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Reasoning

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.
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The Challenge of Compositionality

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

CLIP, VILT, VIiLBERT, etc.
All random chance

Compositional Generalization
to novel combinations outside
of training data

1. Structure: <subject> <verb> <object>
2. Concepts: ‘plants’, ‘lightbulb’

(a) some plants (b) a lightbulb surrounding some plants 3. Inference: ‘surrounding’ — spatial relation
surrounding a 4. Knowledge: from humans!
lightbulb

[Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality. CVPR 2022]
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The Challenge of Compositionality

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Imagen (Ours) GLIDE [41]

A horse riding an astronaut.

[Saharia et al., Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. arXiv 2022]
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Many Debates Surrounding Reasoning

Fully Fully domain

Bottom-up Hybrid/neuro-symbolic Top-down

1. Differentiable?
2. Discrete or continuous
concepts or representations?
3. Best mix of knowledge and data?

Implications on: interpretability,

robustness, fairness, data + model
efficiency, etc.
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Sub-Challenge 3a: Structure Modeling

Definition: Defining or learning the relationships over which reasoning occurs.

?
1

y [
A ® A ®
» Structure
Single-step Temporal Hierarchical Interactive Discovery
\ J
I
Multi-step
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Sub-Challenge 3b: Intermediate Concepts

Definition: The parameterization of individual multimodal concepts in the reasoning process.

Concepts
Discrete

words

or
OO0 .

or
CITT]

Continuous
* Structure
Single-step Multi-step
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Sub-Challenge 3c: Inference Paradigm

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

Concepts

Discrete %

B— B ., Inference

Continuous Representation

* Structure
Single-step Multi-step
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Sub-Challenge 3d: External Knowledge

Definition: Leveraging external knowledge in the study of structure, concepts, and inference.

Concepts

Discrete

Inference

Causal

Knowledge

2 8

Logical

Continuous Representation

* Structure
Single-step Multi-step
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Reasoning

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
words g @ A
)\ or ./\.
—
O OO . \_ Y,
)\ or r N
[(TTT] A N® > true
A @) — . )
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Roadmap for Next 3 Lectures

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
Temporal :
Ti . . Continuous
oday Hierarchical
Interactive .
Next Tuesday Discovery Discrete
Causal Knowledge
Next Thursday Logical Commonsense
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Reasoning

Concepts
Inference
Dense
Representation
» Structure
Single-step

Recall representation fusion!

Basic fusion: Complex fusion:

Modality A [N Modality A A\
1T 1T
Modality B (iRl Modality B

Ideas also apply here, but can we be explicitly interpretable and robust?
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Sub-Challenge 3a: Structure Modeling

Definition: Defining or learning the relationships over which composition occurs.

?
1

y [
A ® A ®
» Structure
Single-step Temporal Hierarchical Interactive Discovery
\ J
I
Multi-step
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Sub-Challenge 3a: Structure Modeling

Concepts
Inference
Dense Representation
. » Structure
Single-step Temporal
\ J
I
Multi-step
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Temporal Structure

Temporal structure in multi-view sequences

How can we capture cross-modal interactions across time?

Connections + interactions

Time
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Temporal Structure

Temporal structure in multi-view sequences

Key ideas: memory to capture cross-modal interactions across time
Connections + interactions

Many choices:
y RNN, LSTM
T Transformer

Key-value memory

Multimodal | | Multimodal | | Multimodal | _,| Multimodal Episodic memory
memory | | memory | memory memory
- = = =
Ao ) Ao Ao |
> Time
t:l t=2 t:3 . t=T
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Temporal Structure

Temporal structure in multi-view sequences

Key ideas: memory to capture cross-modal interactions across time _ .
D dimensions

Multimodal Multimodal Multimodal

memory | || memory | memory [ M locations

| |
PN PN

A O A O A ©

t=1 t=2 t=3

—
L

> Time
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Temporal Structure

Temporal structure in multi-view sequences

@ Input  Coordination function measuring similarity between input and memory to weight input:

W, = Sim(xt, Mt) = Mtxt Normalized vector of M entries
-> weights over M memory locations

Input = wexl  InputisMxD
Recall representation coordination, attention

models, Transformers, LSTMs etc.
Multimodal | | Multimodal
memory | | memory
| (@
[(T1T] [(TTT] [(TTT] T
A O A O A © A O _
> Time
t=1 t=2 t=3 t=T

[Wang et al., Multimodal Memory Modelling for Video Captioning. CVPR 2018]
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Temporal Structure

Temporal structure in multi-view sequences

@ Write Weighted function to write new addition into memory

Mt+1 — (1 — at)Mt -+ atlnput (¢ learnable in LSTM/RNN/Transformers,
or similarity function in parameterized memory.

] Together, enables modeling of
Multimodal | | Multimodal | | Multimodal | @ Write cross-modal interactions across time.
memory | | memory |  memory
| (@ |
CITTT] CITTT] CITTT] T
Ao ) Ao Ao |
> Time
t = 1 t=2 t = 3 . t=T

[Xiong et al., Dynamic Memory Networks for Visual and Textual Question Answering. arXiv 2016]
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Temporal Structure

Temporal structure in multi-view sequences

@ Read Summary function to read multimodal information

Read = BTMT BT learnable in LSTM/ Transformers,
or similarity function in memory.

1Q) reas

Multimodal | | Multimodal | | Multimodal | @ Write _| Multimodal
memory | | memory | memory memory
l |@® moue | I
CITTT] CITTT] CITTT] CITTT]
iAo £ o Ao iAo |
» Time
t = 1 t=2 t = 3 . t=T

[Hazarika et al., ICON: Interactive Conversational Memory Network for Multimodal Emotion Detection. EMNLP 2018]
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Some Extensions

1. Input: Different addressing mechanisms

@ Input  Coordination function measuring similarity between input and memory to weight input:

W = Sim(xt, Mt) — Mtxt Okay if different timesteps provide different
information — get added to different memory cells
|nput — th'{ (i.e., non-redundancy)

Multimodal | _| Multimodal _ What about redundant case? -

memory " memory Time-steps provide similar or reinforcing information*

| (@ o
T T = s
A O A O A © A O _
» Time
t=1 t=2 t=3 t=T

[Graves et al., Neural Turing Machines. arXiv 2014]
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Some Extensions

1. Input: Different addressing mechanisms — by location

@ Inout Coordination function measuring similarity between input and memory to weight input,
P while also keeping previous input indices into account:

w, = sim(xy, My) = M x, Idea: take previous input indices into account,
apply rotation to new indices upon repetition
w, = rotate(Wg, We_1) PPy rotat W INCICES LUpon repetit
_ T Leads to a contiguous block of similar
Multimodal | | Multimodal InpUt = WeX¢ representations in memory.
memory | | memory
| (@ o
T T = s
A O A O A © A O _
» Time
t = 1 t=2 t = 3 . t=T

[Graves et al., Neural Turing Machines. arXiv 2014]
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Some Extensions

2. Writing: Including both erase and write functions

@ Erase + write

M, = M.[1 — a,Erase] Erase: learnable vector of [0,1]

Mt+1 — Mt + atlnput

Multimodal | | Multimodal | | Multimodal | @ Erase + Write

memory | | memory |  memory
| Qe |
CITTT] CITTT] CITTT] CITTT]
A BY B A
i o® iAo i o® i ® |
Time
t=1 t=2 t=3 t=T

[Graves et al., Neural Turing Machines. arXiv 2014]

Language Technologies Institute




Some Extensions

3. More exponential moving average

@ Write  Write new addition into memory Exponential moving average function
- Smooth out short-term fluctuations

M1 =(1—a;)M; + a;Input - Highlight long-term trends

Multimodal | | Multimodal | | Multimodal | @ Write

— >

memory memory memory
| (@ |
[TTT11 [TT11 [ITTT11 [LTT1
A B B A
A ©® A ® A O A ©® |
> Time
t=1 t=2 t=3 t=T

[Ma et al., Mega: Moving Average Equipped Gated Attention. arXiv 2022]
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Some Extensions

3. More exponential moving average + combine with Transformers

@ Write  Write new addition into memory Exponential moving average function
- Smooth out short-term fluctuations

M;.1=(1—a;)M; + a;Input - Highlight long-term trends

\ | output Y |

( ( Add&Norm @ ’E‘
Feedf d
[ eedrorwarn o
C

(Gate 90) (Gate ’YJ

Norm )

Single-head
Attention Unit

XL
Mega Layer:
EMA & Gated
Attenti
\ ention / EMA output x’
1

Input Embeddlng Layer input X

(a) Mega architecture. (b) Mega layer. (c) Single-head attention unit.

[Ma et al., Mega: Moving Average Equipped Gated Attention. arXiv 2022]
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Some Extensions

4. From recurrent to parallel convolutions

A lot of what we presented seemed to be recurrent, which may not seem easily parallelizable.

But many of these have equivalent formulations in convolutional representations.

Key idea: exponential moving average can be implemented as convolution.

@ Write Write new addition into memory
M., ={1—-a;)M; + a;Input M; = K = [Input_1, ... Input_T]
BUT: K will be huge, the size of the entire sequence.

Many approximations, optimizations, see references below.

[Gu et al., Efficiently Modeling Long Sequences with Structured State Spaces. ICLR 2022]
[Ma et al., Mega: Moving Average Equipped Gated Attention. arXiv 2022]
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Memory for Multimodal Sequences

1. Memory + representation

We've seen early fusion of raw modalities
Structuring multimodal memory: ideas from representation fusion, coordination, and fission

)f
Multimodal | Multimodal | Multimodal ., N Multimodal A ‘
memory | | memory |  memory memory
- - -
A O A O A O A O _
» Time
t=1 t=2 t=3 t=T

[Rajagopalan et al., Extending Long Short-Term Memory for Multi-View Structured Learning. ECCV 2016]
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Memory for Multimodal Sequences

1. Memory + representation

Representation can be learned not just prior to memory but also inside memory cells

@ Write Write new addition into memory

Mt‘+1 =(1-a)M; +«a Input‘+ 4] Input‘
Mt'+1 =(1—-a)M; +« Input'+ B Inpu’[A
Memory 1 Memory 1 Memory 1 — — Memory 1
Memory 2 Memory 2 Memory 2 — — Memory 2
A O A O A O A O _
Time
t = 1 t=2 t = 3 . t=T

[Rajagopalan et al., Extending Long Short-Term Memory for Multi-View Structured Learning. ECCV 2016]
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Memory for Multimodal Sequences

1. Memory + representation

Fully unimodal
- a=1 = N a = 1/3 a=2/3
xt( ) 95'}) B=0 xt( ) QQ- B=1/3 F=12/3
hgk) hgk)
(a) (b) ()
v a=0 - a=1
= i 5
hgk) hgk)
kv k®v
(d) (e)

[Rajagopalan et al., Extending Long Short-Term Memory for Multi-View Structured Learning. ECCV 2016]
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Memory for Multimodal Sequences

1. Memory + representation

(v) | =1 ) @ = 1/3 a=2/3
x;” g g=1 xt(v) 99?- p=1/3 g=2/3
k k
B B
k=v k#®v
(a) (b) (c)
a=0 =3
xz(v) 9?7) g=1 xt(v)‘ B=1
. Fully fusion
hgk) hgk)
kxv kv
(d) ()

[Rajagopalan et al., Extending Long Short-Term Memory for Multi-View Structured Learning. ECCV 2016]
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Memory for Multimodal Sequences

1. Memory + representation

- a=1 = N a = 1/3 a=2/3
xt( ) 95'}) g=1 xt( : QQ- p=1/3 g=2/3
Hybrid
fusion +
h hg? fission
(a) (b) (c)
v a=0 - a=1
=0 - Sy =
hgk) hgk)
kzv k®v
(d) (e)

[Rajagopalan et al., Extending Long Short-Term Memory for Multi-View Structured Learning. ECCV 2016]
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Memory for Multimodal Sequences

1. Memory + representation

Representation can be learned not just prior to memory but also inside memory cells

@ Write Write new addition into memory

MtA+1 =(1- at)Mt + atlnputA + ﬁtlnput‘ a;, B+ can be dynamic and

learnable, e.g., self-attention,

O A L
Mg—l — (1 — at)Mt + atlnput + ﬁtlnput similarity, etc.
Memory 1 Memory 1 Memory 1 — — Memory 1
Memory 2 Memory 2 Memory 2 — — Memory 2
A O A O A O A O _
» Time
t = 1 t=2 t = 3 . t=T

[Zadeh et al., Memory Fusion Network for Multi-view Sequential Learning. AAAI 2018]
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Memory for Multimodal Sequences

2. Memory + aligned contextualized representations

Where have | visited previously?

« 3 memory bank
my m; my . M
g
[ (€] P é
2
< &
&
- ]
Instruction ]
@@ Head a bit ahead and toward the double
doors on the left towards the kitchen. Stop| —
upon reaching the counter. J

[Chen et al., History Aware Multimodal Transformer for Vision-and-Language Navigation. NeurlPS 2021]
[Lin et al., Multimodal Transformer with Variable-length Memory for Vision-and-Language Navigation. ECCV 2022]
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Memory for Multimodal Sequences

2. Memory + aligned contextualized representations

Where have | visited previously?

Head a bit ahead and toward the
double doors on the left towards

memory injection update memory candidate VI able vnewpomt the kitchen¥Stoplliponkeaching
! i 'n f the counter.
(. memory bank t-1 l llnitialize at t=0

m m; . My Vision Encoder ] [ Language Encoder ]

° (€] > -~
g 5 GEoE- ol |

y ' v } ! y

= Cross-modality Encoder ]

Instruction
@@ Head a bit ahead and toward the double

doors on the left towards the kitchen. Stop| —
upon reaching the counter. J

[ memory bank t j MLP MLP] - [@ E,-ndex
mg ’ * |

- my !
r softmax }—a, —

+ Contextualized representations
+ Memory mechanisms

[Chen et al., History Aware Multimodal Transformer for Vision-and-Language Navigation. NeurlPS 2021]
[Lin et al., Multimodal Transformer with Variable-length Memory for Vision-and-Language Navigation. ECCV 2022]
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Use Cases

1. Tasks involving repeating input data in a specific way

Direct copy Repeat copy Associative recall Sorting

51867 -> 51867 51867, 3 -> 51867 51867 51867 51867,8 -> 6 51867 -> 15678

1->8
140 l -

_ LSTM —o— 6->7

o 120 NTM with LSTM Controller —=— -

=) NTM with Feedforward Controller

o 100 |

(&)

g 80}

S 60 | Much better than methods without memory

2]

S 40}

S 20|

O 1 1 1 |
0 200 400 600 800 1000

sequence number (thousands)

[Graves et al., Neural Turing Machines. arXiv 2014]
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Use Cases

2. Extremely long-range sequences

- List operations: mean, max, sum, etc T=2K
- Long document classification and retrieval T=4K
- Image classification via sequence of pixels T=1K
- Pathfinder T=1K
- (Generating) long speech signals T =128K

Some audio samples:
https://hazyresearch.stanford.edu/sashimi-examples/

[Gu et al., Efficiently Modeling Long Sequences with Structured State Spaces. ICLR 2022] (b) A negative cxample
[Goel et al., It's Raw! Audio Generation with State-Space Models. ICML 2022] s P

Language Technologies Institute
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https://hazyresearch.stanford.edu/sashimi-examples/

Use Cases
3. Changing information across time

Can be implemented by explicitly writing and reading from memory, in contrast to fully
neural models which are typically uncontrollable

Input Year Uniform Temporal

_X_ is the chair of Federal Reserve System. 2019 Janet L. Yellen Jerome Powell

Nigel Farage is a member of the _X_. 2019 UK Independence Party Brexit Party

Mark Sanford holds the position of _X_. 2017 Governor of South Carolina United States representative
_X_ 1s the head of the government of New York City. 2016 Michael Bloomberg Bill de Blasio

_X_ 1s the head coach of Real Madrid CF. 2015 Zinedine Zidane Carlo Ancelotti

Theresa May holds the position of _X_. 2014 Prime Minister of Great Britain Home Secretary

Peyton Manning plays for _X_. 2014 Indianapolis Colts Denver Broncos

_X_ 1is the head of the government of United Kingdom. 2011 Theresa May David Cameron

Marissa Mayer works for _X_. 2011 Yahoo Google

Rahm Emanuel holds the position of _X_. 2010 Mayor of Chicago White House Chief of Staff

[Wu et al., Memorizing Transformers. ICLR 2022]
[Dhingra et al., Time-Aware Language Models as Temporal Knowledge Bases. TACL 2022]
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Key Takeaways

Temporal structure in multi-view sequences

Key ideas: memory to capture cross-modal interactions across time Combine with:
Connections + interactions - Representation
- Alignment

y Most useful for:
I@ Read - Copying/storing

_ - Long-range interactions
Multimodal | | Multimodal | | Multimodal @ Write Multimodal - Controlling internal
=> > > ces — . .
memory memory memory memory information
I |@® ot | I
= T T s
A O A O A O A @ _
> Time
t=1 t=2 =3 t=T

[Liang et al., Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions. arXiv 2022]
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Open Challenges

1. Long-range multimodal sequences: good benchmarks with interactions across a long range.

2. To what extent do pre-trained models already capture memory (i.e., memorize and enable retrieval),
vs explicit memory mechanisms?
3. More, see https://cmu-multicomp-lab.github.io/adv-mmmi-course/spring2022/schedule/

KG

[Petroni et al., Language Models as Knowledge Bases? EMNLP 2019]

Memory

DANTE

Query

Answer

(DANTE, born-in, X)

Symbolic
Memory Access

—» F'LORENCE

born-in

FLORENCE

e.g. ELMo/BERT

“Dante was born in [MASK].”
N A Y 2

Neural LM
Memory Access

—> L'lorence

2/25 Week 6: Memory and long-term interactions [synopsis]

What are the scenarios in which memory for long-term interactions is
required in multimodal tasks, where data comes from heterogeneous
sources? What could be a taxonomy of long-range cross-modal interactions
that may need to be stored in memory?

What are certain methods of parametrizing memory in unimodal models that
may be applied for multimodal settings, and the various
strengths/weaknesses of each approach?

How should we model long-term cross-modal interactions? How can we
design models (perhaps with memory mechanisms) to ensure that these
long-term cross-modal interactions are captured?

What are the main advantages of explicitly building memory-based modules
into our architectures, as compared to the large-scale pre-training
methods/Transformer models discussed in week 47 Do Transformer models
already capture memory and long-term interactions implicitly?

To what extent do we need external knowledge when performing reasoning,
specifically multimodal reasoning? What type of external knowledge is likely
to be needed to succeed in multimodal reasoning?

A related topic is multimodal summarization: how to summatrize the main
events from a long multimodal sequence. How can we summarize long
sequences while keeping cross-modal interactions? What is unique about
multimodal summarization?

Long Range Arena: A Benchmark for Efficient
Transformers

Large Memory Layers with Product Keys

Dynamic Memory Networks for Visual and Textual
Question Answering

Multimodal Memory Modelling for Video Captioning
Episodic Memory in Lifelong Language Leaming
ICON: Interactive Conversational Memory Network
for Multimodal Emotion Detection

Hybrid computing using a neural network with
dynamic external memory

History Aware Multimodal Transformer for Vision-and-
Language Navigation

Do Transformers Need Deep Long-Range Memory?
Transformer-XL: Attentive Language Models Beyond
a Fixed-Length Context

Neural Turing Machines

Meta-Learning with Memory-Augmented Neural
Networks

[Liang et al., Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions. arXiv 2022]

Language Technologies Institute
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Sub-Challenge 3a: Structure Modeling

Concepts
Inference
Dense Representation
» Structure
Single-step Temporal Hierarchical
\ J
I
Multi-step
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Hierarchical Structure

Leverage syntactic structure of language

Parse

Skisof man __, -
in red jacket.

skis in

of man red Jjacket

Object
detection

v

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]
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Hierarchical Structure

Leverage syntactic structure of language

Parse

Skisof man __, -
in red jacket.

skis in

of man red Jjacket

O

Object
detection

<

Coordination

v

I i ) )| ) N\

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]
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Hierarchical Structure

Leverage syntactic structure of language

Parse

Skisof man __, -
in red jacket.

skis in = _ﬁ
of man red Jjacket O -

Object
detection

A 4
-—
T -
y v \
B ‘
\ h|
—

= Coordination
of man m
il

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]
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Hierarchical Structure

Leverage syntactic structure of language

Composition
Parse P

Skisof man __, -
in red jacket.

skis in
of man red Jjacket
Object -
detection L
> I
|\,

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]
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Hierarchical Structure

Leverage syntactic structure of language

Parse

Skisof man __, I,
in red jacket.

skis in
of man red jacket
Object -
detection L
> |
I

of man red jacket

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]
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Tree and Graph Networks

From linear chain models to tree and graph-structured models

1 Y2 Y3 Ya

Economic networks Biomedical networks

Information networks:
Internet Networks of neurons

T4 T T6 Web & citations

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graphs — Supervised Task

Goal: Learn from labels associated with a
subset of nodes (or with all nodes)

\
R

e.g., an online social network

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graphs — Unsupervised Task

Goal: Learn an embedding space where

similarity (u, v) ~ z, z,

........................................... oZu
............ ENC(u)
........ oZ
/\\u encode nodes 2 .
S~ /\ “““““““
\/ I S
ENC(v)
original network embedding space

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graph Neural Nets

Assume we have a graph G:
V is the set of vertices
A is the binary adjacency matrix
X is a matrix of node features:
« Categorical attributes, text, image data
e.g. profile information in a social network

Y is a vector of node labels (optional)

-, 2%
'h—. ! i DL,\U D?Li ELEI . --
l\ﬁq}?’_] r\;{;?; & EI DD I_IM“‘SHNI Physics
[=! DDE'L]D
Social networks Economic networks Biomedical networks

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]

Language Technologies Institute 49




Graph Neural Nets

Key idea: Generate node embeddings
based on local neighborhoods

IN @ recursive manner

Neural :
@ «
network

INPUT GRAPH

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graph Neural Nets

Every node defines a unique
computation graph!

INPUT GRAPH

. o o o ° .
= " " " n B
Csiin 0 s ee® e ag et ais %ean e eei o

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graph Neural Nets

And multiple layers!

B Shared parameters within a E < Neural
ifi network
specific layer

D “layer-0” is the input feature x,

‘,4_ Neural
network

Neural
@ «
network

INPUT GRAPH

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graph Neural Nets — Neighborhood Aggregation

Average pOOIing (Scarselli et al., 2005)

How to
aggregate hk—1
multiple hfj — o | W, Z u + Bkhﬁ_l
neighbors? wEN (1) [N (v)]
Graph Convolution Network (i et al., 2017)
ZA? ( -
hh—
hf =0 TW, ) u \
\ el VINWIIN 4
% |::| & It can be efficiently implemented
O .
‘ . .“ Graph Attention Network (veickovic et al., 2018)
i » ) hk:—l
Py = & hv —c |l W
. %Q [:,& . ' k Z \/’N HN

uweN (v)Uv

Very similar to a self-attention transformer

K is num layers

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graph Neural Nets — Supervised Training

classification
/ weights <
Eziylog ) log(1 — o(@Z]0))
ZA? veV
%;@ output node
embedding

node class label
d i %

0 %ggé ‘:.JC
0..0

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Experiments

From linear chain models to tree models
Y1 Y2 Y3 Y4

RefCOCO

Accounting for syntactic structure also improves language-based
sentiment analysis, semantic matching, question-answering,
T4 x5 X6 language modeling, interpreting attention scores, etc.

[Tai et al., Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. ACL 2015]
[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]
[Wang et al., Tree Transformer: Integrating Tree Structures into Self-Attention. EMNLP 2019]
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How do Graph Nets Work?

Empirically graph nets work well over less structured networks, but why?

Key idea: algorithmic alignment - link compositional structure required for task with
computational structure of prediction model

NP-Hard i NP-Hard |

i \ g )/

Summary statistics Relational argmax Dynamic programming NP-hard problem
What is the maximum value =~ What are the colors of the What is the cost to defeat monster X Subset sum: Is there a
difference among treasures? furthest pair of objects? by following the optimal path? subset that sums to 0?

[Xu et al., What Can Neural Networks Reason About?. ICLR 2020]
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How do Graph Nets Work?

Empirically graph nets work well over less structured networks, but why?

Key idea: algorithmic alignment - link compositional structure required for task with
computational structure of prediction model

MLP y = MLP; (X )

DeepSets y = MLP, ( > MLP; (X,) ) :
sesS

K-layer GNN hg‘k) — ZtES MLPYC) (hgk_l)’ hgk—l)) ,  hs =MLP; ( ZSGS th))’

[Xu et al., What Can Neural Networks Reason About?. ICLR 2020]
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How do Graph Nets Work?

Empirically graph nets work well over less structured networks, but why?

Key idea: algorithmic alignment - link compositional structure required for task with

computational structure of prediction model Many multimodal reasoning problems here:
intuitive physics, visual question answering, shortest paths

Summary statistics Relational argmax Dynamic programming NP-hard problem
What is the maximum value =~ What are the colors of the What is the cost to defeat monster X Subset sum: Is there a
difference among treasures? furthest pair of objects? by following the optimal path? subset that sums to 0?

DeepSets 1-layer GNN K-layer GNN None ®

[Xu et al., What Can Neural Networks Reason About?. ICLR 2020]
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How do Graph Nets Work?

Empirically graph nets work well over less structured networks, but why?

Key idea: algorithmic alignment - link compositional structure required for task with
computational structure of prediction model
How graph neural nets capture dynamic programming:

distance[1][u] = cost(s,u), distance[k][u] = min, {distance[k — 1][v] + cost(v, u)},

Graph Neural Network Bellman-Ford algorithm

BEAMIIEE  Noneedto learn for-oops  [IEIALICTM
ha® = E, MLP(hy®&1), hyk-1) d[k][u] = miny d[k-1][v] + cost (v, u)

Learns a simple reasoning step

MLPs have to learn entire for loops ®
[Xu et al., What Can Neural Networks Reason About?. ICLR 2020]
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How do Graph Nets Work?

Empirically: datasets that require multiple steps of relational reasoning

1. Sudoku: number interactions, multi-step, backtracking,

2. Relational VQA: CLEVR -> Sort-of-CLEVR -> Pretty-CLEVR (‘which object is closest/k-steps away’)

100
Original Image: Non-relational question:
What is the size of e
the brown sphere? =
S
35
O
@]

- - (U
Relational question: g
Are there any rubber =
things that have the 0

same size as the yellow
metallic cylinder?

[Santoro et al., A Simple Neural Network Module for Relational Reasoning. NeurlPS 2017]
[Palm et al., Recurrent Relational Network. NeurlPS 2018]
[Xu et al., What Can Neural Networks Reason About?. ICLR 2020]
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Key Takeaways & Open Challenges
1. Relations are between elements from same modality, so distances and representations are well-defined.
-> how to handle cross-modal interconnections at the same time?

2. Heterogeneous graph nets, where nodes come from different modalities.
3. Formal connections between cross-modal interactions and relational reasoning.
4. Quantifying the reasoning required by decomposing datasets into perception vs reasoning.

J
NP-Hard / NP-Hard ‘

Summary statistics Relational argmax Dynamic programming NP-hard problem
What is the maximum value =~ What are the colors of the What is the cost to defeat monster X Subset sum: Is there a
difference among treasures? furthest pair of objects? by following the optimal path? subset that sums to 0?7
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Summary

Reasoning is about compositionality, and compositionality requires knowing the structure.

In the continuous case (i.e., if structure is given or can be learned easily in a differentiable manner):

Mem | Mem = Mem ™ =
AO AO® AO®
of man red jacket INPUT GRAPH
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Sub-Challenge 3b: Intermediate Concepts

Definition: The parameterization of individual multimodal concepts in the reasoning process.

Concepts

Discrete

y
words T
or
DOl )\D
or
)\

A ®

Continuous

* Structure
Single-step Multi-step
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Neuro-symbolic Concepts

Hand-crafted concepts based on domain knowledge

e
o0
AR

Is there a red shape
above a circle?

[Andreas et al., Neural Module Networks. CVPR 2016]
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Neuro-symbolic Concepts

Hand-crafted concepts based on domain knowledge

Local composition with
interpretable output concepts

t
Attend [red]

He Attend [red] PR

‘ ‘ .:. “rod”
AR

Is there a red shape
above a circle?

[Andreas et al., Neural Module Networks. CVPR 2016]
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Neuro-symbolic Concepts

Hand-crafted concepts based on domain knowledge

Local composition with
interpretable output concepts

. ‘ Attend [red] :
o0 1
A . Attend [circle]

Is there a red shape | )\
above a circle? H®
Attend [circle] o0 “circle”
AN

[Andreas et al., Neural Module Networks. CVPR 2016]
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Neuro-symbolic Concepts

Hand-crafted concepts based on domain knowledge

Local composition with
interpretable output concepts

. ‘ Attend [red]
o0 1

A . Re-attend [above]
t
Is there a red shape : H :

above a circle?
Attend [circle]

v

Re-attend [above]

[Andreas et al., Neural Module Networks. CVPR 2016]
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Neuro-symbolic Concepts

Hand-crafted concepts based on domain knowledge

Local composition with
interpretable output concepts

1

Combine [and]

v

. ‘ Attend [red] Combirle [and] )\
o¢ Lo
AN
Is there a red shape : H

above a circle?
Attend [circle]

v

Re-attend [above]

[Andreas et al., Neural Module Networks. CVPR 2016]
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Neuro-symbolic Concepts

Hand-crafted concepts based on domain knowledge

Recall structure - leverage syntactic structure of language

e
o0
AR

Is there a red shape
above a circle?

Attend [red]

-

Attend [circle]

v

Combine [and]

v

Measure [is]

— YES

» Re-attend [above]

[Andreas et al., Neural Module Networks. CVPR 2016]
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More Neuro-symbolic Concepts

Hand-crafted concepts based on domain knowledge

(a) Input Image (b) Object Segments (c) Structural Scene Representation

Size Shape  Material Color X y z
 Small Cube  Metal  Pumple  -045 -1.10 035
Large Cube Metal Green 3.83 -0.04 0.70
Large Cube Metal Green -3.20 0.63 0.70
Small Cylinder = Rubber Purple 0.75 1.31 0.35
Large Cube Metal Green 1.58 -1.60 0.70

Mask
R-CNN

I. Scene Parsing (de-rendering)

[Yi et al., Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. NeurlPS 2018]
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More Neuro-symbolic Concepts

Hand-crafted concepts based on domain knowledge

(a) Input Image (b) Object Segments (c) Structural Scene Representation

7 ID Size Shape  Material Color X y z

J // 1  Small Cube Metal Purple -045 -1.10 035
Mask /

- R-CNN N —> L 2  Large Cube Metal Green 3.83 -0.04 0.70
3  Large Cube Metal Green -3.20 0.63 0.70
4  Small Cylinder Rubber Purple 0.75 1.31 0.35
> 5 Large Cube Metal Green 1.58 -1.60 0.70

I. Scene Parsing (de-rendering)

II. Question Parsing

(d) Question (Program Generation) (¢) Program

| LSTM |—» 1. filter_shape(scene, cylinder)

How many cubes that —> 2. relate(behind)
‘ s LSTM .
are behind the cylinder —> — 3. filter_shape(scene, cube)

Encoder

o
b arged [Lst™M | = 4. filter_size(scene, large)
| LSTM |=> 5. count(scene)

[Yi et al., Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. NeurlPS 2018]
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More Neuro-symbolic Concepts

Hand-crafted concepts based on domain knowledge

(a) Input Image (b) Object Segments (c) Structural Scene Representation

ID Size Shape  Material Color X y z
1 Small Cube Metal Purple -0.45 -1.10 0.35
Mask
- R-CNN - L 2  Large Cube Metal Green 3.83 -0.04 0.70
3  Large Cube Metal Green -3.20 0.63 0.70
4  Small Cylinder Rubber Purple 0.75 1.31 0.35
> 5 Large Cube Metal Green 1.58 -1.60 0.70
I. Scene Parsing (de-rendering) l
IL Question Parsm'g III. Program Execution
(d) Question (Program Generation) P
(e) Program 1. filter_shape 3. filter_shape
[ LSTM | — 1. filter_shape(scene, cylinder) 2. relate 4. filter_size 5. count
. i ID Si Sh ID Si
How many cubes that s —> 2. relate(behind) S;lzae]1 < lpe ize .~ .
are behind the cylinder —»| g * 1 [[ LSTM |—> 3. filter_shape(scene, cube) —> ! U8 | o 2 lLarge .. SWet:
are large? - . . 2 Large Cube 3 Large
4. filter_size(scene, large) AT A 5 e
[ LstM | = 5. count(scene) 5 Large  Cube

[Yi et al., Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. NeurlPS 2018]

Language Technologies Institute 72




More Neuro-symbolic Concepts

Hand-crafted concepts based on domain knowledge

(a) Input Image (b) Object Segments (c) Structural Scene Representation

S| s —> DEJFJ

ID Size Shape  Material Color X y z
1  Small Cube Metal Purple -045  -1.10 035
2  Large Cube Metal Green 3.83 -0.04 0.70
3  Large Cube Metal Green -3.20 0.63 0.70
4
S

Small Cylinder = Rubber Purple 0.75 1.31 0.35
Large Cube Metal Green 1.58 -1.60 0.70

3
7

I. Scene Parsing (de-rendering) |

gr?u::gog::;:s:z‘gm) »l« III. Program Execution
(d) Question . (e) Program 1. filter_shape 3. filter_shape
[ LSTM | — 1. filter_shape(scene, cylinder) 2. relate 4. filter_size 5. count
How many cubes that [LSTM |— 2. relate(behind) ID Size Shape .. ID  Size ... More in next
are behind the cylinder —> é‘nscj;l:ida [LsTM |=> 3. filter_shape(scene, cube) —> I Small Cube 20 Earge Answer: 3 lecture!
are large? —)4. filter_size(scene, large) i izzz gz::: 2 LLZEZ
ILST' =—> 5. count(scene) 5 Large Cube
Pros: Cons:
- Robust (either it works or it doesn’t) - More engineered, specialized models
- Data-efficient - Sometimes not fully differentiable (structure or concepts)
- Human-interpretable - Sometimes not perfect compatible with large-scale pre-training

[Yi et al., Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. NeurlPS 2018]
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Summary: Reasoning Part 1

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

ModalityA A A A ... B
>3

ModalityB @ @ @ ...

> J

Local representation
+ Aligned representation
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Summary: Reasoning Part 1

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

CLIP, VILT, VIiLBERT, etc.
All random chance

Compositional Generalization
to novel combinations outside
of training data

1. Structure: <subject> <verb> <object>
2. Concepts: ‘plants’, ‘lightbulb’

(a) some plants (b) a lightbulb surrounding some plants 3. Inference: ‘surrounding’ — spatial relation
surrounding a 4. Knowledge: from humans!
lightbulb

[Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality. CVPR 2022]
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Summary: Reasoning Part 1

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
words g @ A
)\ or ./\.
—
O OO . \_ Y,
)\ or r N
[(TTT] A N® > true
A @) — . )
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Summary: Reasoning Part 1

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
Temporal .
Today P Continuous

Hierarchical \

\ Dense or attention maps
Tree and graph networks

*Structure is given or can be learned
easily in a differentiable manner.

Memory and temporal networks . .
In the continuous case.
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Roadmap for Next 3 Lectures

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
Temporal :
Ti . . Continuous
oday Hierarchical
Interactive .
Next Tuesday Discovery Discrete
Causal Knowledge
Next Thursday Logical Commonsense
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