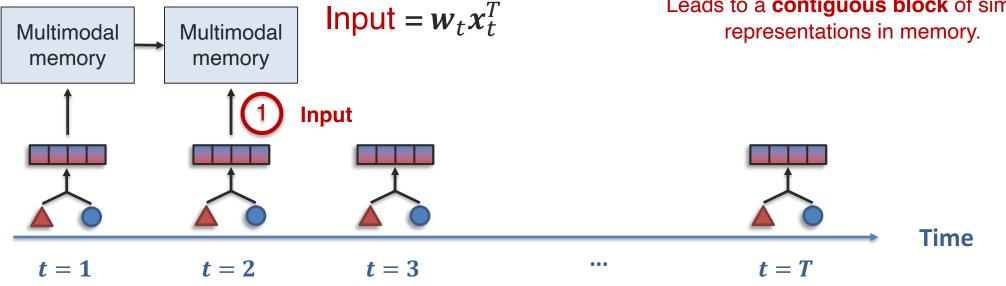
1. Input: Different addressing mechanisms – by location

Coordination function measuring **similarity** between input and memory to weight input, while also keeping previous input indices into account:

$$w_t = sim(x_t, M_t) = M_t x_t$$
$$w_t = rotate(w_t, w_{t-1})$$

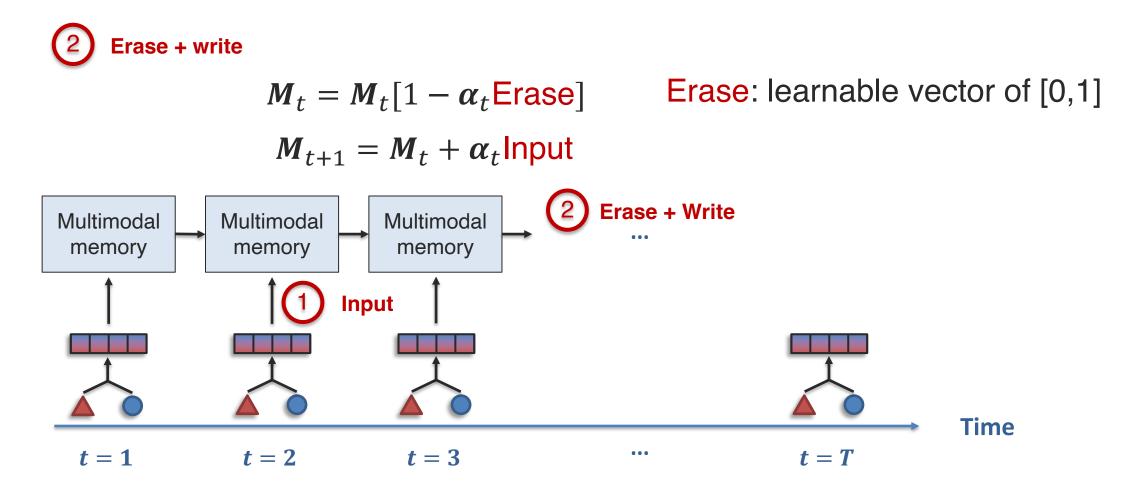
Idea: take previous input indices into account, apply rotation to new indices upon repetition

Leads to a **contiguous block** of similar representations in memory.



Some Extensions

2. Writing: Including both erase and write functions



Some Extensions

3. More exponential moving average

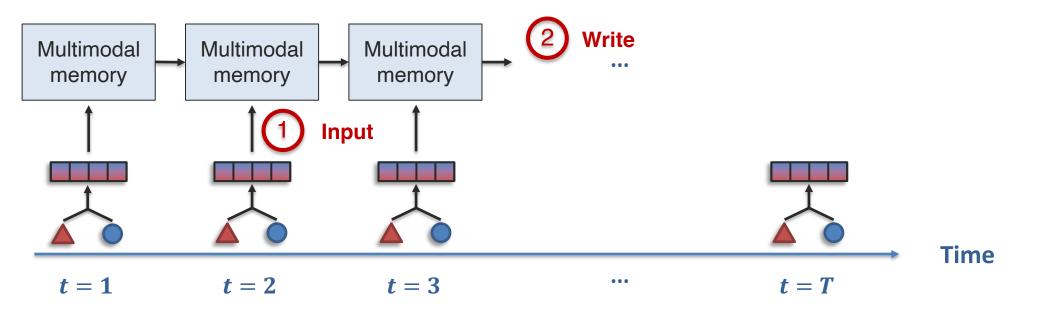
2 Write

Write new addition into memory

$$M_{t+1} = (1 - \alpha_t)M_t + \alpha_t \ln \mu t$$

Exponential moving average function

- Smooth out short-term fluctuations
- Highlight long-term trends



[Ma et al., Mega: Moving Average Equipped Gated Attention. arXiv 2022]

3. More exponential moving average + combine with Transformers

Write

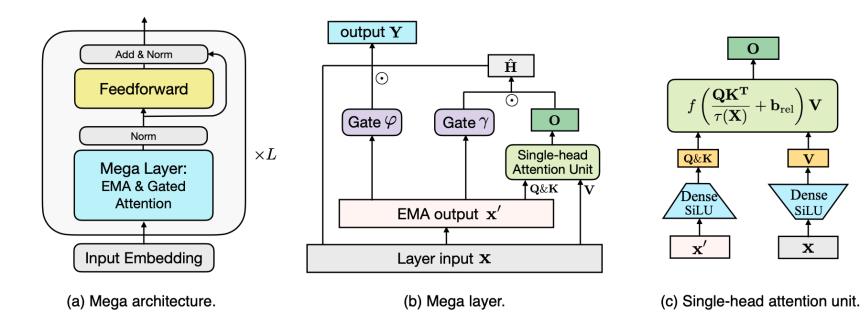
Some Extensions

Write new addition into memory

$$M_{t+1} = (1 - \alpha_t)M_t + \alpha_t \ln \mu_t$$

Exponential moving average function

- Smooth out short-term fluctuations
- Highlight long-term trends



[Ma et al., Mega: Moving Average Equipped Gated Attention. arXiv 2022]

Carnegie Mellon University

4. From recurrent to parallel convolutions

A lot of what we presented seemed to be recurrent, which may not seem easily parallelizable.

But many of these have equivalent formulations in convolutional representations.

Key idea: exponential moving average can be implemented as convolution.

Write new addition into memory

$$M_{t+1} = (1 - \alpha_t)M_t + \alpha_t \text{Input}$$
 $M_T = K * [\text{Input}_1, \dots \text{Input}_T]$

BUT: *K* will be huge, the size of the entire sequence.

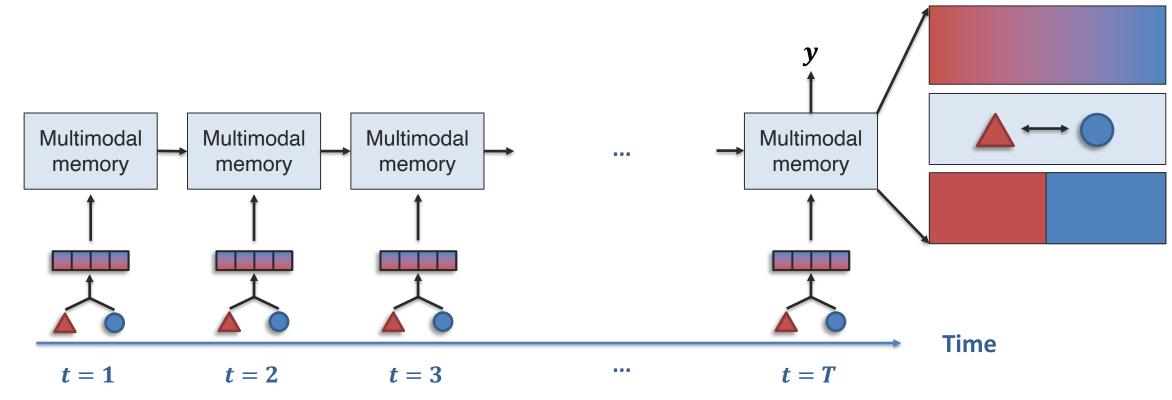
Many approximations, optimizations, see references below.

[Gu et al., Efficiently Modeling Long Sequences with Structured State Spaces. ICLR 2022] [Ma et al., Mega: Moving Average Equipped Gated Attention. arXiv 2022]

1. Memory + representation

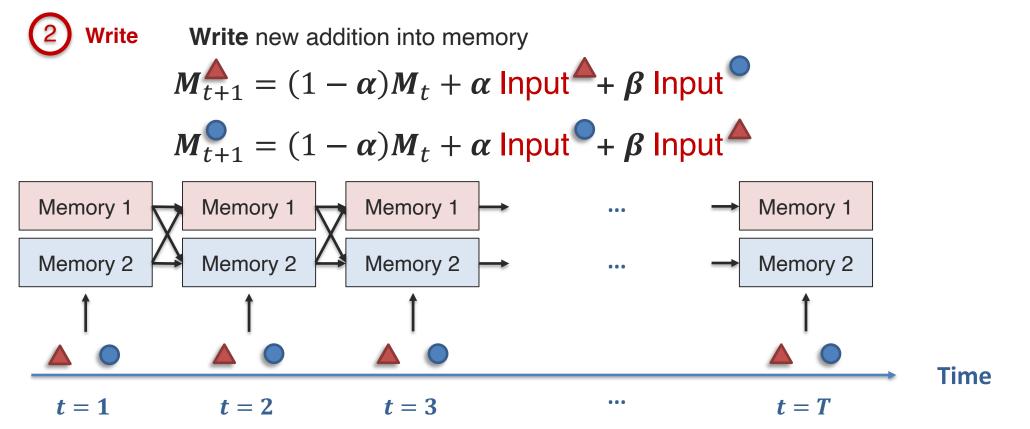
We've seen early fusion of raw modalities

Structuring multimodal memory: ideas from representation fusion, coordination, and fission

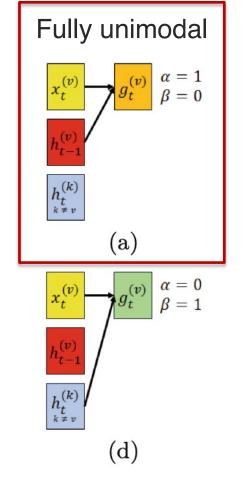


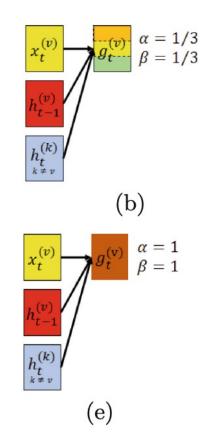
1. Memory + representation

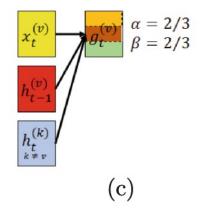
Representation can be learned not just prior to memory but also inside memory cells



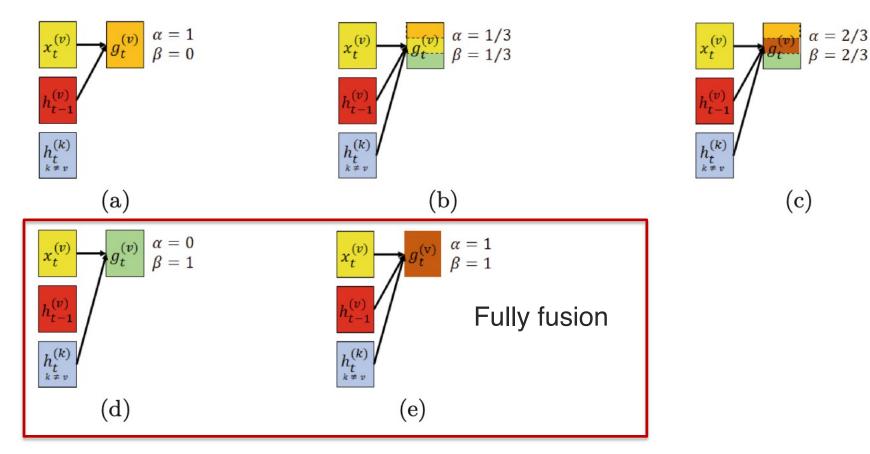
1. Memory + representation



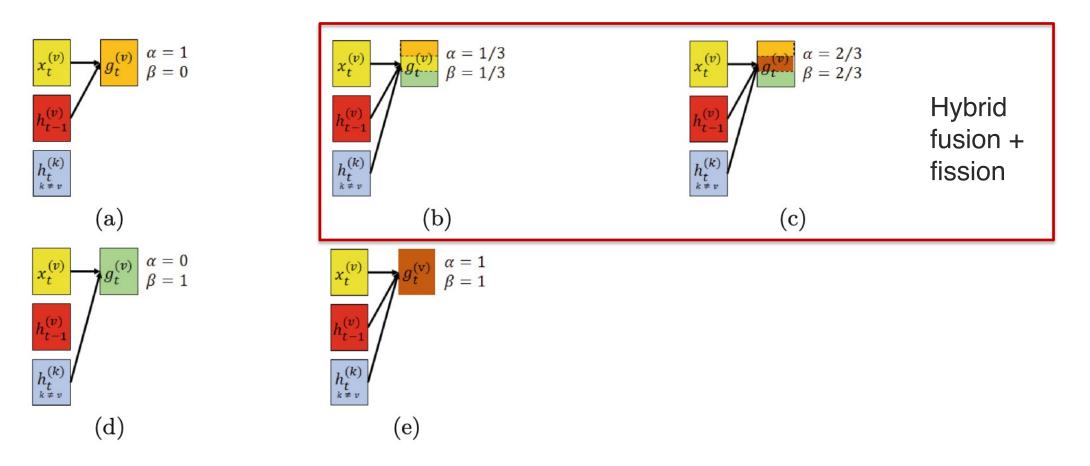




1. Memory + representation

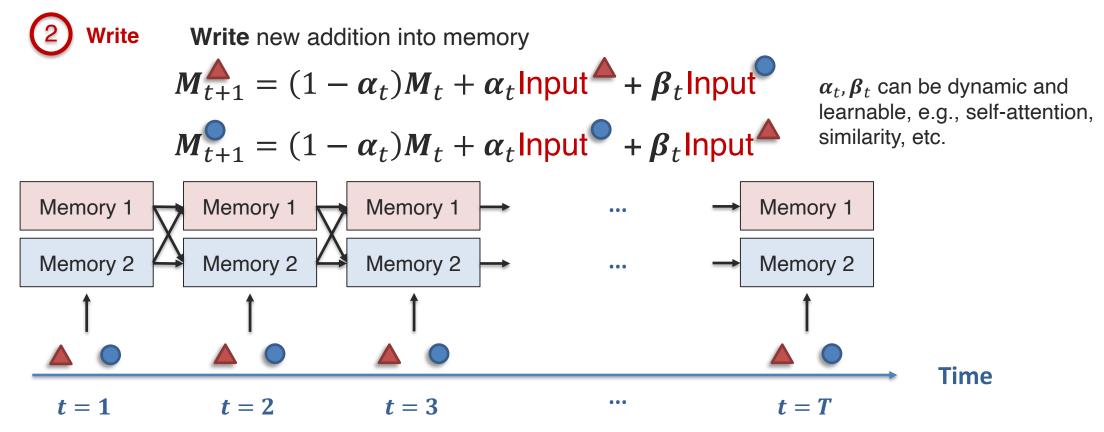


1. Memory + representation



1. Memory + representation

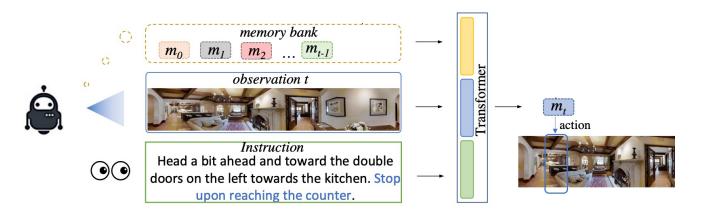
Representation can be learned not just prior to memory but also inside memory cells



[Zadeh et al., Memory Fusion Network for Multi-view Sequential Learning. AAAI 2018]

2. Memory + aligned contextualized representations

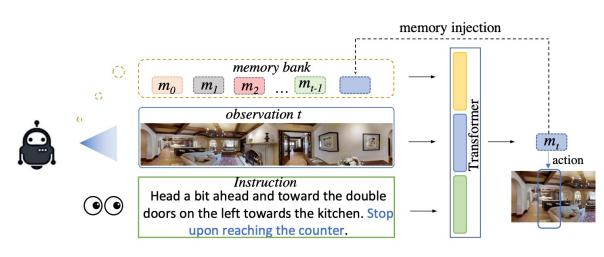
Where have I visited previously?

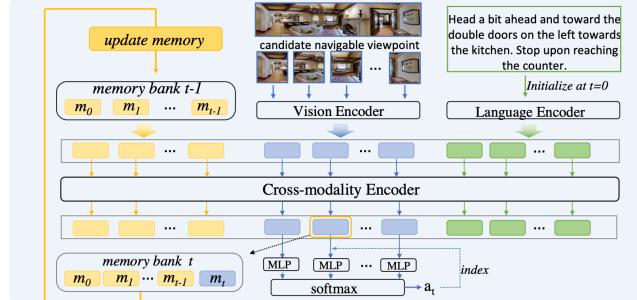


[Chen et al., History Aware Multimodal Transformer for Vision-and-Language Navigation. NeurIPS 2021] [Lin et al., Multimodal Transformer with Variable-length Memory for Vision-and-Language Navigation. ECCV 2022]

2. Memory + aligned contextualized representations

Where have I visited previously?





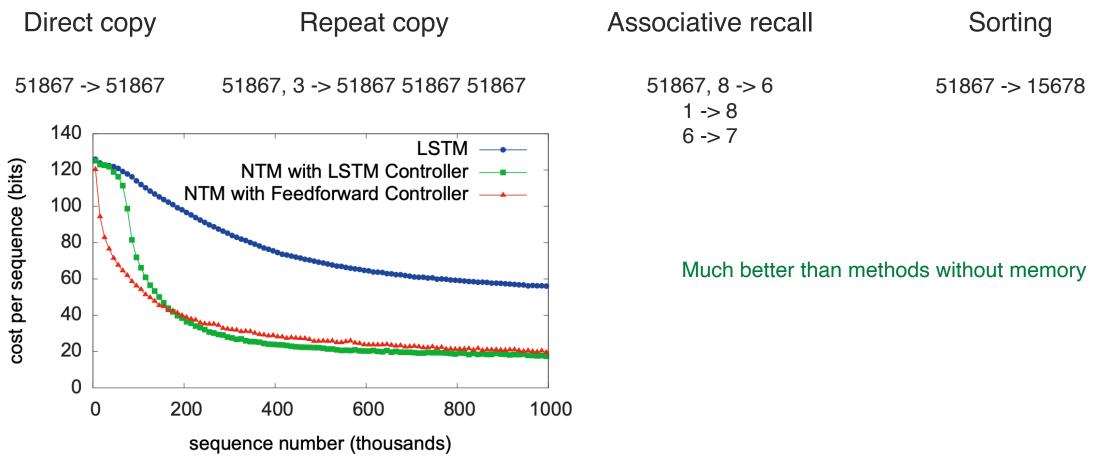
+ Contextualized representations

+ Memory mechanisms

[Chen et al., History Aware Multimodal Transformer for Vision-and-Language Navigation. NeurIPS 2021] [Lin et al., Multimodal Transformer with Variable-length Memory for Vision-and-Language Navigation. ECCV 2022]

Carnegie Mellon Universit

1. Tasks involving repeating input data in a specific way



Use Cases

2. Extremely long-range sequences

- List operations: mean, max, sum, etc
- Long document classification and retrieval
- Image classification via sequence of pixels
- Pathfinder
- (Generating) long speech signals

Some audio samples: https://hazyresearch.stanford.edu/sashimi-examples/

[Gu et al., Efficiently Modeling Long Sequences with Structured State Spaces. ICLR 2022] [Goel et al., It's Raw! Audio Generation with State-Space Models. ICML 2022]

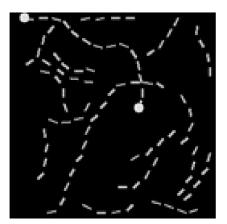
T = 2K

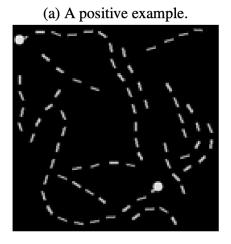
T = 4K

T = 1K

T = 1K

T = 128K





(b) A negative example.

Carnegie Mellon University

Use Cases

3. Changing information across time

Can be implemented by explicitly writing and reading from memory, in contrast to fully neural models which are typically uncontrollable

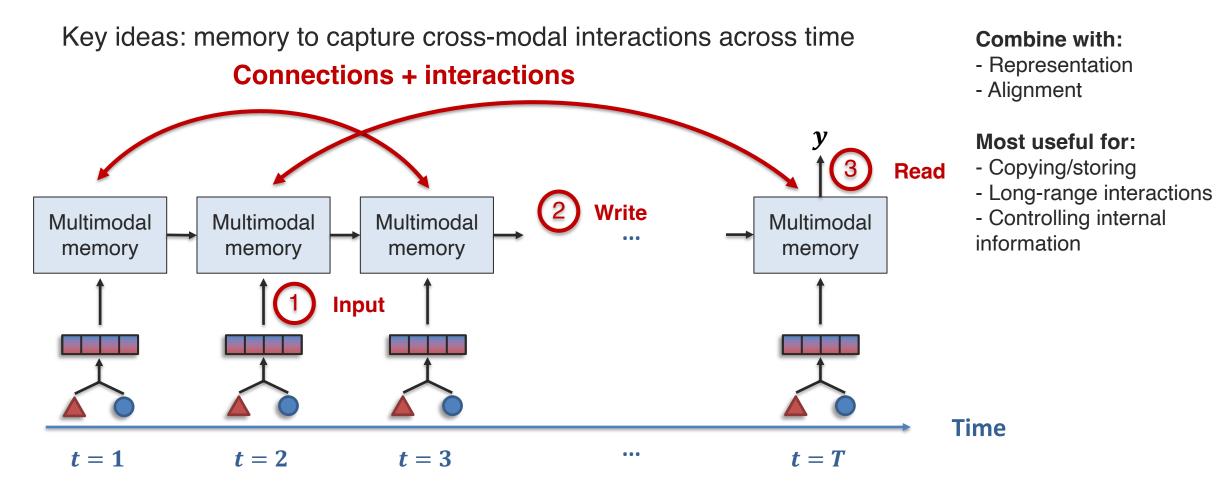
Input	Year	Uniform	Temporal
X is the chair of Federal Reserve System.	2019	Janet L. Yellen	Jerome Powell
Nigel Farage is a member of the $_X$.	2019	UK Independence Party	Brexit Party
Mark Sanford holds the position of _X	2017	Governor of South Carolina	United States representative
$_X_$ is the head of the government of New York City.	2016	Michael Bloomberg	Bill de Blasio
$_X_$ is the head coach of Real Madrid CF.	2015	Zinedine Zidane	Carlo Ancelotti
Theresa May holds the position of $_X$.	2014	Prime Minister of Great Britain	Home Secretary
Peyton Manning plays for _X	2014	Indianapolis Colts	Denver Broncos
$_X_$ is the head of the government of United Kingdom.	2011	Theresa May	David Cameron
Marissa Mayer works for _X	2011	Yahoo	Google
Rahm Emanuel holds the position of $_X$.	2010	Mayor of Chicago	White House Chief of Staff

[Wu et al., Memorizing Transformers. ICLR 2022]

[Dhingra et al., Time-Aware Language Models as Temporal Knowledge Bases. TACL 2022]

Key Takeaways

Temporal structure in multi-view sequences

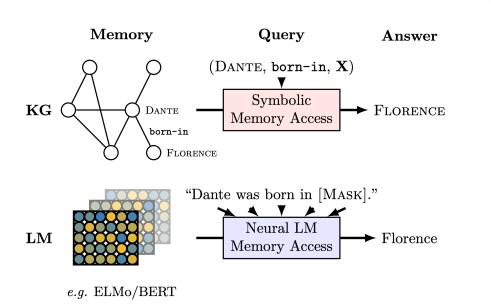


[Liang et al., Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions. arXiv 2022]

Open Challenges

Long-range multimodal sequences: good benchmarks with interactions across a long range.
 To what extent do pre-trained models already capture memory (i.e., memorize and enable retrieval), vs explicit memory mechanisms?

3. More, see https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/schedule/



2/25 Week 6: Memory and long-term interactions [synopsis]

- What are the scenarios in which memory for long-term interactions is required in multimodal tasks, where data comes from heterogeneous sources? What could be a taxonomy of long-range cross-modal interactions that may need to be stored in memory?
- What are certain methods of parametrizing memory in unimodal models that may be applied for multimodal settings, and the various strengths/weaknesses of each approach?
- How should we model long-term cross-modal interactions? How can we design models (perhaps with memory mechanisms) to ensure that these long-term cross-modal interactions are captured?
- What are the main advantages of explicitly building memory-based modules into our architectures, as compared to the large-scale pre-training methods/Transformer models discussed in week 4? Do Transformer models already capture memory and long-term interactions implicitly?
- To what extent do we need external knowledge when performing reasoning, specifically multimodal reasoning? What type of external knowledge is likely to be needed to succeed in multimodal reasoning?
- A related topic is multimodal summarization: how to summarize the main events from a long multimodal sequence. How can we summarize long sequences while keeping cross-modal interactions? What is unique about multimodal summarization?

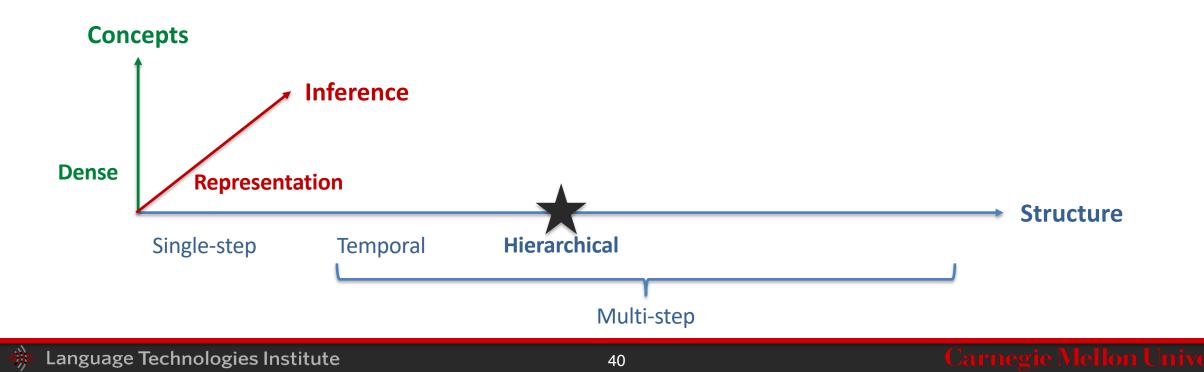
- Long Range Arena: A Benchmark for Efficient Transformers
- · Large Memory Layers with Product Keys
- Dynamic Memory Networks for Visual and Textual Question Answering
- Multimodal Memory Modelling for Video Captioning
- · Episodic Memory in Lifelong Language Learning
- ICON: Interactive Conversational Memory Network
 for Multimodal Emotion Detection
- Hybrid computing using a neural network with dynamic external memory
- History Aware Multimodal Transformer for Vision-and-Language Navigation
- Do Transformers Need Deep Long-Range Memory?
- Transformer-XL: Attentive Language Models Beyond
 a Fixed-Length Context
- Neural Turing Machines
- Meta-Learning with Memory-Augmented Neural Networks

[Petroni et al., Language Models as Knowledge Bases? EMNLP 2019]

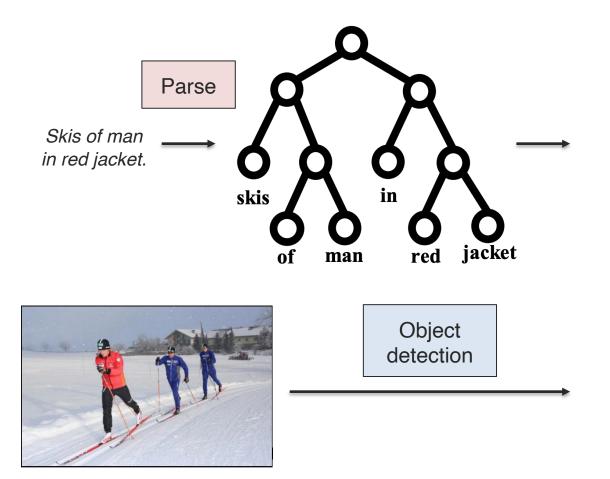
[Liang et al., Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions. arXiv 2022]

🗰 Language Technologies Institute

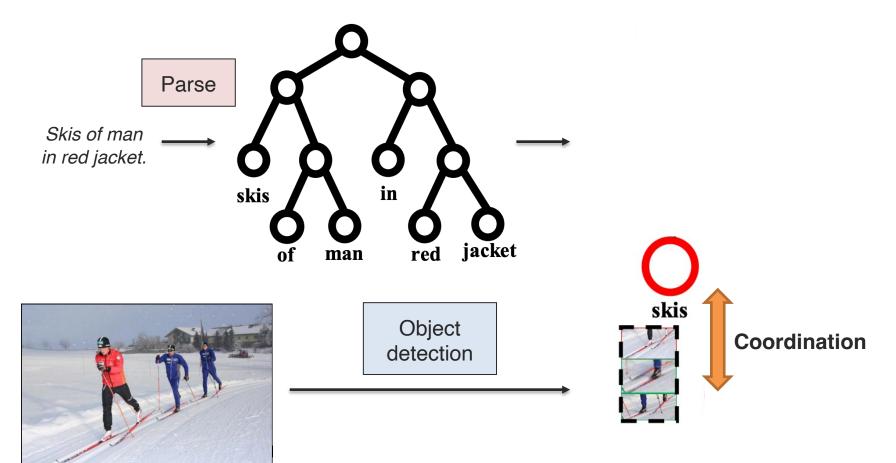
Sub-Challenge 3a: Structure Modeling



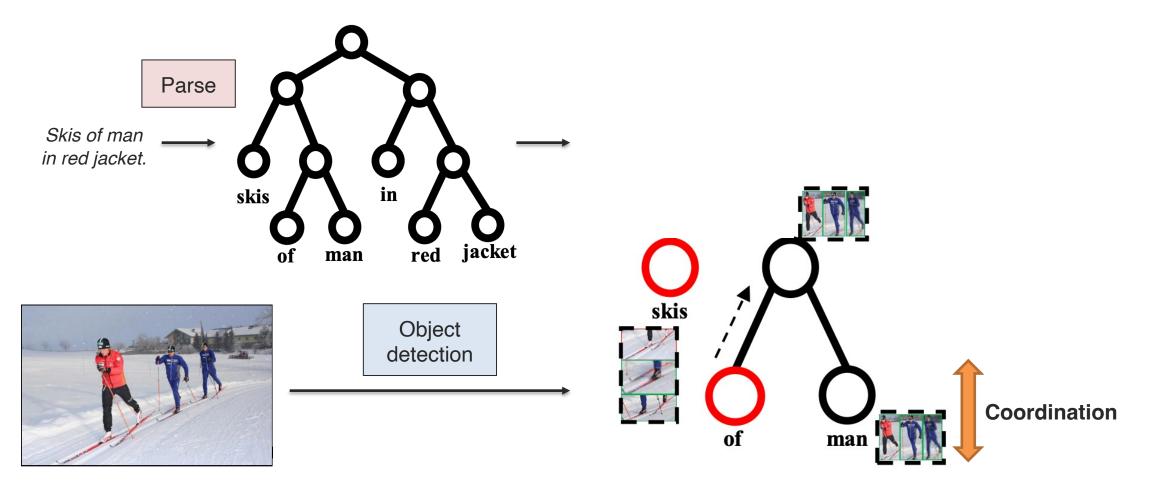
Leverage syntactic structure of language



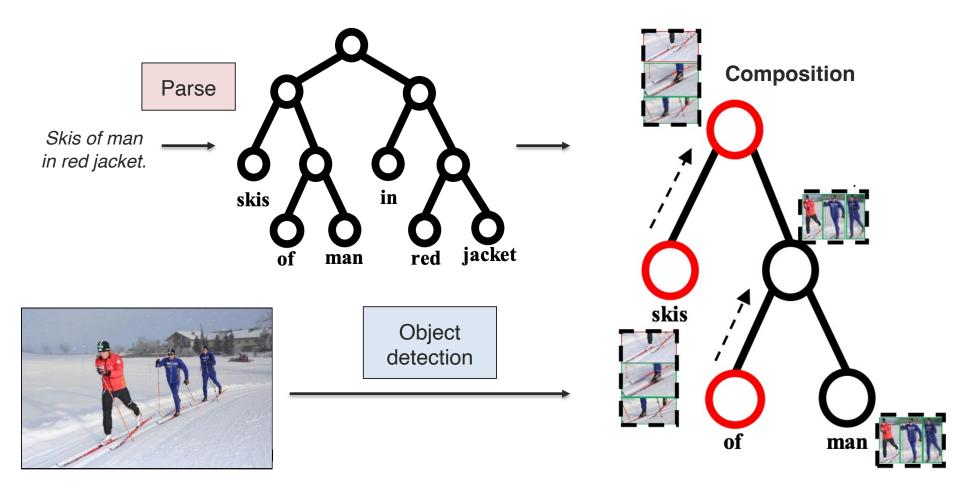
Leverage syntactic structure of language

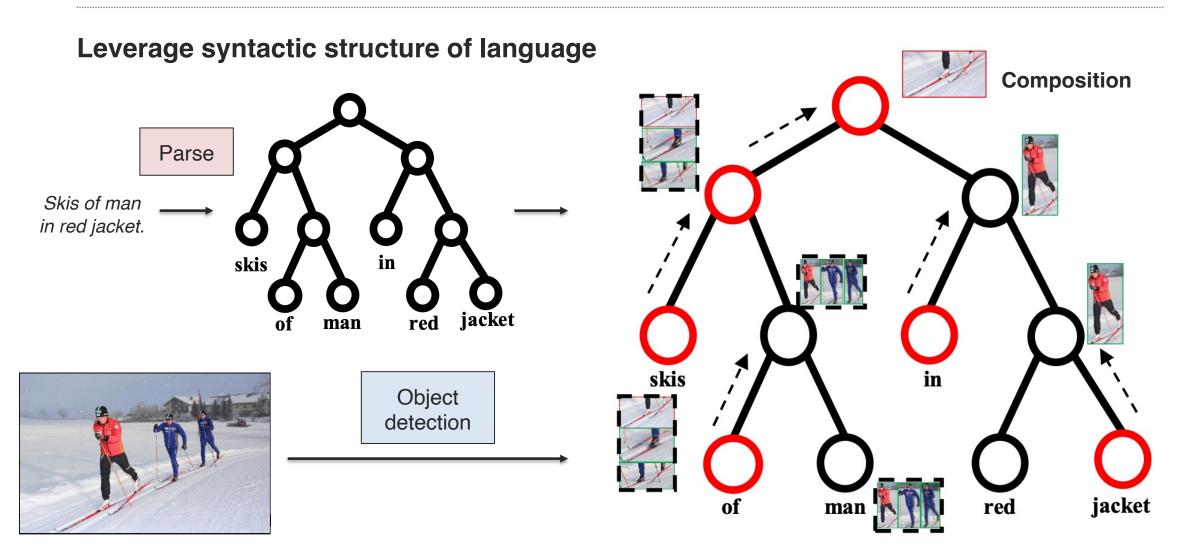


Leverage syntactic structure of language



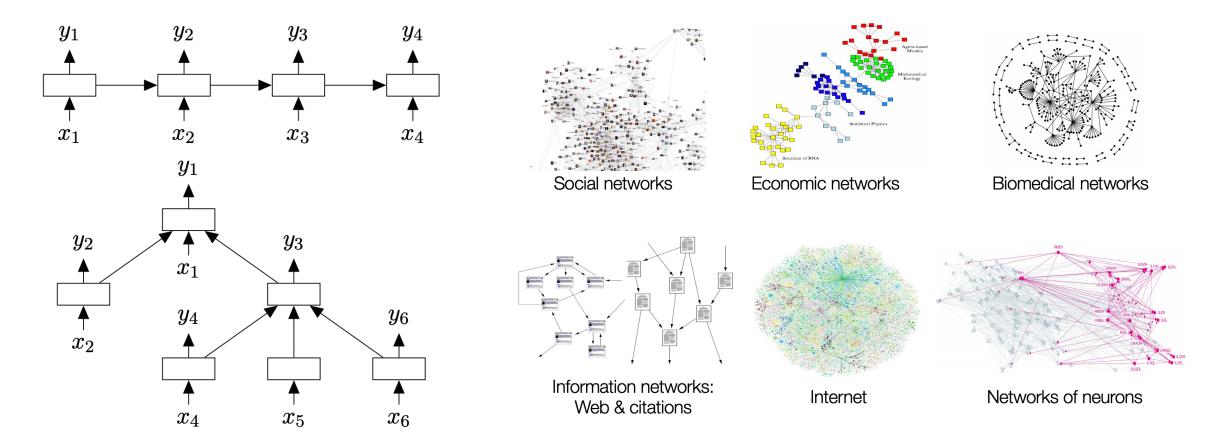
Leverage syntactic structure of language



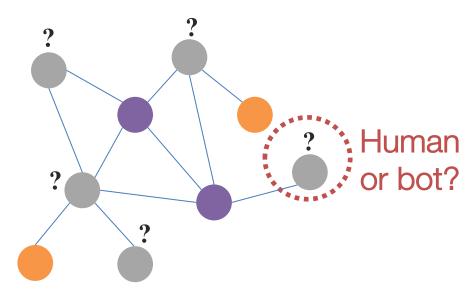


Tree and Graph Networks

From linear chain models to tree and graph-structured models



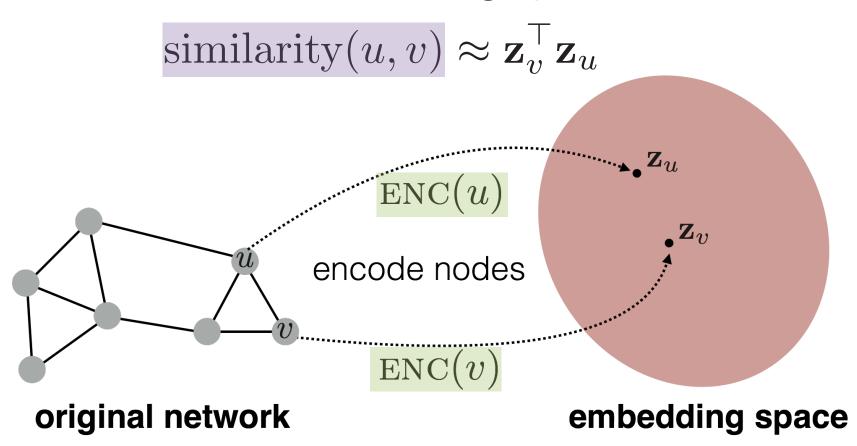
Goal: Learn from labels associated with a subset of nodes (or with all nodes)



e.g., an online social network

Graphs – Unsupervised Task

Goal: Learn an embedding space where

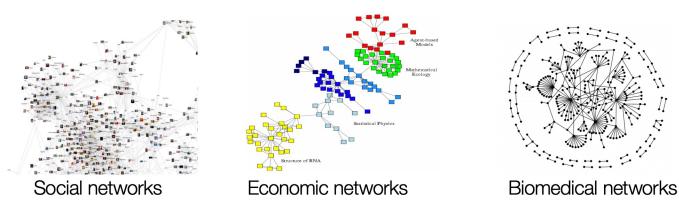


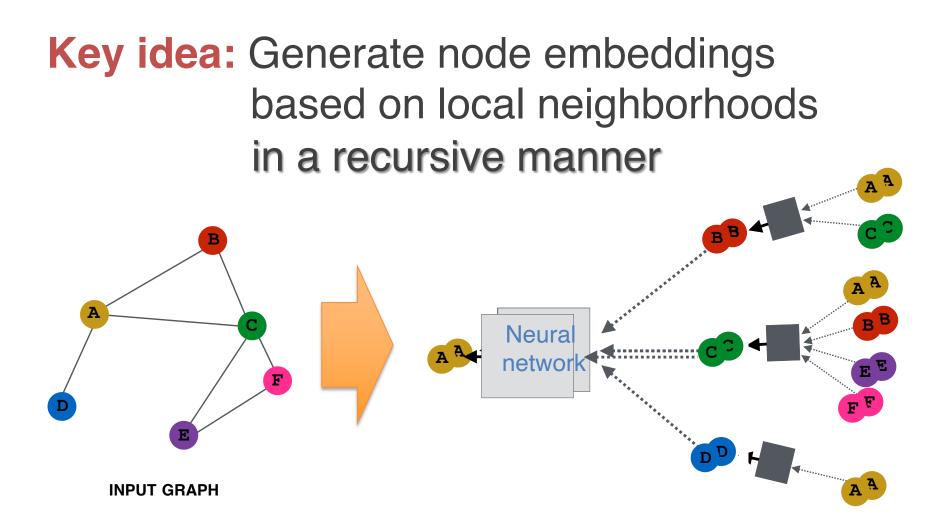
Graph Neural Nets

Assume we have a graph G:

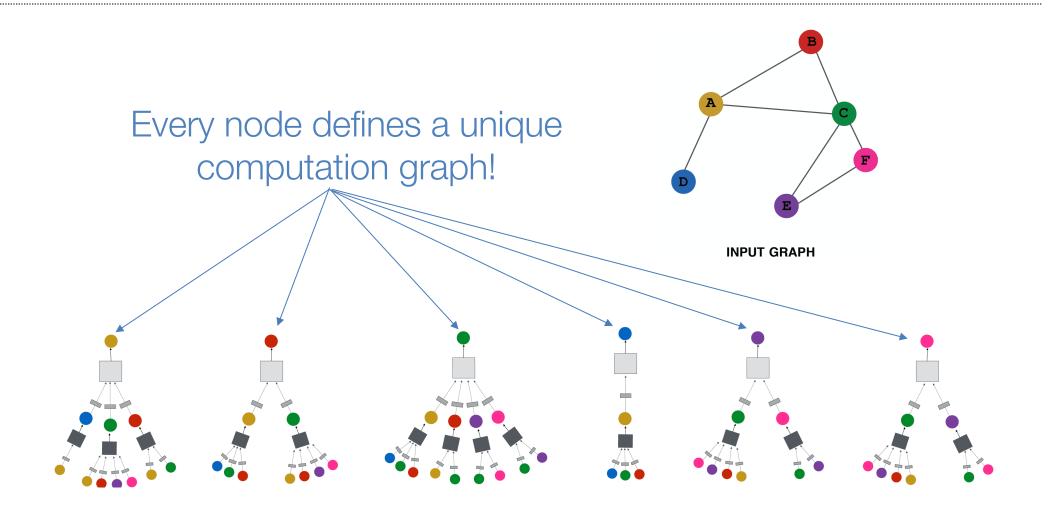
- V is the set of vertices
- A is the binary adjacency matrix
- X is a matrix of node features:
 - Categorical attributes, text, image data e.g. profile information in a social network

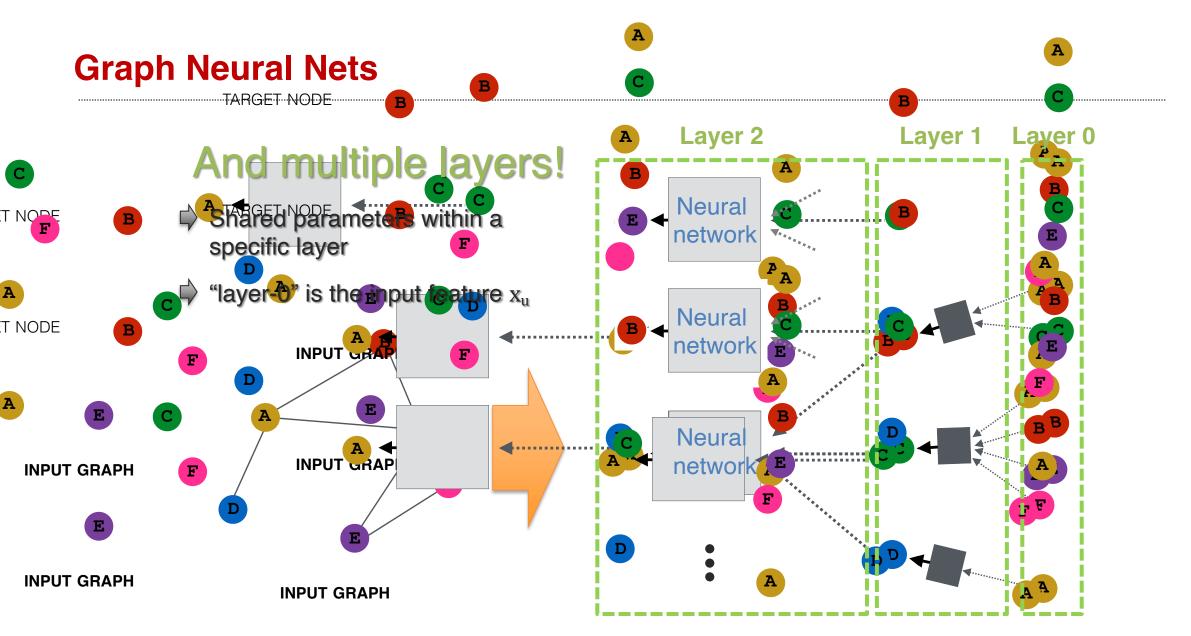
Y is a vector of node labels (optional)





Graph Neural Nets

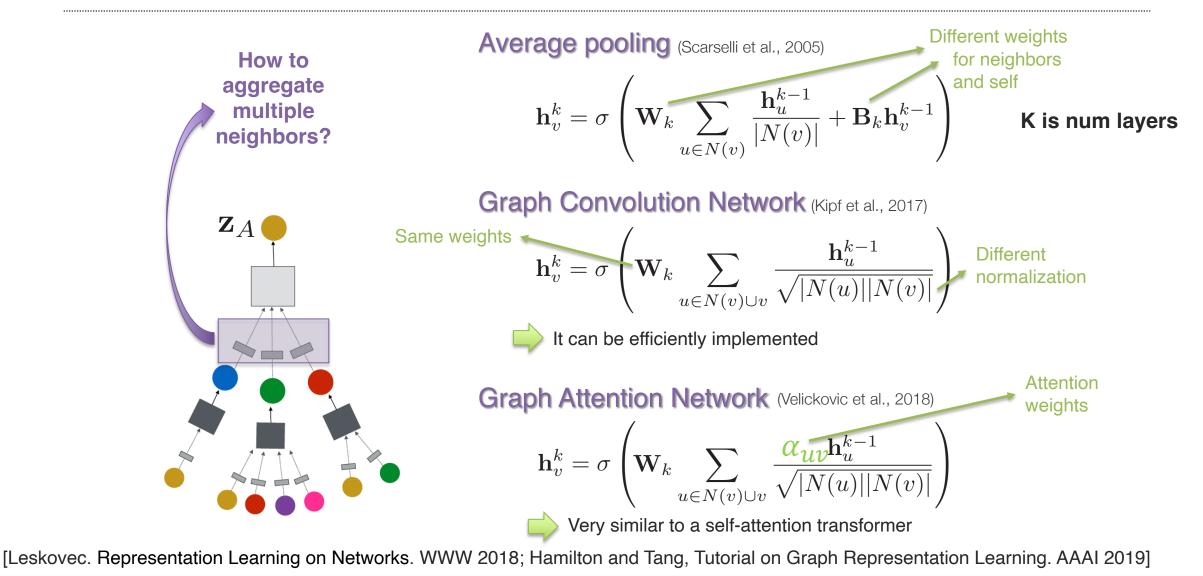




[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]

Carnegie Mellon University

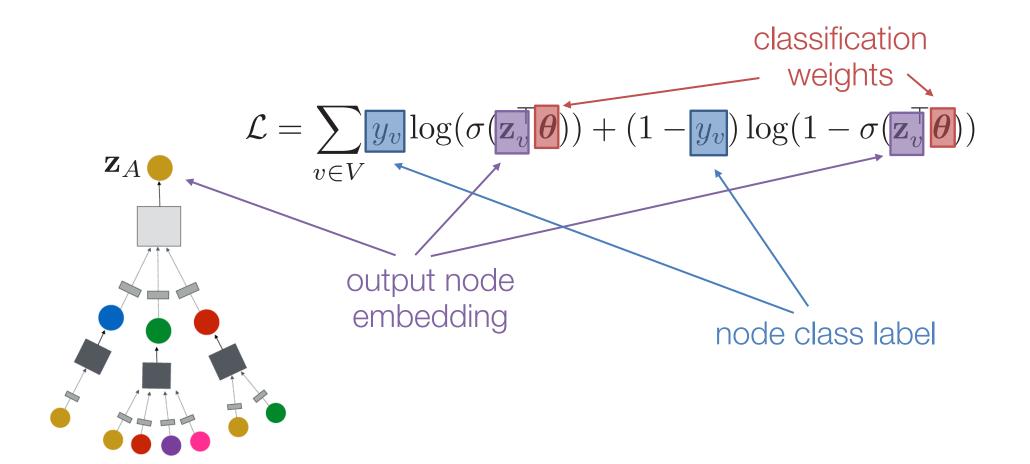
Graph Neural Nets – Neighborhood Aggregation



Language Technologies Institute

Carnegie Mellon University

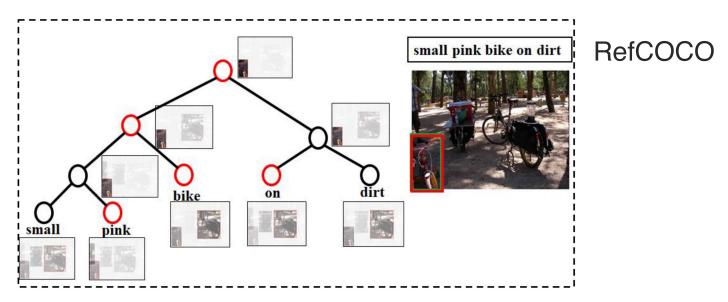
Graph Neural Nets – Supervised Training



Experiments

From linear chain models to tree models

 y_1 y_2 y_3 y_4 x_1 x_2 x_3 x_4 y_1 y_2 y_3 x_1 y_4 y_6 x_2 x_6 x_4 x_5



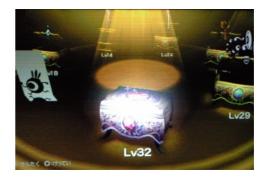
Accounting for syntactic structure also improves language-based sentiment analysis, semantic matching, question-answering, language modeling, interpreting attention scores, etc.

[Tai et al., Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. ACL 2015] [Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019] [Wang et al., Tree Transformer: Integrating Tree Structures into Self-Attention. EMNLP 2019]

Carnegie Mellon Universit

Empirically graph nets work well over less structured networks, but why?

Key idea: algorithmic alignment - link compositional structure required for task with computational structure of prediction model



Summary statistics What is the maximum value difference among treasures?

Relational argmax What are the colors of the furthest pair of objects?

Dynamic programming What is the cost to defeat monster X by following the optimal path?

NP-Hard NP-Complete NP P P P \neq NP P \neq NP P \neq NP P = NP P = NP P = NP

NP-hard problem Subset sum: Is there a subset that sums to 0?

[Xu et al., What Can Neural Networks Reason About?. ICLR 2020]

Empirically graph nets work well over less structured networks, but why?

Key idea: algorithmic alignment - link compositional structure required for task with computational structure of prediction model

$$\mathsf{MLP} \qquad \qquad y = \mathsf{MLP}_1\left(X\right)$$

DeepSets $y = MLP_2 \Big(\sum_{s \in S} MLP_1 (X_s) \Big).$

K-layer GNN
$$h_s^{(k)} = \sum_{t \in S} \operatorname{MLP}_1^{(k)} \left(h_s^{(k-1)}, h_t^{(k-1)} \right), \quad h_S = \operatorname{MLP}_2 \left(\sum_{s \in S} h_s^{(K)} \right),$$

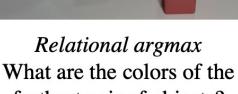
[Xu et al., What Can Neural Networks Reason About?. ICLR 2020]

Empirically graph nets work well over less structured networks, but why?

Key idea: algorithmic alignment - link compositional structure required for task with computational structure of prediction model Many multimodal reasoning problems here:

Summary statistics What is the maximum value difference among treasures?

DeepSets



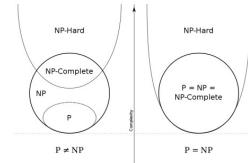
furthest pair of objects?

1-layer GNN

Dynamic programming What is the cost to defeat monster X by following the optimal path?

intuitive physics, visual question answering, shortest paths

K-layer GNN



NP-hard problem Subset sum: Is there a subset that sums to 0?

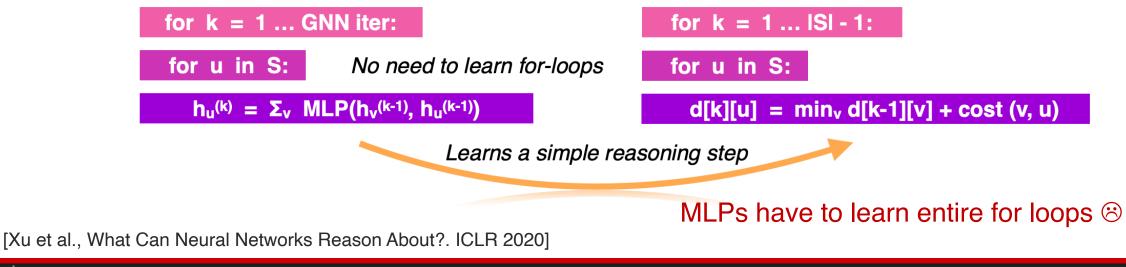
None 🛞

Empirically graph nets work well over less structured networks, but why?

Key idea: algorithmic alignment - link compositional structure required for task with computational structure of prediction model How graph neural nets capture dynamic programming:

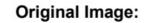
Graph Neural Network

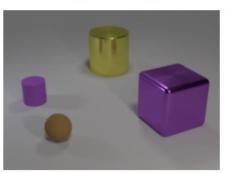
Bellman-Ford algorithm

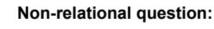


Empirically: datasets that require multiple steps of relational reasoning

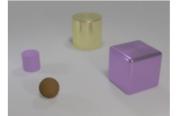
- 1. Sudoku: number interactions, multi-step, backtracking,
- 2. Relational VQA: CLEVR -> Sort-of-CLEVR -> Pretty-CLEVR ('which object is closest/k-steps away')





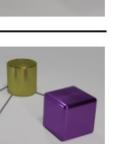


What is the size of the brown sphere?

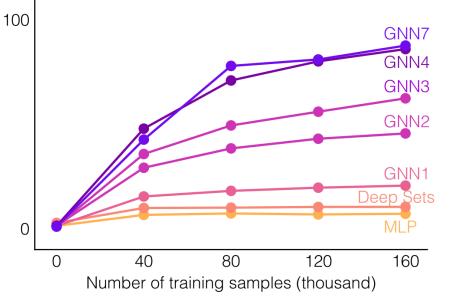


Relational question:

Are there any rubber things that have the same size as the yellow metallic cylinder?



Test accuracy (%)



[Santoro et al., A Simple Neural Network Module for Relational Reasoning. NeurIPS 2017] [Palm et al., Recurrent Relational Network. NeurIPS 2018] [Xu et al., What Can Neural Networks Reason About?. ICLR 2020]

Carnegie Mellon Universit

Key Takeaways & Open Challenges

- 1. Relations are between elements from same modality, so distances and representations are well-defined. -> how to handle cross-modal interconnections at the same time?
- 2. Heterogeneous graph nets, where nodes come from different modalities.
- 3. Formal connections between cross-modal interactions and relational reasoning.
- 4. Quantifying the reasoning required by decomposing datasets into perception vs reasoning.

Summary statistics What is the maximum value difference among treasures?

Relational argmax What are the colors of the furthest pair of objects?

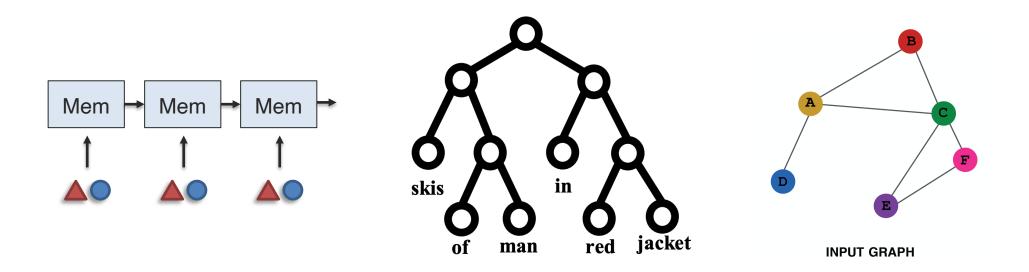
Dynamic programming What is the cost to defeat monster X

by following the optimal path?

NP-hard problem Subset sum: Is there a subset that sums to 0?

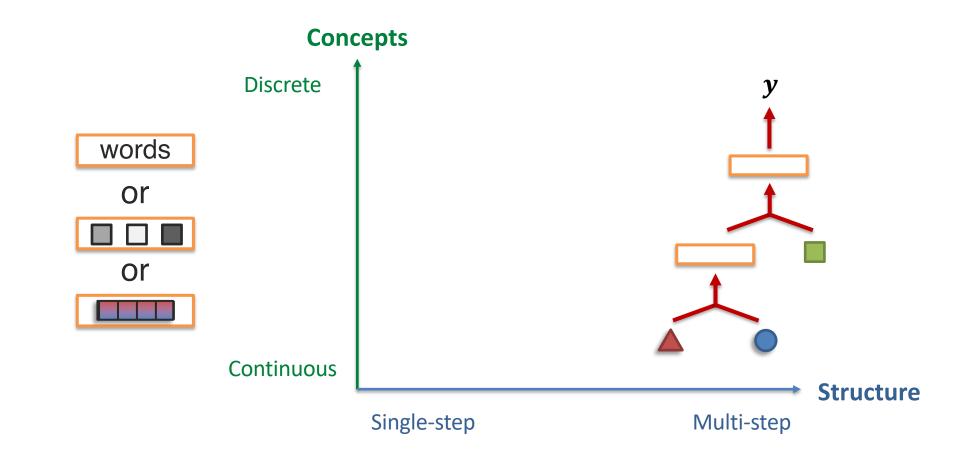
Reasoning is about compositionality, and compositionality requires knowing the structure.

In the continuous case (i.e., if structure is given or can be learned easily in a differentiable manner):

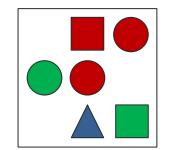


Sub-Challenge 3b: Intermediate Concepts

Definition: The parameterization of individual multimodal concepts in the reasoning process.



Hand-crafted concepts based on domain knowledge

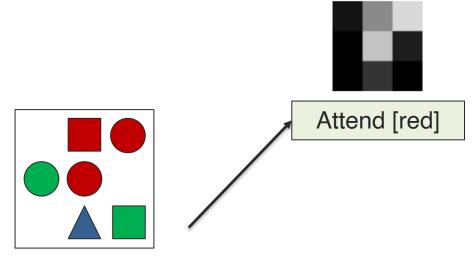


Is there a red shape above a circle?

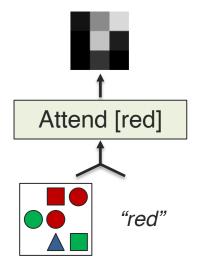
[Andreas et al., Neural Module Networks. CVPR 2016]

Carnegie Mellon Universit

Hand-crafted concepts based on domain knowledge



Local composition with interpretable output concepts

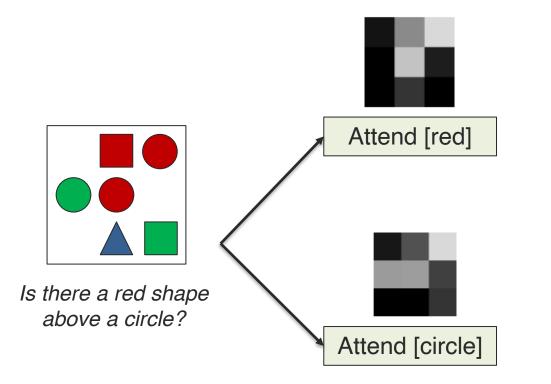


Is there a red shape above a circle?

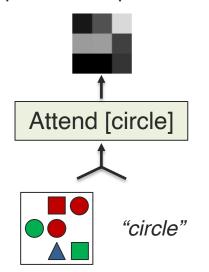
[Andreas et al., Neural Module Networks. CVPR 2016]

Carnegie Mellon Universit

Hand-crafted concepts based on domain knowledge



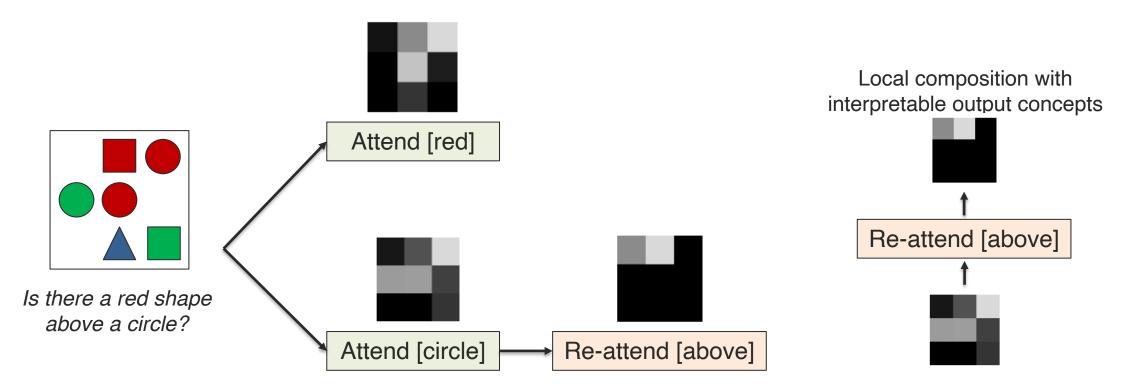
Local composition with interpretable output concepts



[Andreas et al., Neural Module Networks. CVPR 2016]

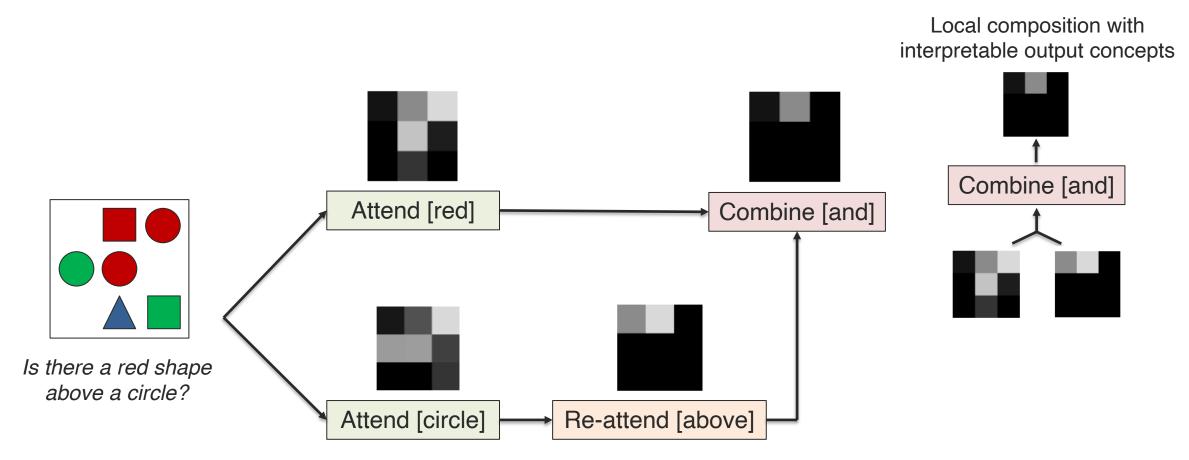
Carnegie Mellon University

Hand-crafted concepts based on domain knowledge



[Andreas et al., Neural Module Networks. CVPR 2016]

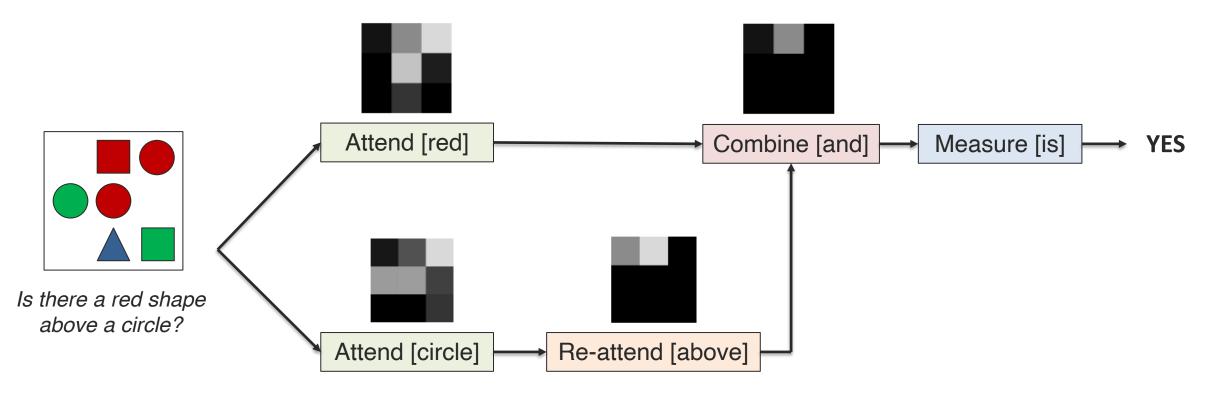
Hand-crafted concepts based on domain knowledge



[Andreas et al., Neural Module Networks. CVPR 2016]

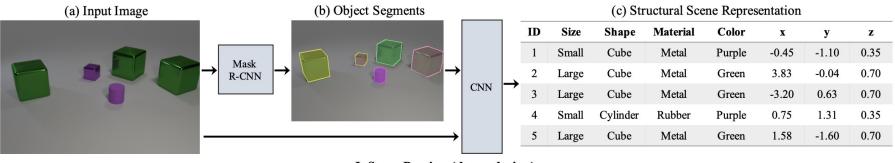
Hand-crafted concepts based on domain knowledge

Recall structure - leverage syntactic structure of language



[Andreas et al., Neural Module Networks. CVPR 2016]

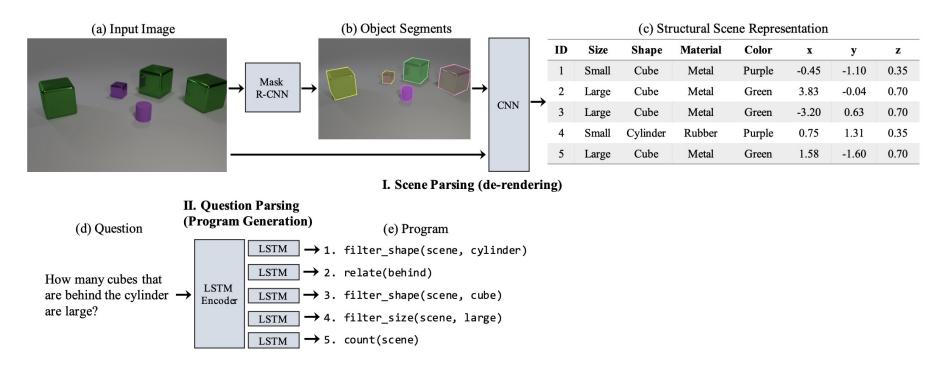
Hand-crafted concepts based on domain knowledge



I. Scene Parsing (de-rendering)

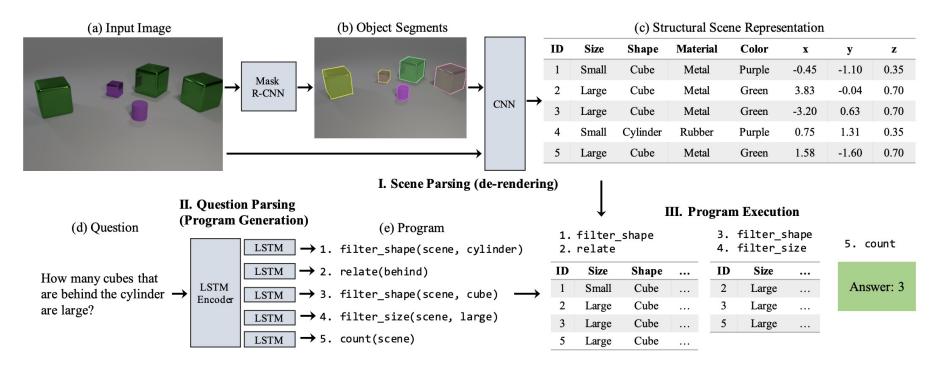
[Yi et al., Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. NeurIPS 2018]

Hand-crafted concepts based on domain knowledge



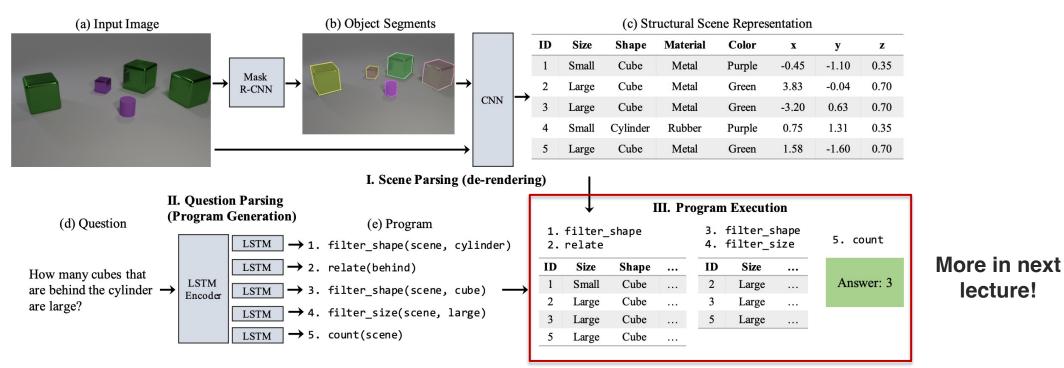
[Yi et al., Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. NeurIPS 2018]

Hand-crafted concepts based on domain knowledge



[Yi et al., Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. NeurIPS 2018]

Hand-crafted concepts based on domain knowledge



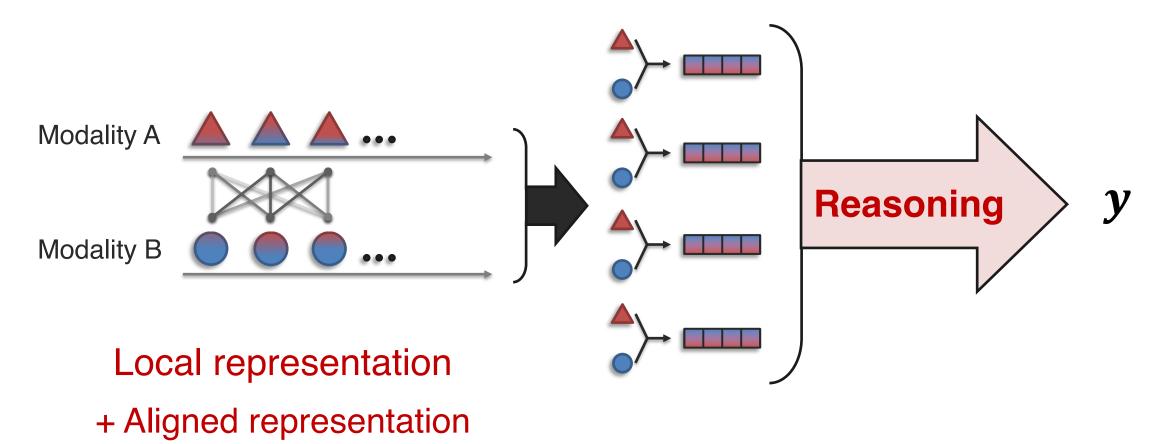
Pros:

- Robust (either it works or it doesn't)
- Data-efficient
- Human-interpretable

Cons:

- More engineered, specialized models
- Sometimes not fully differentiable (structure or concepts)
- Sometimes not perfect compatible with large-scale pre-training
- [Yi et al., Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. NeurIPS 2018]

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.



狒

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.

(a) some plants surrounding a lightbulb

(b) a lightbulb surrounding some plants

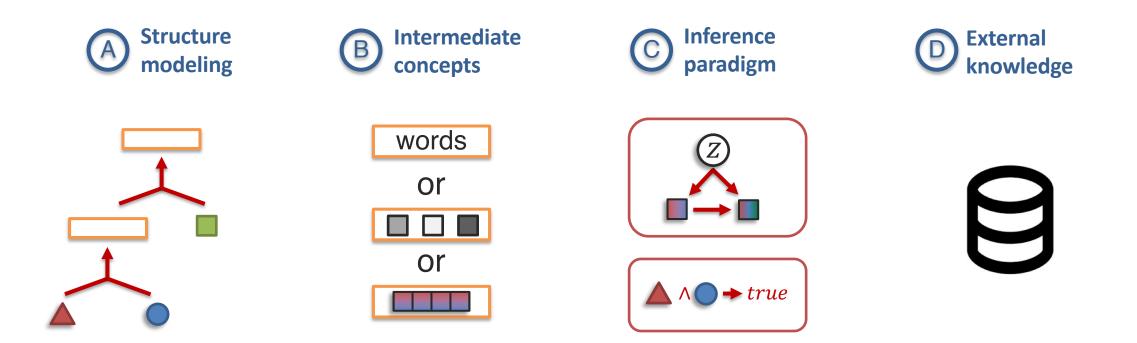
CLIP, ViLT, ViLBERT, etc. All random chance

Compositional Generalization to novel combinations outside of training data

Structure: <subject> <verb> <object>
 Concepts: 'plants', 'lightbulb'
 Inference: 'surrounding' – spatial relation
 Knowledge: from humans!

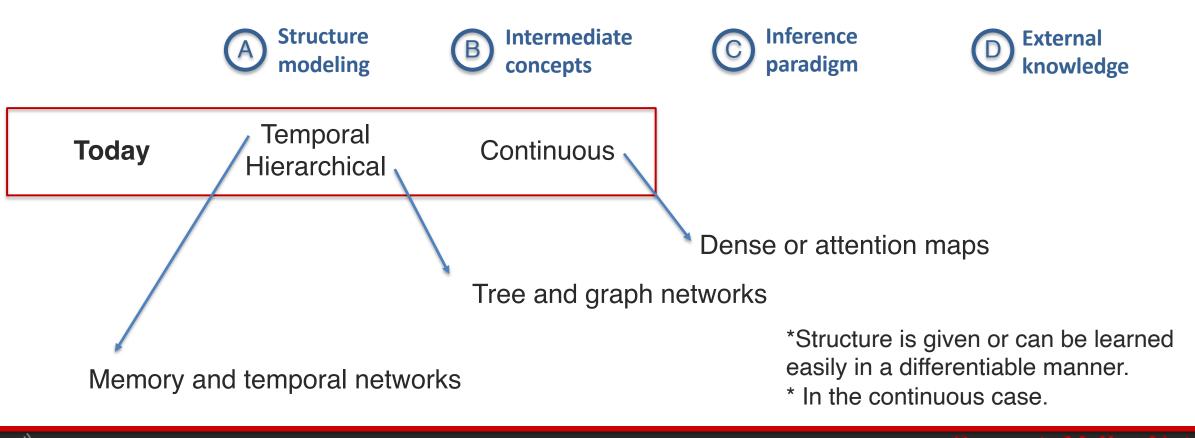
[Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality. CVPR 2022]

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.



瘚

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.



Roadmap for Next 3 Lectures

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.

