

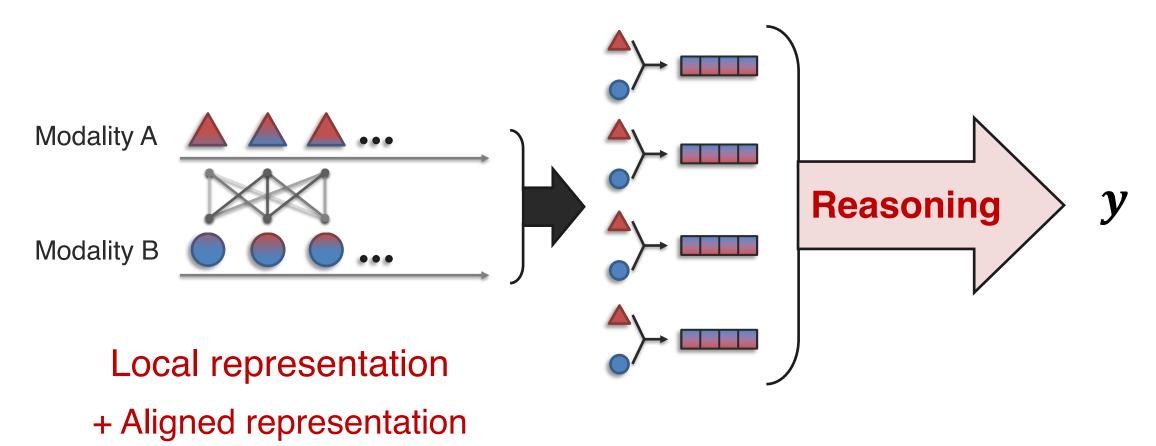
Language Technologies Institute

Multimodal Machine Learning

Lecture 7.1: Reasoning 2 Interaction + Structure Learning Paul Liang

> * Original course co-developed with Tadas Baltrusaitis. Spring 2021 edition taught by Yonatan Bisk

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.



勜

The Challenge of Compositionality

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.

(a) some plants surrounding a lightbulb

(b) a lightbulb surrounding some plants

CLIP, ViLT, ViLBERT, etc. All random chance

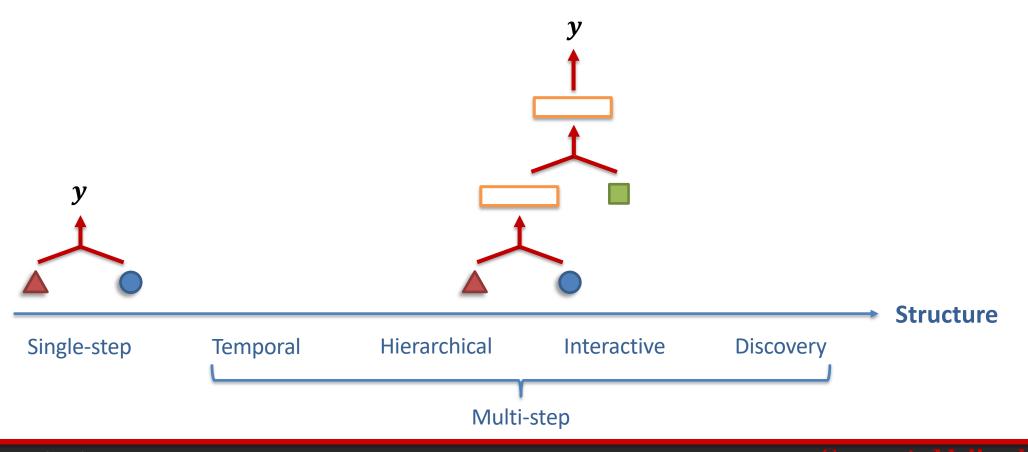
Compositional Generalization to novel combinations outside of training data

Structure: <subject> <verb> <object>
 Concepts: 'plants', 'lightbulb'
 Inference: 'surrounding' – spatial relation
 Knowledge: from humans!

[Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality. CVPR 2022]

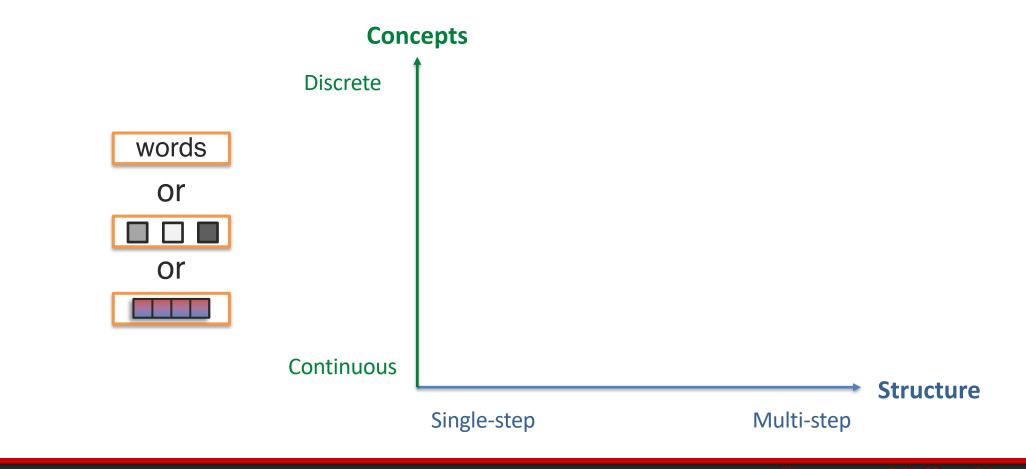
Sub-Challenge 3a: Structure Modeling

Definition: Defining or learning the relationships over which reasoning occurs.



Sub-Challenge 3b: Intermediate Concepts

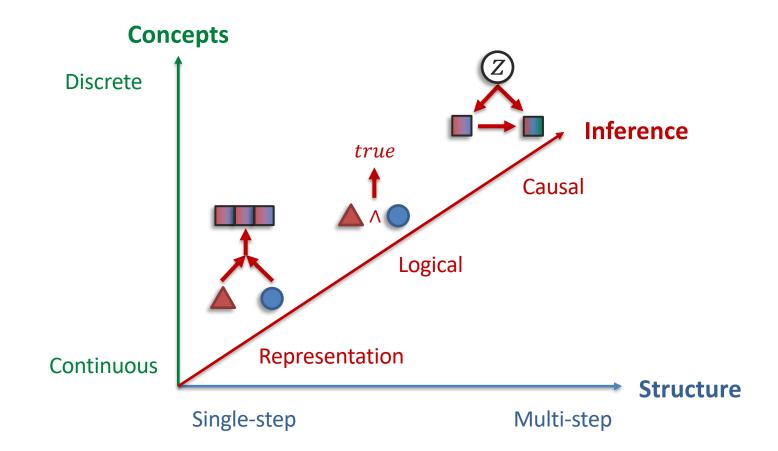
Definition: The parameterization of individual multimodal concepts in the reasoning process.



俲

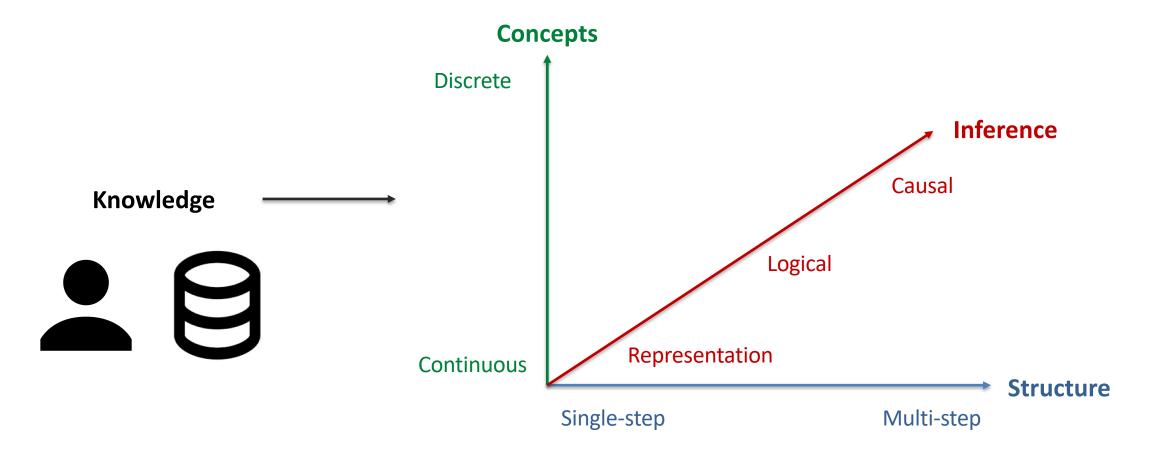
Sub-Challenge 3c: Inference Paradigm

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.



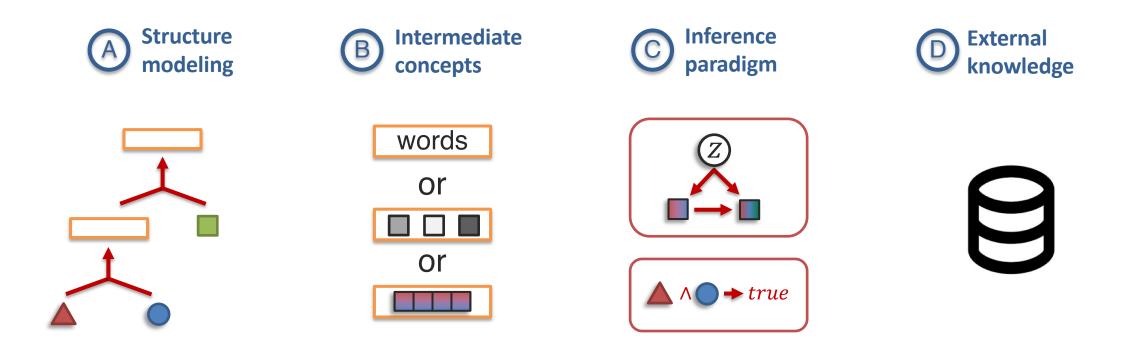
Sub-Challenge 3d: External Knowledge

Definition: Leveraging external knowledge in the study of structure, concepts, and inference.



瘚

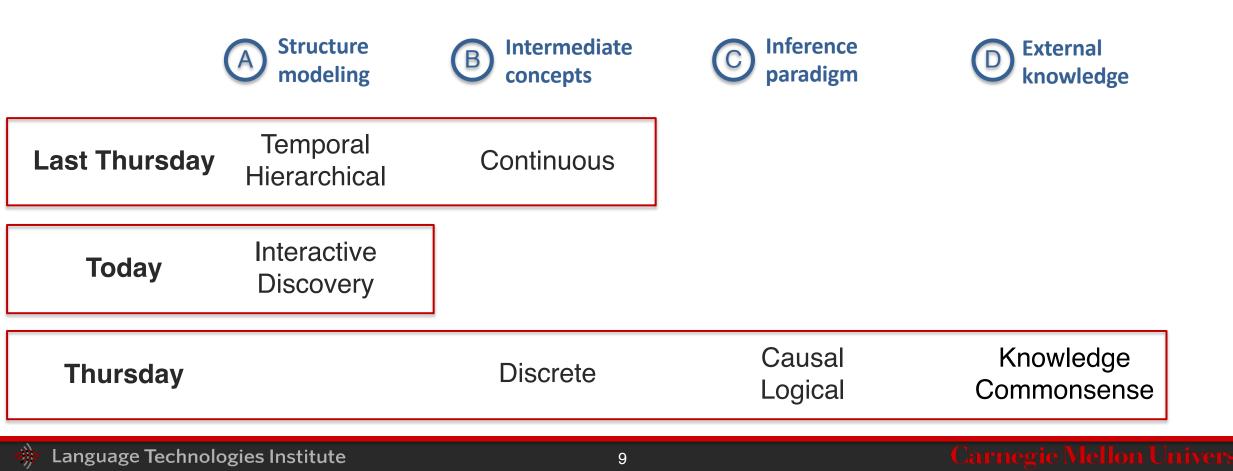
Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.



俲

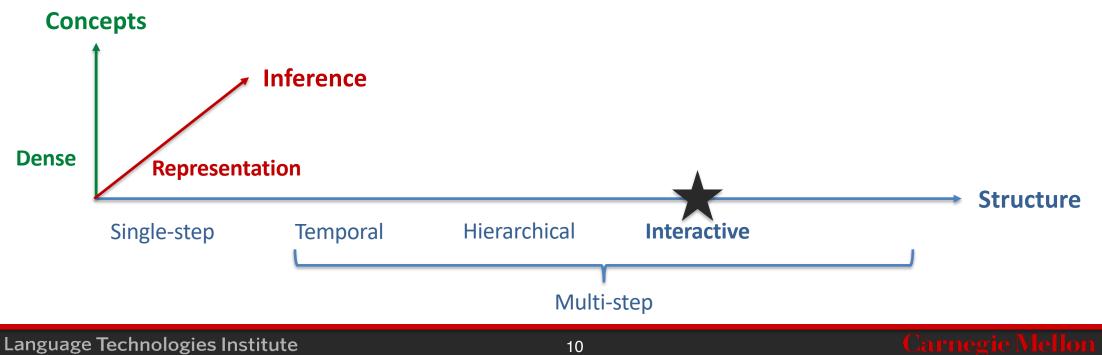
Roadmap for Next 3 Lectures

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.



Sub-Challenge 3a: Structure Modeling

劎

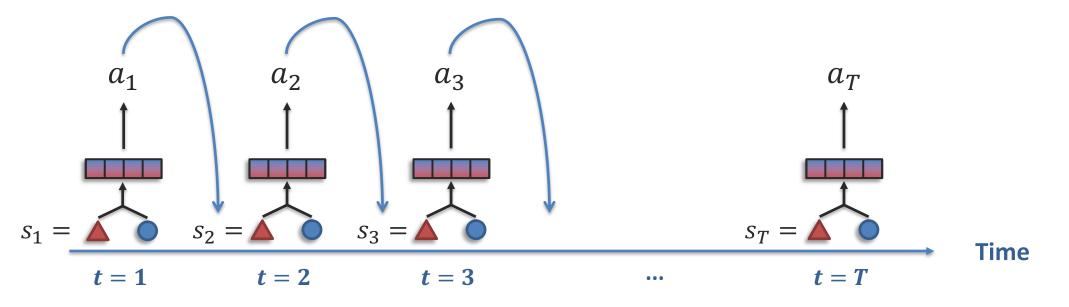


Interactive Structure

Structure defined through interactive environment

Main difference from temporal - actions taken at previous time steps affect future states

Integrates multimodality into the reinforcement learning framework

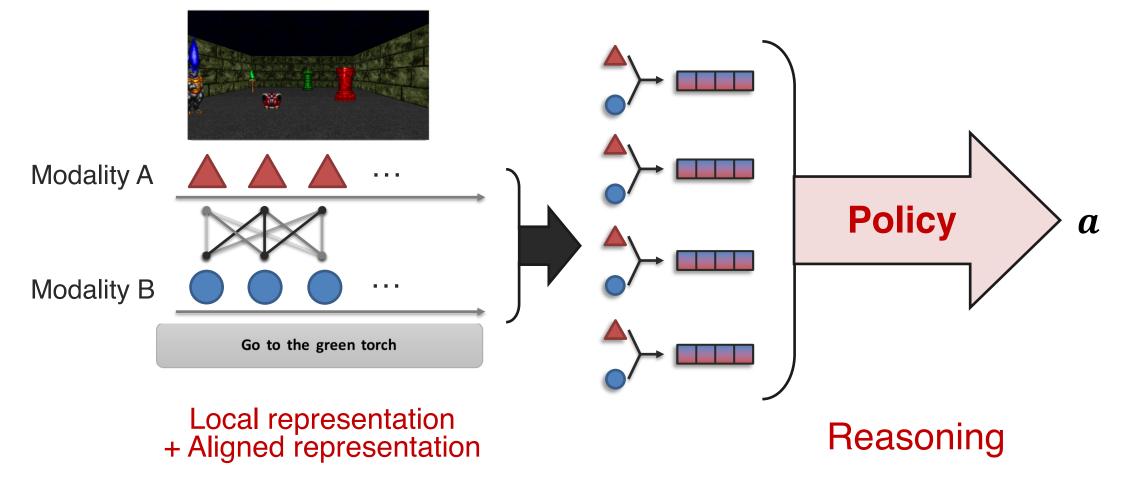


[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019]

Interactive Structure

Structure defined through interactive environment

Main difference from temporal - actions taken at previous time steps affect future states

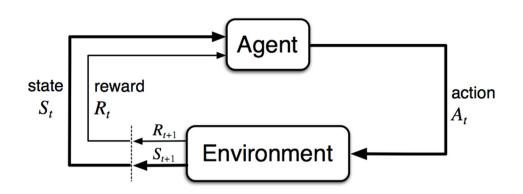


獤

Learning a Policy – RL basics

Reinforcement learning

- Introduction to RL
- Markov Decision Processes (MDPs)
- Solving known MDPs using value and policy iteration
- Solving unknown MDPs using function approximation and Q-learning

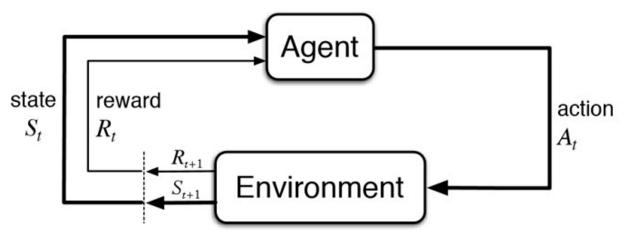


勜

Learning a Policy – RL basics

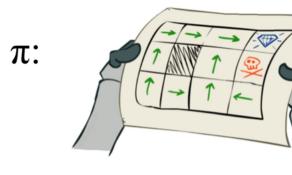
An MDP is defined by:

- Set of states S.
- Set of actions A.
- Transition function P(s'|s, a).
- Reward function r(s, a, s').
- Start state s_0 .
- Discount factor γ .
- Horizon *H*.



Return: $G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

 $\begin{array}{c} 3 \\ 2 \\ 1 \\ \\ 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$



Policy: $\pi(a|s) = \Pr(A_t = a|S_t = s) \quad \forall t$

Goal:
$$\arg \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R_t | \pi \right]$$

RL vs Supervised Learning

Reinforcement Learning

- Sequential decision making
- Maximize cumulative reward
- Sparse rewards
- Environment maybe unknown

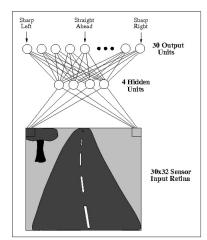
Supervised Learning

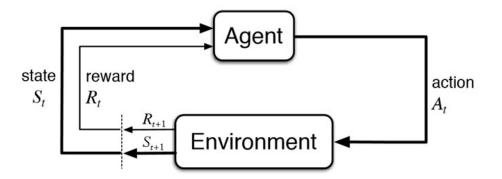
- One-step decision making
- Maximize immediate reward
- Dense supervision
- Environment always known

勜

Intersection Between RL and Supervised Learning

Imitation learning





Obtain expert trajectories (e.g. human driver/video demonstrations): $s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, ...$

Perform supervised learning by predicting expert action

 $D = \{(s_0, a_0^*), (s_1, a_1^*), (s_2, a_2^*), \ldots\}$

But: distribution mismatch between training and testing Hard to recover from sub-optimal states Sometimes not safe/possible to collect expert trajectories

勜

State and Action Value Functions

Definitions

- Definition: the state-value function $V^{\pi}(s)$ of an MDP is the expected return starting from state s, and following policy

$$V^{\pi}(s) = \mathbb{E}_{\pi}\left[G_t | S_t = s
ight]$$
 Captures long term reward

- Definition: the **action-value function** $Q^{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}\left[G_t | S_t = s, A_t = a
ight]$$
 Captures long term reward

俲

Optimal State and Action Value Functions

Definitions

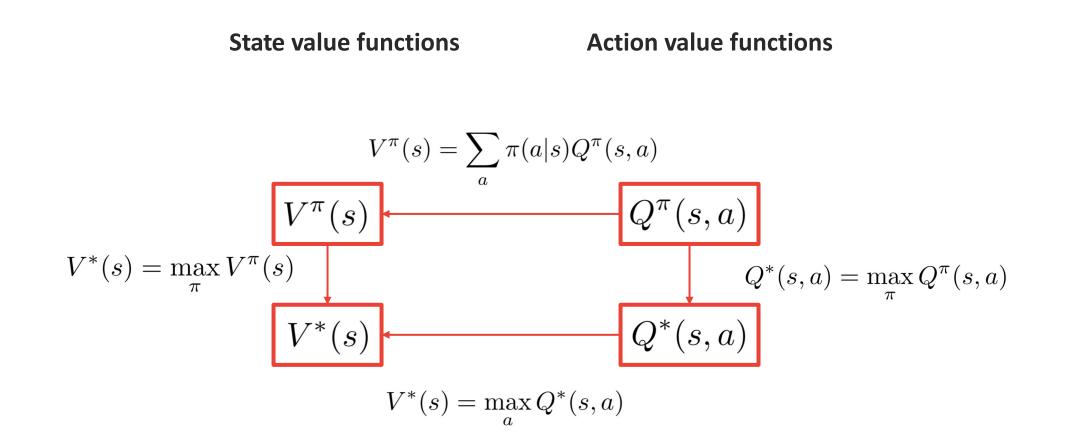
- Definition: the **optimal state-value function** $V^*(s)$ is the maximum value function over all policies

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

- Definition: the **optimal action-value function** $Q^*(s,a)$ is the maximum action-value function over all policies

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

Relationships Between State and Action Values



勞

Optimal policy can be found by maximizing over Q*(s,a)

$$\pi^*(a|s) = \begin{cases} 1, & \text{if } a = \arg\max_a \ Q^*(s,a) \\ 0, & \text{else} \end{cases}$$

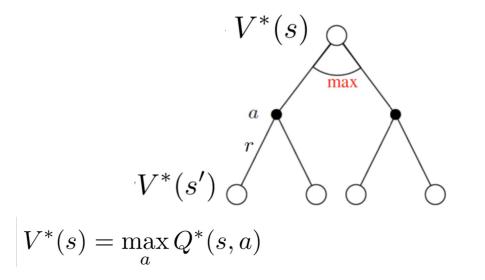
Optimal policy can also be found by maximizing over V*(s') with **one-step look ahead**

$$\pi^*(a|s) = \begin{cases} 1, & \text{if } a = \arg\max_a \mathbb{E}_{s'} \left[r(s, a, s') + \gamma V^*(s') \right] \\ 0, & \text{else} \end{cases}$$
$$\pi^*(a|s) = \begin{cases} 1, & \text{if } a = \arg\max_a \left[\sum_{s'} p(s'|s, a) (r(s, a, s') + \gamma V^*(s')) \right] \\ 0, & \text{else} \end{cases}$$

俲

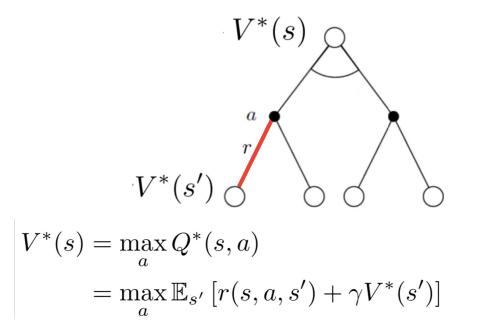
Bellman Optimality for State Value Functions

Recursive definition



Bellman Optimality for State Value Functions

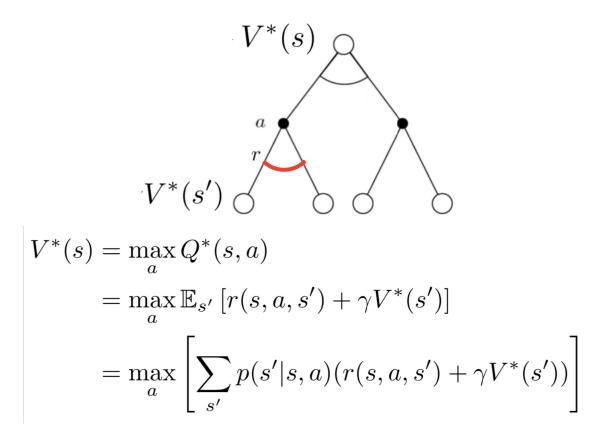
Recursive definition



俲

Bellman Optimality for State Value Functions

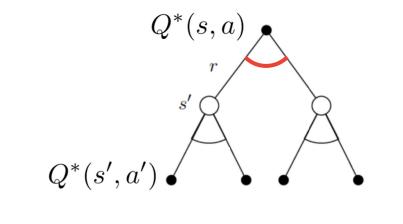
Recursive definition



勞

Bellman Optimality for Action Value Functions

Recursive definition



$$Q^*(s,a) = \mathbb{E}_{s'}\left[r(s,a,s') + \gamma V^*(s')\right]$$

🚸 Language Technologies Institute

Bellman Optimality for Action Value Functions

Recursive definition

$$Q^*(s, a)$$

$$Q^*(s', a') \bullet^{max} \bullet^{max}$$

$$Q^*(s, a) = \mathbb{E}_{s'} \left[r(s, a, s') + \gamma V^*(s') \right]$$

$$= \mathbb{E}_{s'} \left[r(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right]$$

Bellman Optimality for Action Value Functions

Recursive definition

$$Q^*(s, a)$$

$$Q^*(s, a') \bullet$$

$$Q^*(s, a') \bullet$$

$$Q^*(s, a) = \mathbb{E}_{s'} [r(s, a, s') + \gamma V^*(s')]$$

$$= \mathbb{E}_{s'} \left[r(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right]$$

$$= \sum_{s'} p(s'|s, a) \left(r(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right)$$

Solving the Bellman Optimality Equations

Recursive definition

$$V^{*}(s) = \max_{a} \left[\sum_{s'} p(s'|s, a) (r(s, a, s') + \gamma V^{*}(s')) \right]$$

Solve by iterative methods

$$V_{[k+1]}^*(s) = \max_{a} \left[\sum_{s'} p(s'|s, a) (r(s, a, s') + \gamma V_{[k]}^*(s')) \right]$$

[Slides from Fragkiadaki, 10-703 CMU]

Value Iteration

Algorithm:

Start with $V_0^*(s) = 0$ for all s.

For k = 1, ... , H:

For all states s in S:

$$V_k^*(s) \leftarrow \max_a \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma V_{k-1}^*(s') \right)$$

[Slides from Fragkiadaki, 10-703 CMU]

Value Iteration

Algorithm: Start with $V_0^*(s) = 0$ for all s. For k = 1, ... , H: For all states s in S: $V_k^*(s) \leftarrow \max_a \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma V_{k-1}^*(s') \right)$ $\pi_k^*(s) \leftarrow \arg\max_a \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma V_{k-1}^*(s') \right)$ Find the best action according to one-step look ahead This is called a value update or Bellman update/back-up

Repeat until policy converges. Guaranteed to converge to optimal policy.

[Slides from Fragkiadaki, 10-703 CMU]

 $Q^*(s, a)$ = expected utility starting in s, taking action a, and (thereafter) acting optimally

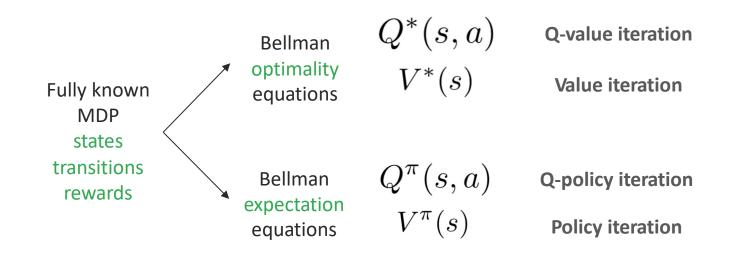
Bellman Equation:

$$Q^*(s,a) = \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma \max_{a'} Q^*(s',a'))$$

Q-Value Iteration:

$$Q_{k+1}^*(s,a) \leftarrow \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma \max_{a'} Q_k^*(s',a'))$$

[Slides from Fragkiadaki, 10-703 CMU]



Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations: Iterate over and storage for all states and actions: requires small, discrete state and action space Update equations require fully observable MDP and known transitions

勜

 $Q^*(s, a)$ = expected utility starting in s, taking action a, and (thereafter) acting optimally

Bellman Equation:

$$Q^*(s, a) = \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma \max_{a'} Q^*(s', a'))$$

Q-Value Iteration:

$$Q_{k+1}^*(s,a) \leftarrow \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma \max_{a'} Q_k^*(s',a') \right)$$

This is problematic when do not know the transitions

[Slides from Fragkiadaki, 10-703 CMU]

- Q-value iteration: $Q_{k+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a)(R(s,a,s') + \gamma \max_{a'} Q_k(s',a'))$ Rewrite as expectation: $Q_{k+1} \leftarrow \mathbb{E}_{s' \sim P(s'|s,a)} \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$

- Q-value iteration: $Q_{k+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a)(R(s,a,s') + \gamma \max_{a'} Q_k(s',a'))$ Rewrite as expectation: $Q_{k+1} \leftarrow \mathbb{E}_{s' \sim P(s'|s,a)} \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$
- (Tabular) Q-Learning: replace expectation by samples
 - For an state-action pair (s,a), receive: $s' \sim P(s'|s,a)$ simulation and exploration
 - Consider your old estimate: $Q_k(s,a)$
 - Consider your new sample estimate:

$$\operatorname{target}(s') = r(s, a, s') + \gamma \max_{a'} Q_k(s', a')$$
$$\operatorname{error}(s') = \left(r(s, a, s') + \gamma \max_{a'} Q_k(s', a') - Q_k(s, a)\right)$$

[Slides from Fragkiadaki, 10-703 CMU]

learning
rate

$$\downarrow$$

$$Q_{k+1}(s,a) = Q_k(s,a) + \alpha \operatorname{error}(s')$$

$$= Q_k(s,a) + \alpha \left(r(s,a,s') + \gamma \max_{a'} Q_k(s',a') - Q_k(s,a) \right)$$

Key idea: implicitly estimate the transitions via simulation

Algorithm:

Start with
$$\,Q_0(s,a)$$
 for all s, a.

Get initial state s

For k = 1, 2, ... till convergence

Sample action a, get next state s'

If s' is terminal:

target = r(s, a, s')Sample new initial state s'

else:

$$\operatorname{target} = r(s, a, s') + \gamma \max_{a'} Q_k(s', a')$$
$$Q_{k+1}(s, a) = Q_k(s, a) + \alpha \left(r(s, a, s') + \gamma \max_{a'} Q_k(s', a') - Q_k(s, a) \right)$$
$$s \leftarrow s'$$

Bellman optimality

 $Q^*(s,a) = \mathbb{E}_{s'} \left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right]$

[Slides from Fragkiadaki, 10-703 CMU]

Tabular Q-learning

Algorithm:

Start with $\,Q_0(s,a)\,$ for all s, a.

Get initial state s

For k = 1, 2, ... till convergence

Sample action a, get next state s'

If s' is terminal:

target = r(s, a, s')Sample new initial state s'

- Choose random actions?
- Choose action that maximizes $Q_k(s,a)$ (i.e. greedily)?
- ε-Greedy: choose random action with prob. ε, otherwise choose action greedily

else:

$$\operatorname{target} = r(s, a, s') + \gamma \max_{a'} Q_k(s', a')$$
$$Q_{k+1}(s, a) = Q_k(s, a) + \alpha \left(r(s, a, s') + \gamma \max_{a'} Q_k(s', a') - Q_k(s, a) \right)$$
$$s \leftarrow s'$$

[Slides from Fragkiadaki, 10-703 CMU]

Exploration and Exploitation

Poor estimates of Q(s,a) at the start:

Bad initial estimates in the first few cases can drive policy into sub-optimal region, and never explore further.

$$\pi(s) = \left\{ egin{array}{l} \max_a \hat{Q}(s,a) & ext{with probability } 1-\epsilon \ ext{random action} & ext{otherwise} \end{array}
ight.$$

Gradually decrease epsilon as policy is learned.

Algorithm:

Start with $Q_0(s,a)$ for all s, a. Get initial state s

For k = 1, 2, ... till convergence

Sample action a, get next state s'

If s' is terminal:

target = r(s, a, s')Sample new initial state s'

else:

$$\operatorname{target} = r(s, a, s') + \gamma \max_{a'} Q_k(s', a')$$
$$Q_{k+1}(s, a) = Q_k(s, a) + \alpha \left(r(s, a, s') + \gamma \max_{a'} Q_k(s', a') - Q_k(s, a) \right)$$
$$s \leftarrow s'$$

[Slides from Fragkiadaki, 10-703 CMU]

Carnegie Mellon Universit

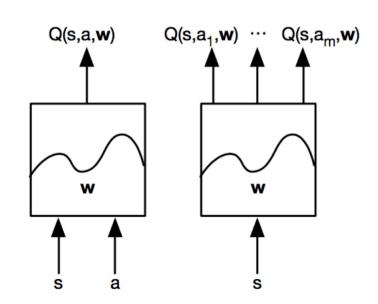
Tabular: keep a |S| x |A| table of Q(s,a) Still requires small and discrete state and action space How can we generalize to unseen states?

ε-Greedy: choose random action with prob. ε, otherwise choose action greedily

Q-learning with function approximation to **extract informative features** from **high-dimensional** input states.

Represent value function by Q network with weights w

 $Q(s,a,\mathbf{w})pprox Q^*(s,a)$



+ high-dimensional, continuous states+ generalization to new states

[Slides from Fragkiadaki, 10-703 CMU]

Optimal Q-values should obey Bellman equation
 $Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q(s', a')^* \mid s, a \right]$

Treat right-hand $r + \gamma \max_{a'} Q(s', a', \mathbf{w})$ as as a target

Definition MSE loss by stochastic gradient descent

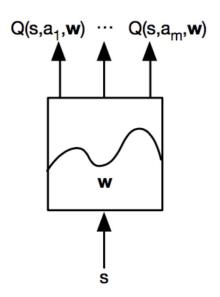
$$I = \left(r + \gamma \max_{a} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w})\right)^2$$

勞

Minimize MSE loss by stochastic gradient descent

$$I = \left(r + \gamma \max_{a} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w})\right)^2$$

- Determine But diverges using neural networks due to:
 - Correlations between samples
 - Don-stationary targets



To remove correlations, build data-set from agent's own experience

$$\begin{array}{c|c} s_1, a_1, r_2, s_2 \\ \hline s_2, a_2, r_3, s_3 \\ \hline s_3, a_3, r_4, s_4 \\ \hline \\ \hline s_t, a_t, r_{t+1}, s_{t+1} \end{array} \rightarrow \begin{array}{c} s, a, r, s' \\ \hline exploration, epsilon greedy is important! \end{array}$$

Sample random mini-batch of transitions (s,a,r,s') from D
 Compute Q-learning targets w.r.t. old fixed parameters w-

Detimize MSE between Q-network and Q-learning targets

$$\mathcal{L}_{i}(w_{i}) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}_{i}} \left[\left(r + \gamma \max_{a'} Q(s',a';w_{i}^{-}) - Q(s,a;w_{i}) \right)^{2} \right]$$
Q-learning target Q-network

 s_1, a_1, r_2, s_2

 s_2, a_2, r_3, s_3

*s*₃, *a*₃, *r*₄, *s*₄

. . .

 $s_t, a_t, r_{t+1}, s_{t+1}$

 $Q(s,a_1,\mathbf{w}) \cdots Q(s,a_m,\mathbf{w})$



Depute w- with updated w every ~1000 iterations

勜

Value-based and Policy-based RL

Value Based

- Learned Value Function
- Implicit policy (e.g. ε-greedy)

	State value functions	Action value functions	
	$V^{\pi}(s)$	$Q^{\pi}(s,a)$	
	$V^*(s)$	$Q^*(s,a)$	
$\pi^*(a s) = \begin{cases} 1 - \epsilon, \\ \epsilon, \end{cases}$	if $a = \arg \max_{a} \mathbb{E}_{s'} [r(s, a, s')]$ else	$(1) + \gamma V^*(s')$ $\pi^*(a s) = \begin{cases} 1-\epsilon, \\ \epsilon, \end{cases}$	$ \begin{array}{l} \text{if } a = \arg\max_a \ Q^*(s,a) \\ \text{else} \end{array} \\ \end{array} $

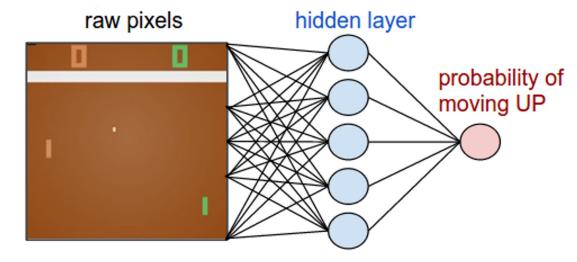
[Slides from Fragkiadaki, 10-703 CMU]

Value-based and Policy-based RL

Value Based

- Learned Value Function
- Implicit policy (e.g. ε-greedy)
- Policy Based
 - No Value Function
 - Learned Policy

$$\pi_{ heta}(s, a) = \mathbb{P}\left[a \mid s, heta
ight]$$



[Slides from Fragkiadaki, 10-703 CMU]

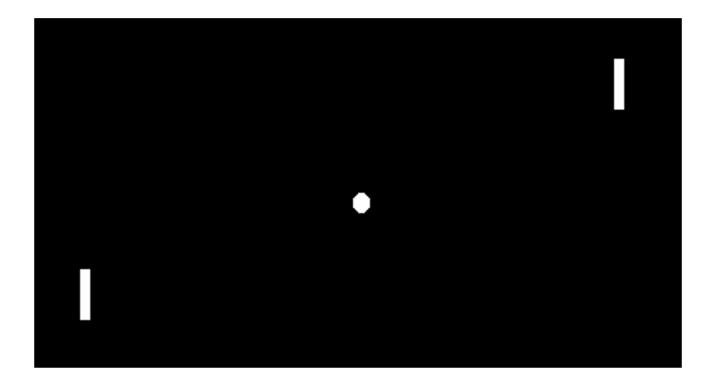
- Often π can be simpler than Q or V
 - E.g., robotic grasp

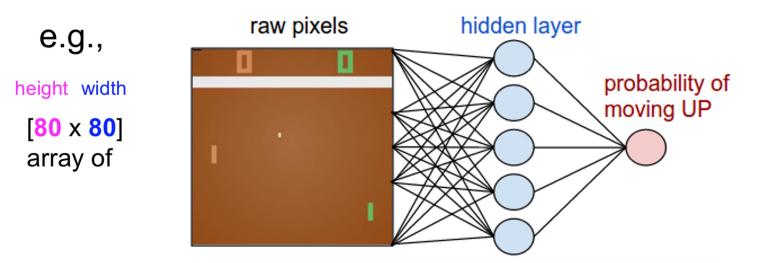
Q(s,a) and V(s) very high-dimensional But policy could be just 'open/close hand'

- V: doesn't prescribe actions
 - Would need dynamics model (+ compute 1 Bellman back-up)
- Q: need to be able to efficiently solve $\arg \max_a Q^*(s, a)$
 - Challenge for continuous / high-dimensional action spaces

$$\pi^*(a|s) = \begin{cases} 1 - \epsilon, & \text{if } a = \arg\max_a \mathbb{E}_{s'} \left[r(s, a, s') + \gamma V^*(s') \right] \\ \epsilon, & \text{else} \end{cases} \quad \pi^*(a|s) = \begin{cases} 1 - \epsilon, & \text{if } a = \arg\max_a \ Q^*(s, a) \\ \epsilon, & \text{else} \end{cases}$$

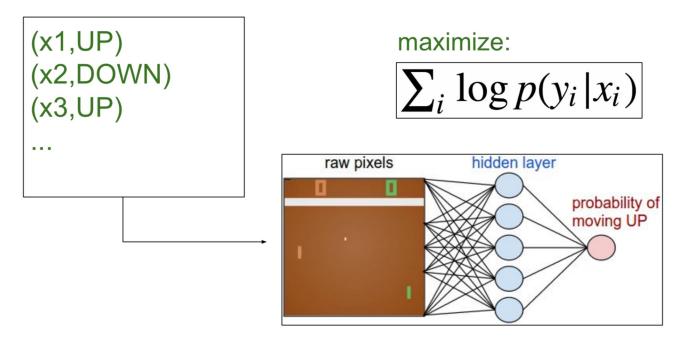
[Slides from Fragkiadaki, 10-703 CMU]





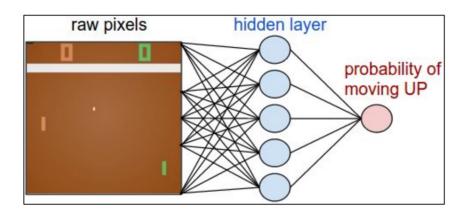
Network sees +1 if it scored a point, and -1 if it was scored against. How do we learn these parameters?

Suppose we had the training labels... (we know what to do in any state)



[Slides from Karpathy]

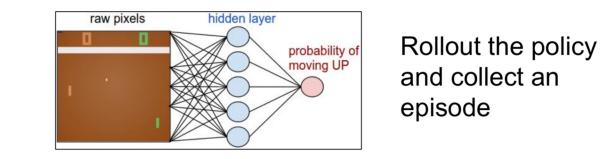
Except, we don't have labels...

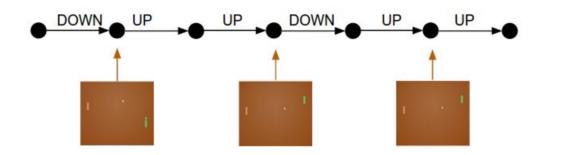


Should we go UP or DOWN?

[Slides from Karpathy]

Let's just act according to our current policy...



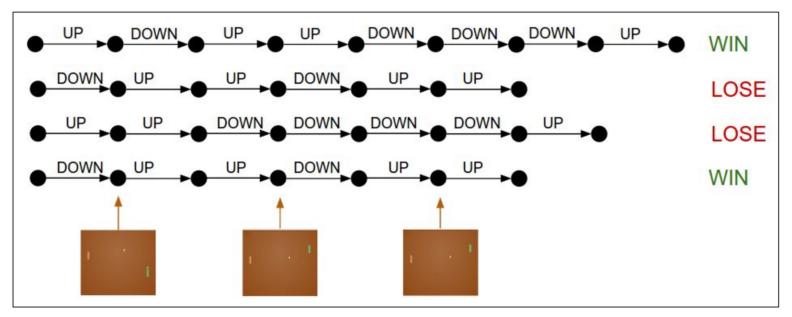


WIN

[Slides from Karpathy]

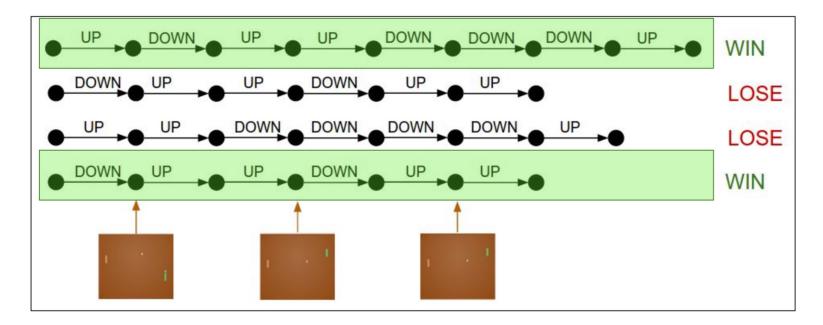
Collect many rollouts...

4 rollouts:



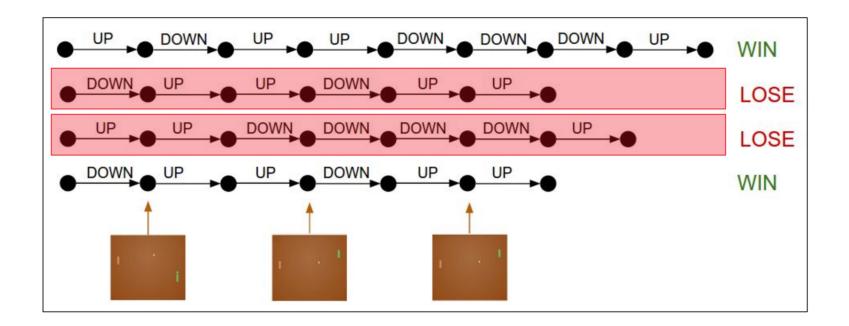
[Slides from Karpathy]

Not sure whatever we did here, but apparently it was good.



[Slides from Karpathy]

Not sure whatever we did here, but it was bad.



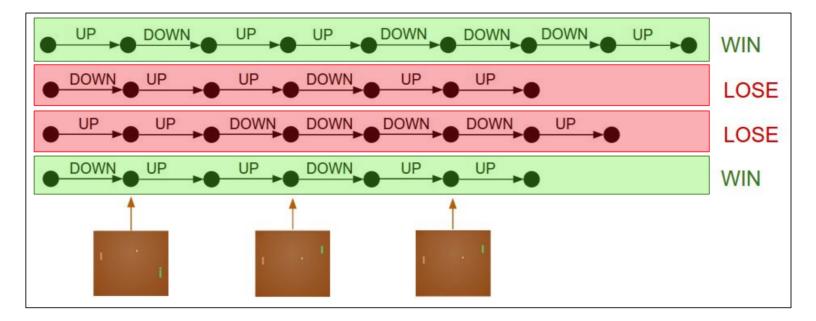
[Slides from Karpathy]

Pretend every action we took here was the correct label.

maximize: $\log p(y_i \mid x_i)$

Pretend every action we took here was the wrong label.

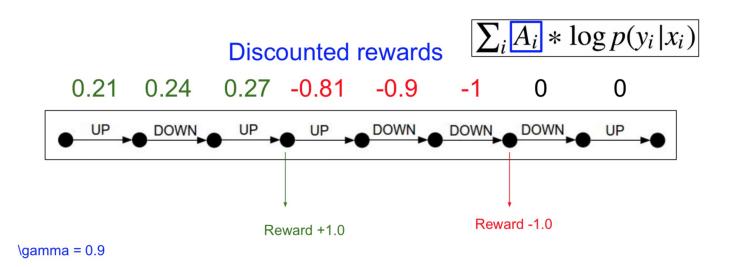
maximize: $(-1) * \log p(y_i \mid x_i)$



[Slides from Karpathy]

Discounting

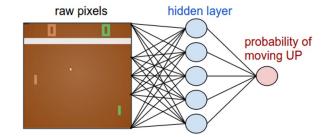
Blame each action assuming that its effects have exponentially decaying impact into the future.



[Slides from Karpathy]

 $\pi(a \mid s)$

1. Initialize a policy network at random



[Slides from Karpathy]

 $\pi(a \mid s)$

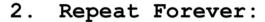
raw pixels

hidden layer

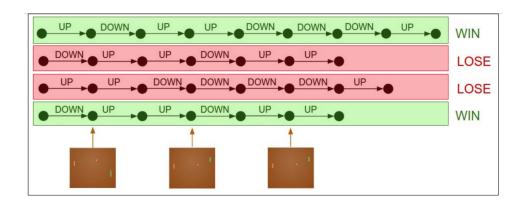
probability of

moving UP

1. Initialize a policy network at random



3. Collect a bunch of rollouts with the policy **epsilon greedy!**



[Slides from Karpathy]

 $\pi(a \mid s)$

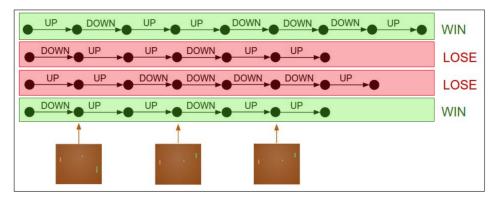
- 1. Initialize a policy network at random
- 2. Repeat Forever:
- 3. Collect a bunch of rollouts with the policy **epsilon greedy!**
- 4. Increase the probability of actions that worked well

Pretend every action we took here was the correct label.

maximize: $\log p(y_i \mid x_i)$

here was the wrong label. maximize: $(-1) * \log p(y_i | x_i)$

Pretend every action we took



 $\sum_i A_i * \log p(y_i | x_i)$

hidden layer

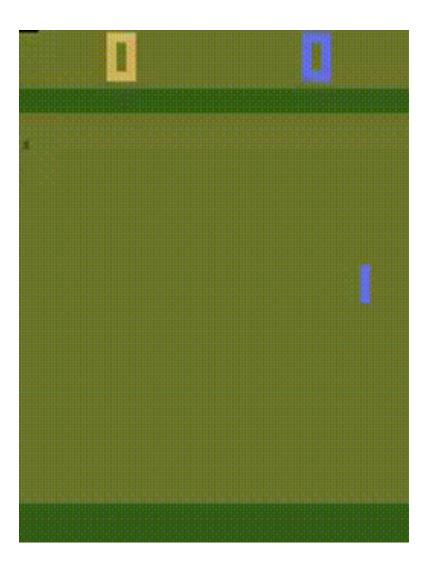
probability of

moving UP

raw pixels

Does not require transition probabilities Does not estimate Q(), V() Predicts policy directly

[Slides from Karpathy]



[Slides from Karpathy]

Why does this work?

- 1. Initialize a policy network at random
- 2. Repeat Forever:
- 3. Collect a bunch of rollouts with the policy
- 4. Increase the probability of actions that worked well

$$\sum_i A_i * \log p(y_i | x_i)$$

[Slides from Karpathy]

Formally, let's define a class of parameterized policies $\Pi = \{\pi_{\theta}, \theta \in \mathbb{R}^m\}$ For each policy, define its value:

$$J(\theta) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | \pi_{\theta}\right]$$

Writing in terms of trajectories $\tau = (s_0, a_0, r_0, s_1, a_1, r_1, ...)$ Probability of a trajectory Reward of a trajectory $p(\tau; \theta) = \pi_{\theta}(a_0|s_0)p(s_1|s_0, a_0)$ $r(\tau) = \sum_{t \ge 0} \gamma^t r_t$ $\times \pi_{\theta}(a_1|s_1)p(s_2|s_1,a_1)$ $\times \pi_{\theta}(a_2|s_2)p(s_3|s_2,a_2)$ × ... $= \prod p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$ $t \ge 0$ $J(\theta) = \mathbb{E}\left[\sum_{t>0} \gamma^t r_t | \pi_{\theta} \right] = \mathbb{E}_{\tau \sim p(\tau;\theta)} \left[r(\tau) \right]$

獤

Formally, let's define a class of parameterized policies $\Pi = \{\pi_{\theta}, \theta \in \mathbb{R}^m\}$

For each policy, define its value:

$$J(\theta) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | \pi_{\theta}\right] = \mathbb{E}_{\tau \sim p(\tau;\theta)} \left[r(\tau)\right]$$

We want to find the optimal policy $\theta^* = \arg \max_{\theta} J(\theta)$ How can we do this?

Gradient ascent on policy parameters

勞

Expected reward:
$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)]$$

= $\int_{\tau} r(\tau) p(\tau; \theta) \ d\tau$

Expected reward:
$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [r(\tau)]$$

 $= \int_{\tau} r(\tau) p(\tau;\theta) \ d\tau$
 $p(\tau;\theta) = \prod_{t \ge 0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$
Now let's differentiate this: $\nabla_{\theta} J(\theta) = \int_{\tau} r(\tau) \nabla_{\theta} p(\tau;\theta) \ d\tau$
Intractable

Expected reward:
$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [r(\tau)]$$

 $= \int_{\tau} r(\tau) p(\tau;\theta) d\tau$
 $p(\tau;\theta) = \prod_{t \ge 0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$
Now let's differentiate this: $\nabla_{\theta} J(\theta) = \int_{\tau} r(\tau) \nabla_{\theta} p(\tau;\theta) d\tau$
Intractable
However, we can use a nice trick: $\nabla_{\theta} p(\tau;\theta) = p(\tau;\theta) \frac{\nabla_{\theta} p(\tau;\theta)}{p(\tau;\theta)} = p(\tau;\theta) \nabla_{\theta} \log p(\tau;\theta)$

Expected reward:
$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [r(\tau)]$$

 $= \int_{\tau} r(\tau)p(\tau;\theta) d\tau$
 $p(\tau;\theta) = \prod_{t \ge 0} p(s_{t+1}|s_t, a_t)\pi_{\theta}(a_t|s_t)$
Now let's differentiate this: $\nabla_{\theta}J(\theta) = \int_{\tau} r(\tau)\nabla_{\theta}p(\tau;\theta) d\tau$
Intractable
However, we can use a nice trick: $\nabla_{\theta}p(\tau;\theta) = p(\tau;\theta)\frac{\nabla_{\theta}p(\tau;\theta)}{p(\tau;\theta)} = p(\tau;\theta)\nabla_{\theta}\log p(\tau;\theta)$
If we inject this back:
 $\nabla_{\theta}J(\theta) = \int_{\tau} (r(\tau)\nabla_{\theta}\log p(\tau;\theta)) p(\tau;\theta) d\tau$
 $= \mathbb{E}_{\tau \sim p(\tau;\theta)} [r(\tau)\nabla_{\theta}\log p(\tau;\theta)]$

Can we compute these without knowing the transition probabilities?

We have: $p(\tau; \theta) = \prod_{t \ge 0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$

劵

Can we compute these without knowing the transition probabilities?

We have:
$$p(\tau; \theta) = \prod_{t \ge 0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$$

Thus:
$$\overline{\log p(\tau; \theta)} = \sum_{t \ge 0} \left(\log p(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t)\right)$$

Can we compute these without knowing the transition probabilities?

We have:
$$p(\tau; \theta) = \prod_{t \ge 0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$$

Thus: $\log p(\tau; \theta) = \sum_{t \ge 0} (\log p(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t))$
And when differentiating: $\nabla_{\theta} \log p(\tau; \theta) = \sum_{t \ge 0} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$ Doesn't depend on transition probabilities

Language Technologies Institute

瘚

Can we compute these without knowing the transition probabilities?

We have:
$$p(au; heta) = \prod_{t \geq 0} p(s_{t+1}|s_t, a_t) \pi_{ heta}(a_t|s_t)$$

Thus:
$$\log p(\tau; \theta) = \sum_{t \ge 0} \left(\log p(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t) \right)$$

And when differentiating: $\nabla_{\theta} \log p(\tau; \theta) = \sum \nabla_{\theta} \log \pi_{\theta}(\theta)$

And when differentiating:

$$g p(\tau; \theta) = \sum_{t \ge 0} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Doesn't depend on transition probabilities

Therefore when sampling a trajectory, we can estimate gradients:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} \left[r(\tau) \nabla_{\theta} \log p(\tau;\theta) \right] \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

瘚

Policy Gradients

Gradient estimator:

Interpretation:

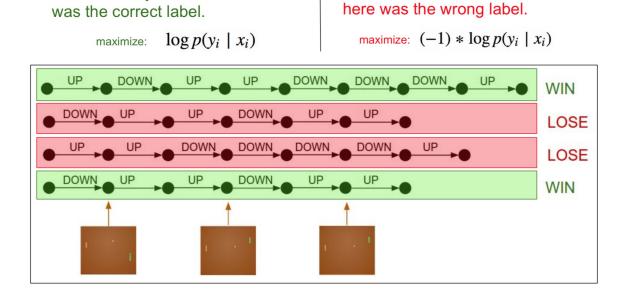
Pretend every action we took here

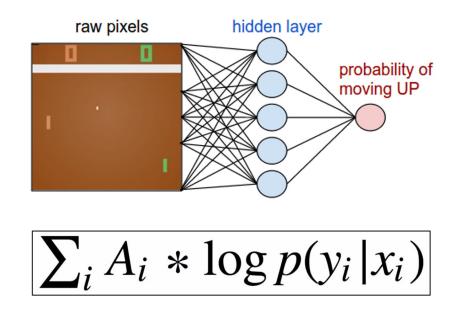
$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

- If **r(trajectory)** is high, push up the probabilities of the actions seen

Pretend every action we took

- If **r(trajectory)** is low, push down the probabilities of the actions seen





勜

Policy Gradients

Interpretation:

Gradient estimator: $\nabla_{\theta} J(\theta) \approx \sum r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

- If **r(trajectory)** is high, push up the probabilities of the actions seen
- If **r(trajectory)** is low, push down the probabilities of the actions seen _

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic) Input: a differentiable policy parameterization $\pi(a|s, \theta), \forall a \in \mathcal{A}, s \in S, \theta \in \mathbb{R}^n$ Initialize policy weights $\boldsymbol{\theta}$ Repeat forever: Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ following $\pi(\cdot | \cdot, \theta)$ For each step of the episode $t = 0, \ldots, T - 1$: epsilon greedy $G_t \leftarrow$ return from step t $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G_t \nabla_{\boldsymbol{\theta}} \log \pi(A_t | S_t, \boldsymbol{\theta})$

[Slides from Fragkiadaki, 10-703 CMU]

Gradient estimator: Interpretation:

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

- If **r(trajectory)** is high, push up the probabilities of the actions seen
- If **r(trajectory)** is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is really hard - can we help this estimator?

[Slides from Fragkiadaki, 10-703 CMU]

Problem: The raw reward of a trajectory isn't necessarily meaningful. E.g. if all rewards are positive, you keep pushing up probabilities of all actions.

What is important then? Whether a reward is higher or lower than what you expect to get.

Idea: Introduce a baseline function dependent on the state, which gives us an estimator:

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} \left(r(\tau) - b(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

e.g. exponential moving average of the rewards.

[Slides from Fragkiadaki, 10-703 CMU]

A better baseline: want to push the probability of an action from a state, if this action was better than the expected value of what we should get from that state

Recall: Q and V - action and state value functions!

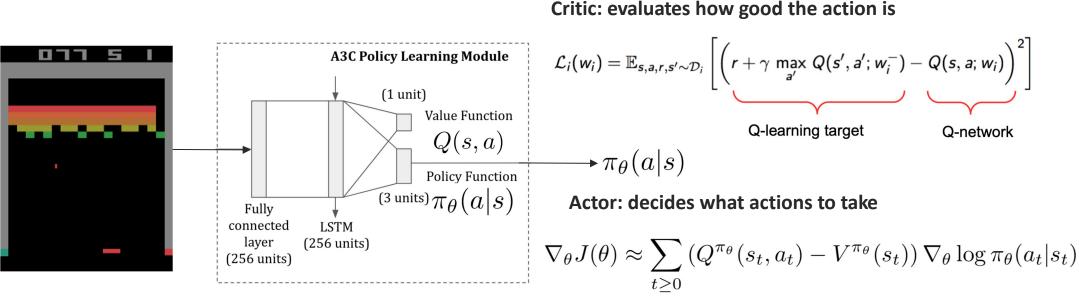
We are happy with an action **a** in a state **s** if **Q(s,a) - V(s)** is large. Otherwise we are unhappy with an action if it's small.

Using this, we get the estimator:

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} \left(Q^{\pi_{\theta}}(s_t, a_t) - V^{\pi_{\theta}}(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Problem: we don't know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training both an actor (the policy) and a critic (the Q function) Exploration + experience replay Decorrelate samples Fixed targets



Variance reduction with a baseline

[Minh et al., Asynchronous Methods for Deep Reinforcement Learning. ICML 2016]

Value Based

Value iteration Policy iteration (Deep) Q-learning

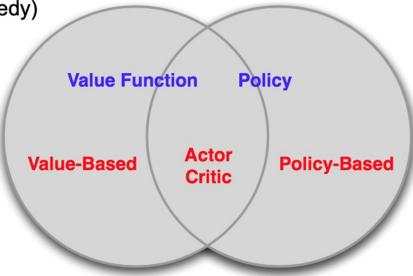
- Learned Value Function
 Implicit policy (e.g. ε-greedy)
- Policy Based

Policy gradients

- No Value Function
- Learned Policy
- Actor-Critic

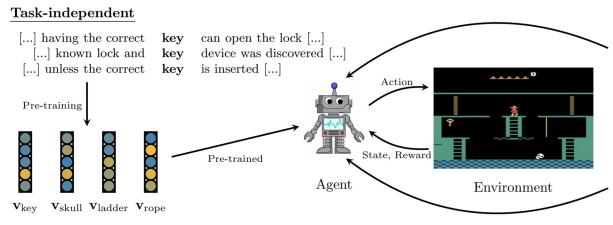
Actor (policy) Critic (Q-values)

- Learned Value Function
- Learned Policy



[Slides from Fragkiadaki, 10-703 CMU]

Back to Reasoning: Interactive Reasoning



Task-dependent

Language-assisted

Key Opens a door of the same color as the key.

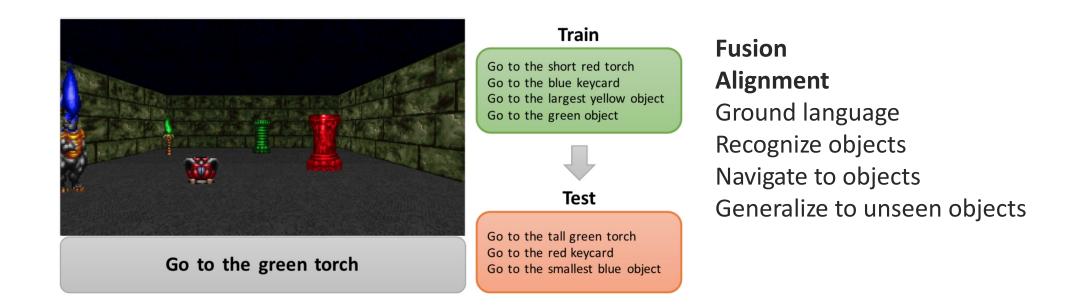
Skull They come in two varieties, rolling skulls and bouncing skulls ... you must jump over rolling skulls and walk under bouncing skulls.

Language-conditional

Go down the ladder and walk right immediately to avoid falling off the conveyor belt, jump to the yellow rope and again to the platform on the right.

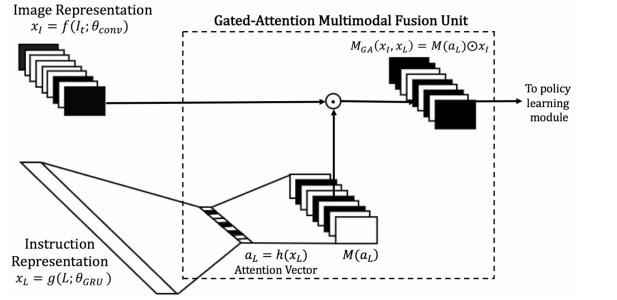
[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019]

• Navigation via instruction following



[Misra et al., Mapping Instructions and Visual Observations to Actions with Reinforcement Learning. EMNLP 2017] [Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]

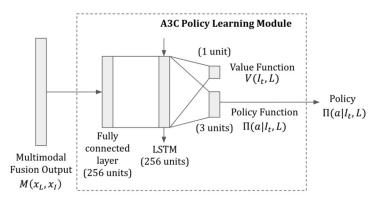
• Gated attention via element-wise product



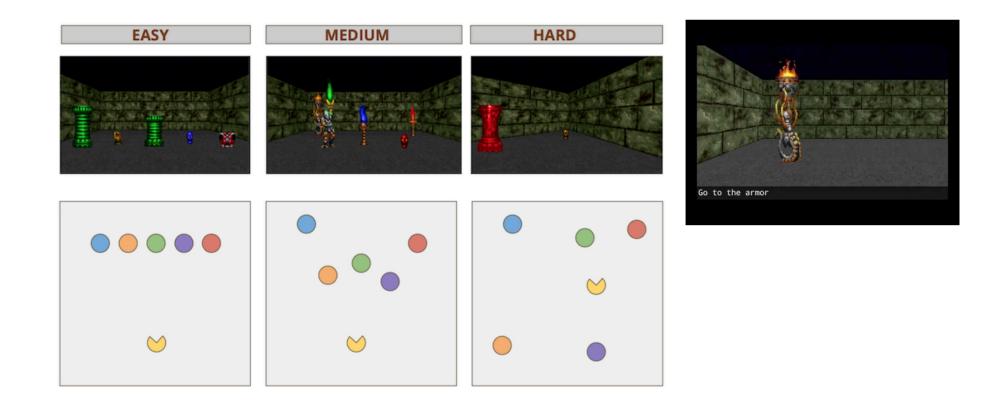
Fusion Alignment Ground language Recognize objects

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]

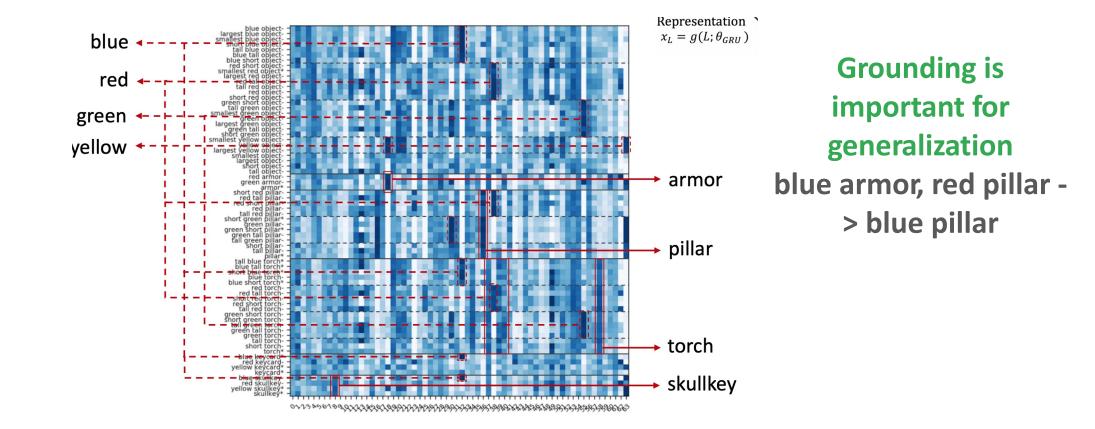
- Policy learning
 - Asynchronous Advantage Actor-Critic (A3C) (Mnih et al.)
 - uses a deep neural network to parametrize the policy and value functions and runs multiple parallel threads to update the network parameters.
 - use entropy regularization for improved exploration
 - use **Generalized Advantage Estimator** to reduce the variance of the policy gradient updates (Schulman et al.)



[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]



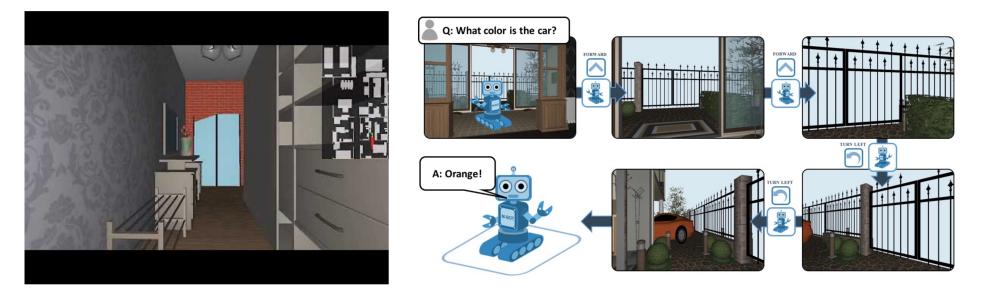
[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]



[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]

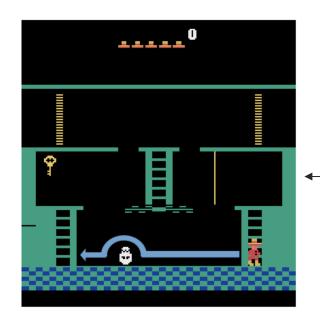
Language-conditional RL: Embodied QA

• Embodied QA: Navigation + QA



[Das et al., Embodied Question Answering. CVPR 2018]

Language-assisted RL: Reward Shaping



Montezuma's revenge

Sparse, long-term reward problem General solution: reward shaping via auxiliary rewards

Natural language for reward shaping

"Jump over the skull while going to the left"

from Amazon Mturk :-(asked annotators to play the game and describe entities

Intermediate rewards to speed up learning

[Goyal et al., Using Natural Language for Reward Shaping in Reinforcement Learning. IJCAI 2019]

Language-assisted RL: Domain knowledge

• Learning to read instruction manuals

The natural resources available where a population settles affects its ability to produce food and goods. Build your city on a plains or grassland square with a river running through it if possible.

Figure 1: An excerpt from the user manual of the game Civilization II.

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]

Language-assisted RL: Domain knowledge

• Learning to read instruction manuals

The natural resources available where a population settles affects its ability to produce food and goods. Build your city on a plains or grassland square with a river running through it if possible.

- Terrain type (e.e. grassland, mountain, etc)

- Tile resources (e.g. wheat, coal, wildlife, etc)

City attributes:

City population

Map tile attributes

- Amount of food produced

Unit attributes:

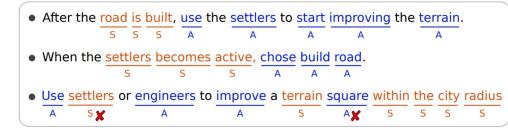
- Unit type (e.g., worker, explorer, archer, etc)
- Is unit in a city ?
- 1. Choose **relevant** sentences
- 2. Label words into action-description, statedescription, or background

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]

Language-assisted RL: Domain knowledge

• Learning to read instruction manuals

- Phalanxes are twice as effective at defending cities as warriors.
- ullet Build the city on plains or grassland with a river running through it. \checkmark
- You can rename the city if you like, but we'll refer to it as washington.
- There are many different strategies dictating the order in which advances are researched



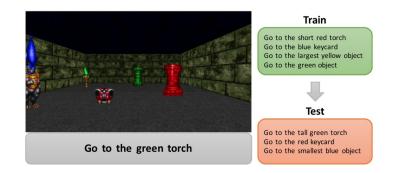
Relevant sentences

A: action-description S: state-description

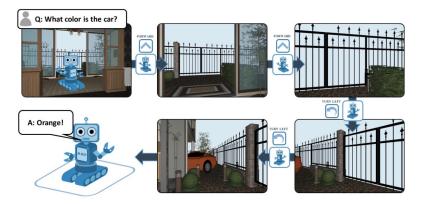
[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]

Summary: Interactive Reasoning

Instruction following

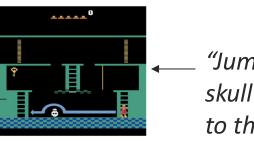


Embodied learning



Domain knowledge

Reward shaping



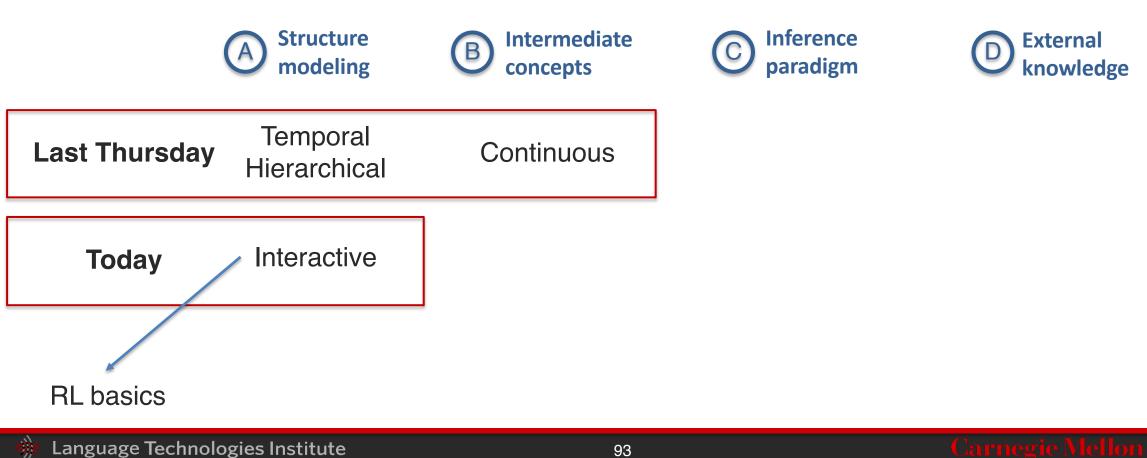
"Jump over the skull while going to the left"

The natural resources available where a population settles affects its ability to produce food and goods. Build your city on a plains or grassland square with a river running through it if possible.

Figure 1: An excerpt from the user manual of the game Civilization II.

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019]

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.



Summary: RL Methods

Epsilon greedy + exploration Experience replay Decorrelate samples Fixed targets	Value Based
Value iteration Policy iteration (Deep) Q-learning	 Learned Value Function Implicit policy (e.g. ε-greedy)
Policy gradients Variance reduction with a baseline Actor (policy) Critic (Q-values)	 Policy Based No Value Function Learned Policy Value-Based Actor Critic Learned Value Function Learned Policy

[Slides from Fragkiadaki, 10-703 CMU]

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.

