A\ Language

;=s Technologies
/) Institute

Lecture 7.1: Reasoning 2
Interaction + Structure Learning

Paul Liang

* Original course co-developed with Tadas Baltrusaitis.
Spring 2021 edition taught by Yonatan Bisk

Reasoning

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

ModalityA A A A ... B
>3

ModalityB @ @ @ ...

Reasoning y

> J

Local representation
+ Aligned representation

Language Technologies Institute

The Challenge of Compositionality

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

CLIP, VILT, VIiLBERT, etc.
All random chance

Compositional Generalization
to novel combinations outside
of training data

1. Structure: <subject> <verb> <object>
2. Concepts: ‘plants’, ‘lightbulb’

(a) some plants (b) a lightbulb surrounding some plants 3. Inference: ‘surrounding’ — spatial relation
surrounding a 4. Knowledge: from humans!
lightbulb

[Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality. CVPR 2022]

Language Technologies Institute 3

Sub-Challenge 3a: Structure Modeling

Definition: Defining or learning the relationships over which reasoning occurs.

?
1

y [
A ® A ®
» Structure
Single-step Temporal Hierarchical Interactive Discovery
\ J
I
Multi-step

Language Technologies Institute 4

Sub-Challenge 3b: Intermediate Concepts

Definition: The parameterization of individual multimodal concepts in the reasoning process.

Concepts
Discrete

words

or
OO0 .

or
CITT]

Continuous
* Structure
Single-step Multi-step

Language Technologies Institute)

Sub-Challenge 3c: Inference Paradigm

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

Concepts

Discrete %

B— B ., Inference

Continuous Representation

* Structure
Single-step Multi-step

Language Technologies Institute 6

Sub-Challenge 3d: External Knowledge

Definition: Leveraging external knowledge in the study of structure, concepts, and inference.

Concepts

Discrete

Inference

Causal

Knowledge

2 8

Logical

Continuous Representation

* Structure
Single-step Multi-step

Language Technologies Institute 7

Reasoning

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
words g @ A
)\ or ./\.
—
O OO . _ Y,
)\ or r N
[(TTT] A N® > true
A @) — .)

Language Technologies Institute

Roadmap for Next 3 Lectures

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
Temporal .
Last Thursday Hierarpchical Continuous
Interactive
Toda .
oday Discovery
. Causal Knowledge
Discrete)
Thursday Sere Logical Commonsense

Language Technologies Institute 9

Sub-Challenge 3a: Structure Modeling

Concepts
Inference
Dense Representation
» Structure
Single-step Temporal Hierarchical Interactive
L J
I
Multi-step

Language Technologies Institute 10

Interactive Structure

Structure defined through interactive environment
Main difference from temporal - actions taken at previous time steps affect future states

Integrates multimodality into the reinforcement learning framework

aq a, asj ar
[I1T] [(L1T] [TTT] [LTT]
A A A A
51=A @ 52=A ® 53=A ® ST=A ® Time
t=1 t=2 t=3 t=T

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. [JCAI 2019]

Language Technologies Institute 11

Interactive Structure

Structure defined through interactive environment
Main difference from temporal - actions taken at previous time steps affect future states

ModalityA A A A -

>q>< Policy a
ModalityB @ @ @ -
Go to the green torch
Local representation R :
+ Aligned representation easoning

Language Technologies Institute

Learning a Policy — RL basics

Reinforcement learning

e Introduction to RL
e Markov Decision Processes (MDPs)
® Solving known MDPs using value and policy iteration
e Solving unknown MDPs using function approximation and Q-learning
'J Agent ||
state| |reward action

St Rt At

» R (

< i Environment]4—

Language Technologies Institute

Learning a Policy — RL basics

An MDP is defined by: :[A ent)
g

Set of states S. o B P— it
Set of actions A. S, R, p
Transition function P(s’|s, a). R f '
Reward function r(s, a, s"). . _S.. | Environment]4

Start state s,,. 5 \

Discount factor y. Return:

Horizon H.

Gt = Rip1 +7Rijo + ... = ZVth+k+1
k=0

o Policy: m(als) =Pr(4A; =alS; =s) Vi

/=7 75
Tﬁ»z H
T e
\E\\ Goal: argmaxE nythhr
ﬁ T

t=0

Language Technologies Institute 14

RL vs Supervised Learning

Reinforcement Learning Supervised Learning

Sequential decision making One-step decision making

Maximize cumulative reward Maximize immediate reward

Sparse rewards Dense supervision

Environment maybe unknown Environment always known

Language Technologies Institute

Intersection Between RL and Supervised Learning

state reward action
St Rl AI

Rt+l (.
Sl Environment

Obtain expert trajectories (e.g. human driver/video demonstrations):
S0, ao,70,51,Q1,71,52,0A2,172, ...

Perform supervised learning by predicting expert action

D = {(s0,a0), (s1,01), (52,a3), .-}

But: distribution mismatch between training and testing
Hard to recover from sub-optimal states
Sometimes not safe/possible to collect expert trajectories

Language Technologies Institute

State and Action Value Functions

Definitions

- Definition: the state-value function V™ (s) of an MDP is the expected return starting from state
s, and following policy

V™(s) = E, [G¢|S: = s] Captures long term reward

- Definition: the action-value function Q™ (s, a) is the expected return starting from state s,
taking action a, and then following policy

QW(Sa a) = E, [Gt|5t =5, Ay = a] Captures long term reward

Language Technologies Institute

Optimal State and Action Value Functions

Definitions

- Definition: the optimal state-value function V'* (S) is the maximum value function over all
policies

V*(s) = max V" (s)

T

- Definition: the optimal action-value function Q* (5, a) is the maximum action-value function
over all policies

Q*(s,a) = max Q" (s,a)

Language Technologies Institute

Relationships Between State and Action Values

State value functions Action value functions

VT(s) = 7(als)Q (s, a)
V™(s) f 1Q7(s,0)

V*(s) = max V7"(s) Q*(s,a) = max Q7 (s, a)

V*(s) f 1Q"(s,0) |

Language Technologies Institute

Obtaining the Optimal Policy

Optimal policy can be found by maximizing over Q*(s,a)

. 1, if a =argmax, Q*(s,a)
™ (als) = 0, else

Optimal policy can also be found by maximizing over V*(s’)
with one-step look ahead

. 1, if a=argmax, Ey [r(s,a,s)+~yV*(s')]
m(als) = 0, else

. 1, if a =argmax, > . p(s'|s,a)(r(s,a,s") +yV*(s"))
m(als) = {0 else = |

Language Technologies Institute

Bellman Optimality for State Value Functions

Recursive definition

V(s
V*(s) = max Q*(s,a)

Language Technologies Institute

Bellman Optimality for State Value Functions

Recursive definition

V*(s)

'V*(S/)
V*(s) = max Q*(s, a)
= max [E [7“(8, a, 5/) + fYV* (S,)]

Language Technologies Institute

Bellman Optimality for State Value Functions

Recursive definition

V*(s)

Vi (s)
V*(s) = max Q*(s,a)

= maxE [r(s,a,s’) +yV*(s")]

= max | Y p(s'|s,)(r(s,a,8') + 7V (s")

Language Technologies Institute

Bellman Optimality for Action Value Functions

Recursive definition

Language Technologies Institute

Bellman Optimality for Action Value Functions

Recursive definition

Language Technologies Institute

Bellman Optimality for Action Value Functions

Recursive definition

Q*(s,a) =Ey [r(s,a,5") +yV*(s)]
=K, [rr(s, a,s’) +ymax Q" (s, G/)}

— Zp(s’|s, a) (r(s, a,s’) + Y max Q" (s, a'))

Language Technologies Institute

Solving the Bellman Optimality Equations

Recursive definition

V*(s) = max Zp(s’|s, a)(r(s,a,s’) +yV*(s"))

Solve by iterative methods

Viiq(s) = max | Y p(s']s,a)(r(s,a,s") +yVi(s))

a

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Value Iteration

Algorithm:
Start with V(s) =0 foralls.
Fork=1, ..., H:

For all statessin S:

Vi (s) « mgxz P(s'|s,a) (R(s,a,s") +7Vi_1(s"))

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Value Iteration

Algorithm:
Start with V(s) =0 foralls.
Fork=1, ..., H:

For all statessin S:
Vii(s) < max » P(s'|s,a) (R(s,a,s") + 7V, ("))

7 (s) «+ arg maxz P(s'|s,a) (R(s,a,s") +vVi_1(s))

Find the best action according to one-step look ahead
This is called a value update or Bellman update/back-up

Repeat until policy converges. Guaranteed to converge to optimal policy.

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Q-Value lteration

Q7(s,a) = expected utility starting in s, taking action a, and (thereafter)
acting optimally

Bellman Equation:

Q*(s,a) =) P(s|s,a)(R(s,a,s') + ymax Q*(s', a’))
Q-Value Iteration:

Qiy1(s,0) <) P(s']s,a)(R(s,a,5") + ymax Q;(s', a'))

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Summary: Exact Methods

Bellman Q* (S, CL) Q-value iteration

optimalit *
Fully known eZuationZ %4 (S) Value iteration
MDP
states
trfer\\;;c;;);\s BeIImap QW (S, CL) Q-policy iteration
expectation -
equations |4 (3) Policy iteration

Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete state and action space
Update equations require fully observable MDP and known transitions

Language Technologies Institute

Unknown MDPs?

Q7(s,a) = expected utility starting in s, taking action a, and (thereafter)
acting optimally

Bellman Equation:

Q*(s,a) =) _ P(s'|s,a)(R(s,a,8") + ymax Q*(s',a"))

Q-Value Iteration:

Qry1(s,0) | D P(s'ls,a)[R(s,a,5") + ymax Qi(s',a))

This is problematic when do not know the transitions

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Tabular Q-learning

= Q-valueiteration: Qr+1(s,a) < Z P(s'|s,a)(R(s,a,s’) + Y max Qr(s',a"))

= Rewrite as expectation: Qii1 <+ Egp(s/s,a) [R(s, a,s’) +vymax Qx(s, a’)]
a/

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Tabular Q-learning

= Q-valueiteration: Qi41(s,a) < > P(s'|s,a)(R(s,a,s") + max Qi(s', a’))
= Rewrite as expectation: Qii1 < Egp(s/s,a) [R(s, a,s') +ymax Qx (s, a’)]
= (Tabular) Q-Learning: replace expectation by samples

= For an state-action pair (s,a), receive: s’ ~ P(s'|s,a) simulation and exploration

= Consider your old estimate: Q(s, a)

= Consider your new sample estimate:

target(s’) = r(s,a,s’) +ymax Qx(s’, a’)

error(s’) = (r(s, a,s") +ymax Qx(s',a’) — Qx(s, a))

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Tabular Q-learning

learning
rate

|

Qri1(s,a) = Qr(s,a) + a error(s’)
= Qr(s,a) + « ('r(s, a,s') + Y max Qr(s',ad") — Qr(s, a))

Key idea: implicitly estimate the transitions via simulation

Language Technologies Institute

Tabular Q-learning

Bellman optimality
Algorithm:
Start with Qo (s, a) foralls, a. Q*(s,a) =Es {T(S, a, S,) + Hg}x Q" (Sla a,)}
Get initial state s
Fork=1, 2, ... till convergence
Sample action a, get next state s’
If s” is terminal:
target = r(s, a, s’)
Sample new initial state s’
else:

target =7(s,a,s’) + Yy max Qr(s',a)
a

Qk-{-l(sa (1,) — Qk(87 CL) +Q (T(S7 a, S,) + ’)/Hlaé}X Qk(8/7 Cl/) o Qk(sa CL))
s« s

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Tabular Q-learning

Algorithm:
Start with QO(S, a) foralls, a. m Choose random actions?
Get initial state s = Choose action that maximizes Qk (S, a) (i.e. greedily)?

Fork=1, 2, ... till convergence
Sample action a, get next state s’

s &-Greedy: choose random action with prob. €, otherwise choose
action greedily

If s’ is terminal:
target = r(s, a, s’)
Sample new initial state s’
else:

target =7(s,a,s’) +ymax Q(s’, a)
a
Qk+1(87 (1,) — Qk(87 CL) +Q (T(S7 a, S,) + ’)/Hlaé}X Qk(8/7 (Z/) o Qk(sa CL))
s < s

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Exploration and Exploitation

Poor estimates of Q(s,a) at the start:

Bad initial estimates in the first few cases can drive policy into sub-optimal
region, and never explore further.

m(s) = max, Q(s,a) with probability 1 — e
| random action otherwise

Gradually decrease epsilon as policy is learned.

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Tabular Q-learning

Tabular: keep a |S| x |A| table of Q(s,a)
Algorithm: Still requires small and discrete state and action space

Start with Qo (s, @) foralls, a. How can we generalize to unseen states?
Get initial state s

Fork=1, 2, ... till convergence

e-Greedy: choose random action with prob. €, otherwise choose

I Sample action a, get next state s’ I . " dil
action greedily

If s" is terminal:
target = r(s, a, s’)
Sample new initial state s’
else:

target =7(s,a,s’) + Y max Qr(s',a)
a

Qk+1(87a) - ka(87 CL) +a (T(S7 a, S,) + ’Ynza,ax Qk(8/7 Cl/) - Qk(S, CL))
s« s

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Deep Q-learning

Q-learning with function approximation to extract informative features from high-dimensional
input states.

Represent value function by Q network with weights w

Q(s,a,w) ~ Q*(s, a)

Qeaw) Qea.w - Qsa.w T high-dimensional, continuous states
T T T + generalization to new states

~
T

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Deep Q-learning

«» Optimal Q-values should obey Bellman equation
Q*(s,a) = Eg¢ |r +v max Q(s',a')" | s, a
a0 Treat right-hand r + v max Q(s’,a’,w) as as a target
a/

=" Minimize MSE loss by stochastic gradient descent

2
| = (r + 7 max Q(s’,a',w) — Q(s, a, w))

Language Technologies Institute

Deep Q-learning Challenges

= Minimize MSE loss by stochastic gradient descent

2 Q(s,aq,w) - Q(s,a,,w)
J = (r+ v max Q(s’,a’,w) — Q(s, a, w))

e Converges to Q* using table lookup representation

" But diverges using neural networks due to:
e Correlations between samples
=0 Non-stationary targets

/)
!

Language Technologies Institute

Deep Q-learning: Experience Replay

e To remove correlations, build data-set from agent’s own experience

S1,4d1,M2,52

/
52,4d2,13,53 — Ss,a,I,S
S3,d3, 14,54

exploration, epsilon greedy is important!

Sty dty Nt+1, St+1

e Sample random mini-batch of transitions (s,a,r,s’) from D

Language Technologies Institute

Deep Q-learning: Fixed Q-targets

51,4d1,12,52
sn Sample random mini-batch of transitions (s,a,r,s’) from D Sy, ar, I3, 53
e Compute Q-learning targets w.r.t. old fixed parameters w- S3, a3, 4, S4
=" Optimize MSE between Q-network and Q-learning targets St; At Me+1, Se+1
2
Li(w;) =Es s, s~D, (r +v max Q(s, s w;) — Q(s, a; w,-))] Qs.a,w) - Qsa,

a
X J o T T
Y Y
Q-learning target Q-network /\/\
I

e" Use stochastic gradient descent
s Update w- with updated w every ~1000 iterations

Language Technologies Institute

Value-based and Policy-based RL

» Value Based
Learned Value Function

Implicit policy (e.g. e-greedy)

State value functions Action value functions
V7(s) Q" (s, a)
V*(s) Q" (s, a)

™ (als) = {1 —e fa=argmax, B [r(s,0,8) + V()] ey = {1 —¢, if a=argmax, Q*(s,a)

€, else c. else

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Value-based and Policy-based RL

» Value Based
Learned Value Function
Implicit policy (e.g. e-greedy)

raw pixels hidden layer

‘\\, /// o probability of
XK @ moving UP
I\

‘\‘V
IS

» Policy Based

No Value Function

Learned Policy

mo(s,a) =Pla | s, 0]

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Can we Directly Learn the Policy?

m Often 7T can be simpler than Q or V

.) d V(s) very high-dimensional
= E.g., robotic gras Q(s,a) an
8- g P But policy could be just ‘open/close hand’

m V:doesn’t prescribe actions

= Would need dynamics model (+ compute 1 Bellman back-up)

= Q: need to be able to efficiently solve argmax, Q*(s,a)

= Challenge for continuous / high-dimensional action spaces’

‘. else

_ if g = ; / *(s! 1 —¢, if a = argmax, Q*(s,a
(als) = {1 €, 1ﬁa argmax, Eg [r(s,a,s") +~yV*(s')] *(als) = { g Q*(s,a)
€, else

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Pong from Pixels

=+ Language Technologies Institute

Pong from Pixels

raw pixels hidden layer
e.g., P Y

height width

[80 x 80]
array of

Network sees +1 if it scored a point, and -1 if it was scored against.
How do we learn these parameters?

Language Technologies Institute

Pong from Pixels

Suppose we had the training labels...
(we know what to do in any state)

(x1,UP) maximize:
2,DOWN
AT Y, log p(yi|xi)

raw pixels

hidden layer

[Slides from Karpathy]

Language Technologies Institute

Pong from Pixels

Except, we don’t have labels...

raw pixels hidden layer

Should we go UP or DOWN?

[Slides from Karpathy]

Language Technologies Institute

Pong from Pixels

Let’s just act according to our current policy...

raw pixels hidden layer

robability of Rollout the policy
and collect an
episode

WIN

[Slides from Karpathy]

Language Technologies Institute

Pong from Pixels

Collect many rollouts...

4 rollouts:

DOWN DOWN uP

-0 .0 .0 wWIN
* .o LOSE
DOWN’. UP -® LOSE
* .o WIN

[Slides from Karpathy]

Language Technologies Institute

Pong from Pixels

Not sure whatever we did here, but
apparently it was good.

+@ 20N, gDOWN, o WP o | WIN
@ LOSE
uP
- 4 - J LOSE
@ WIN

[Slides from Karpathy]

Language Technologies Institute

Pong from Pixels

-0 @ WIN
LOSE

-® LOSE
WIN

[Slides from Karpathy]

Language Technologies Institute

Pong from Pixels

Pretend every action we took here Pretend every action we took
was the correct label. here was the wrong label.

maximize: 10g p(y; | Xi) maximize: (—1) * log p(y; | xi)
o @0 g UP g UP GDOWN o DOWN JDOWN o UP o | \viy
0 WP g UP gDOWNG UP o UP o (OSE
o " .o P . g DOWN g DOWN JDOWN o DOWN o WP o ¢ s
@20V g UP ».L‘DOWN* P .o " .o WIN

E E N

[Slides from Karpathy]

Language Technologies Institute

Pong from Pixels

Discounting

Blame each action assuming that its effects have
exponentially decaying impact into the future.

~.

Discounted rewards 2.ilAi] * log p(yi|xi)
0.21 024 0.27 -0.81 -0.9 -1 0 0

® uP s DOWN 3 UP & uP .DOWN 2 DOWN .DOWN a uP s

Reward +1.0 Reward -1.0
\gamma =0.9

[Slides from Karpathy]

Language Technologies Institute

Pong from Pixels

n(a|s)

1. Initialize a policy network at random

[Slides from Karpathy]

Language Technologies Institute

Pong from Pixels

n(als)

1. Initialize a policy network at random
2. Repeat Forever:

3. Collect a bunch of rollouts with the policy ep5||on greedy!
UP DOWN UP UP DOWN DOWN DOWN UP WIN
DOWN o UP UP DOWN UP UP LOSE
° UP -0 UP r® DOWN>‘ DOWN=.DOWN>’ DOWN>' UP -® LOSE

‘ DOWN UP UP DOWN UP UP

HE NN

WIN

[Slides from Karpathy]

Language Technologies Institute

Pong from Pixels

n(a|s)

1 Initialize a policy network at random
2. Repeat Forever:
3
4

Collect a bunch of rollouts with the policy epsilon greedy!
Increase the probability of actions that worked well

Pretend every action we took here
was the correct label.

maximize: logp(yz | xi)

Pretend every action we took
here was the wrong label.

e oo | 20 Ap % 1og p(yi|x)

UP o DOWN o UP UP__ 2 DOWN_ DOWN_ o DOWN_ o UP WIN

DOWNGUP o UP S DOWN o WP o UP LOSE Does not require transition
o .@ P .g DOWN g DOWN JDOWN o DOWN o WP o LOSE probabilities

DOWN o UP UP__o DOWN o UP up

; : WIN Does not estimate Q(), V()

- . Predicts policy directly

[Slides from Karpathy]

Language Technologies Institute

Pong from Pixels

[Slides from Karpathy]

Language Technologies Institute

Policy Gradients

Why does this work?

Initialize a policy network at random
Repeat Forever:
Collect a bunch of rollouts with the policy

S w NN

Increase the probability of actions that worked well

> Ai = log p(yi|xi)

[Slides from Karpathy]

Language Technologies Institute

Policy Gradients

Formally, let’s define a class of parameterized policies II = {mg,8 € R™}

For each policy, define its value:

J(O)=E | +'rilme

Language Technologies Institute

Policy Gradients

Writing in terms of trajectories 7 = (Sq, @9, 70, S1, a1, 71, ---)

Probability of a trajectory Reward of a trajectory
p(7;6) = mo(aolso)p(s1]s0, ao) r(T) = Z ’Yt’l”t
x mo(a1|s1)p(s2]s1,a1) >0
x T (az|s2)p(s3|s2, az)
X ...
= Hp(5t+1|5taat)779(at|3t)
t>0

J(Q) =FE [Z 'Ytrt'”@:| — ETNp(T;Q) [T<T)]

>0

Language Technologies Institute

Policy Gradients

Formally, let’s define a class of parameterized policies [I = {7r9, = Rm}

For each policy, define its value:

JO)=E |Y +'rilmg| = Erpirio) [r(7)]

>0

We want to find the optimal policy #* = arg max J(0)

How can we do this?

Gradient ascent on policy parameters

Language Technologies Institute

REINFORCE Algorithm

Expected reward: J(@) = ETNp(T;e) [7“(7')]

= /r(’r)p(T;H) dr

T

Language Technologies Institute

REINFORCE Algorithm

Expected reward: J(@) = ETNp(T;e) [7“(7')]

= /r(T)p(T;O) dr p(;0) = | [p(st41lse, ar)mo(arlsy)

t>0

Now let’s differentiate this: VOJ(Q) — /T(T)vep(’r; 9) dT Intractable

T

Language Technologies Institute

REINFORCE Algorithm

Expected reward: J(@) = ETNp(T;e) [7“(7')]

= /r(T)p(T;O) dr p(;0) = | [p(st41lse, ar)mo(arlsy)

t>0

Now let’s differentiate this: VOJ(Q) — /T(T)vep(’r; 9) dT Intractable

T

Vop(T;0)
p(7;0)

However, we can use a nice trick: Vyp(7;0) = p(7;0)

Y

= p(7;0)Velogp(T; 0)

Language Technologies Institute

REINFORCE Algorithm

Expected reward: J(@) = ETNp(T;e) [7“(7')]

= /r(T)p(T;O) dr p(;0) = | [p(st41lse, ar)mo(arlsy)

t>0

Now let's differentiate this: Vy.J(0) = /T(T)vep(’r; 0) dr Intractable

T

However, we can use a nice trick: Vyp(7;0) = p(7;0) Vop(7; 9) = p(7;0)Vylogp(T;0)

If we inject this back: p(7;0)
VoI (6) = / (+(7) Vg log p(r: 6)) p(7; 6) dr

= Erp(r;) [r(7)Vglog p(7;0)]

Language Technologies Institute

REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have: p(']—, 9) o Hp(3t+1‘8t, a,t)’]T@(a,t’St)
t>0

Language Technologies Institute

REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have: p(']—, 9) o Hp(3t+1‘8t, a,t)’]T@(a,t’St)
t>0

Thus: logp(7;0) = Z (logp(st+1]st, ar) + log mg(ar|se))
>0

Language Technologies Institute

REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have: p(']—, 9) o Hp(3t+1‘8t, Cl,t)’]T@(a,t’St)

t>0
Thus: logp(7;0) = Z (log p(st+1]|st, ar) + logmg(a|st))
t>0
: — Doesn’t depend on
And when differentiating: V@ logp 75 9 Z V@ log 7T9(CLt |St) transition probabilities

t>0

Language Technologies Institute

REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have: p(']—, 9) o Hp(St_'_l‘St, Cl,t)’]TQ(CLt’St)
t>0

Thus: logp(7;0) = Z (log p(st+1]s¢, at) + log mg(alst))

t>0
. T Doesn’t depend on
And when differentiating: V@ logp 75 9 Z V9 log We(at |St) transition probabilities

t>0
Therefore when sampling a trajectory, we can estimate gradients:

VoJ(0) = Erpirio) [r(7)Vologp(r;0)] = > r(7) Vg log me(ay|se)

>0

Language Technologies Institute

Policy Gradients

Gradient estimator: V@J(Q) ~ Z T(T)V@ log W@(at|8t)

Interpretation: t>0

If r(trajectory) is high, push up the probabilities of the actions seen
If r(trajectory) is low, push down the probabilities of the actions seen

Pretend every action we took here Pretend every action we took raw pixels hidden layer
was the correct label. here was the wrong label. .
maximize: logp(yi | Xi) maximize: (—1) * log p(y; | x;) ‘\'// probablllty of
. moving UP
- XA &
UP DOWN uP UP DOWN_ o DOWN_ o DOWN UP WIN V‘,:i}
DOWN o UP UP DOWN UP UP LOSE '/ V .
UP UP DOWN o DOWN_ o DOWN_ o DOWN UP LOSE ~ .
DOWN o UP UP DOWN UP UP WIN
! !
H = 2 Ai * log p(yi|xi)

Language Technologies Institute

Policy Gradients

Gradient estimator: VQJ(Q) ~ Z T(T)V@ log 7T9(a,t|8t)

Interpretation: t>0

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(als, 0),Va € A,s € §,0 € R"
Initialize policy weights 6
Repeat forever:
Generate an episode Sy, Ag, Ry,...,57-1,A1r—1, RTl following 7 (-|-, 0)|
For each step of the episode t =0,...,7 — 1:
Gy + return from step ¢
0 0+ CY’YthVO 10g7T(At|St, 9)

epsilon greedy

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Policy Gradients

Gradient estimator: VQJ(Q) ~ Z T(T)V@ log 7T9(a,t|8t)

Interpretation: t>0

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is really
hard - can we help this estimator?

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Variance Reduction with a Baseline

Problem: The raw reward of a trajectory isn’t necessarily meaningful. E.g. if all
rewards are positive, you keep pushing up probabilities of all actions.

What is important then? Whether a reward is higher or lower than what you
expect to get.

Idea: Introduce a baseline function dependent on the state, which gives us an
estimator:

Vo (0) = Y (r(r) — b(s:)) Vo log mo(ay|s:)

e.g. exponential moving average of the rewards.

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Actor-Critic Methods

A better baseline: want to push the probability of an action from a state, if this
action was better than the expected value of what we should get from that state

Recall: Q and V - action and state value functions!

We are happy with an action a in a state s if Q(s,a) - V(s) is large.
Otherwise we are unhappy with an action if it’s small.

Using this, we get the estimator:

Vo (0) = Y (Q™ (st,ar) — V™ (1)) Vo log mo(as|s:)

t>0

Language Technologies Institute

Actor-Critic Methods

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning Exploration + experience replay

by training both an actor (the policy) and a critic (the Q function) Dec‘;:;::la::r;ae’t‘lp'es

Critic: evaluates how good the action is

__

) 2
A3C Policy Learning Module - ﬁi(Wi) . Es,a,r,s'~Df (r + v max Q(S’, a/; Wi_) . Q(s, a; Wi))]
| a’
l (1 unit) \ e & & 2 J
Value Function
! Q-learning target Q-network
Policy Function ' o 7'('9 e
Fully I (3 units) 71 (a|8) Actor: decides what actions to take
connected LSTM
. layer (256 units) 5
(256 units) ; Vo J(0) ~ E (Q7 (st,at) — V™ (st)) Vo log mg(at|st)

Variance reduction with a baseline
[Minh et al., Asynchronous Methods for Deep Reinforcement Learning. ICML 2016]

Language Technologies Institute 79

Summary: RL Methods

» Value Based
Value iteration - Learned Value Function
Policy iteration

(Deep) Q-learning Implicit policy (e.g. e-greedy) P

> Policy Based Value Fung¢tion Policy

Policy gradients - No Value Function

Learned Policy

Actor
Critic

| Value-Based | Policy-Based |

» Actor-Critic

Actor (policy) Learned Value Function

Critic (Q-values)

Learned Policy

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Back to Reasoning: Interactive Reasoning

Task-independent Task-dependent

Language-assisted

Key Opens a door of the same color as
the key.

Skull They come in two varieties, rolling
skulls and bouncing skulls ... you must
jump over rolling skulls and walk under
bouncing skulls.

[...] having the correct key can open the lock [...]
[...] known lock and key device was discovered [...]
[...] unless the correct key is inserted [...]

Pre—trainingl

Pre-trained

y—»

State, Reward

Language-conditional

Go down the ladder and walk right im-
mediately to avoid falling off the conveyor
Vkey Vskull Viadder Vrope belt, jump to the yellow rope and again
to the platform on the right.

Agent Environment

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. [JCAI 2019]

Language Technologies Institute 81

Language-conditional RL: Instruction Following

e Navigation via instruction following

Train .
Fusion
Go to the short red torch .
Go to the blue keycard Allgn ment
Go to the largest yellow object
Go to the green object Ground |a Nnguage
Recognize objects
Navigate to objects
Test

Generalize to unseen objects

Go to the tall green torch

Go to the red keycard
Go to the green torch Go to the smallest blue object

[Misra et al., Mapping Instructions and Visual Observations to Actions with Reinforcement Learning. EMNLP 2017]
[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]

Language Technologies Institute 82

Language-conditional RL: Instruction Following

® Gated attention via element-wise product

Image Representation

= Gated-Attention Multimodal Fusion Unit
xI f(tr canv) et e R R 1
Mga(xp,x,) = M(a,)Ox, :
1
To policy
A'G/L learning
‘ e Fusion

Alignment
Ground language
Recognize objects

Instruction 5 v
Representation a; = h(x) (a)
Attention Vector

L R W e e

-

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]

Language Technologies Institute 83

Language-conditional RL: Instruction Following

e Policy learning

* Asynchronous Advantage Actor-Critic (A3C) (Mnih et al.)

* uses a deep neural network to parametrize the policy and value functions and runs
multiple parallel threads to update the network parameters.
* use entropy regularization for improved exploration

* use Generalized Advantage Estimator to reduce the variance of the policy gradient
updates (Schulman et al.)

A3C Policy Learning Module

l (1 unit)
; Value Function
V(Itr L)

Policy
Policy Function | Tl(all,, L)
¢ (3 units) M(all, L)

Fully
— ' connected LSTM
Multimodal layer (256 units)
Fusion Output : (256 units)
M, X)L

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]

Language Technologies Institute 84

Language-conditional RL: Instruction Following

EASY | | MEDIUM HARD

Go to the armor

O O
00000 O o ®
'Q O . O
&0 ot O O

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]

Language Technologies Institute 85

Language-conditional RL: Instruction Following

Representation *

blue «----- =¥ x, = g(L; B6ru)
red « oo Grounding is
green important for
yellow *T | generalization
iR EEI==—8F7— amor blye armor, red pillar -
H i] > blue pillar
L] E pillar
i B
i----*', » torch

skullkey

OV 3601 SIS ANADPPPHIAPHHHPARANANARSRAORRES

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]

Language Technologies Institute 86

Language-conditional RL: Embodied QA

>
#52|D):
——
-

o)

=

[Das et al., Embodied Question Answering. CVPR 2018]

Language Technologies Institute

Language-assisted RL: Reward Shaping

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Natural language for reward shaping

<— “Jump over the skull while going to the left”

from Amazon Mturk :-(
asked annotators to play the
game and describe entities

Y/
Montezuma’s Intermediate rewards to speed up learning
revenge

[Goyal et al., Using Natural Language for Reward Shaping in Reinforcement Learning. I[JCAI 2019]

Language Technologies Institute 88

Language-assisted RL: Domain knowledge

Game Kingdom Miew Orders Advisors World Cheat Civilopedia

13] Grovny bilap

The natural resources available where a population
settles affects its ability to produce food and goods.
Build your city on a plains or grassland square with
a river running through it if possible.

Figure 1: An excerpt from the user manual of the game
Civilization II.

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]

Language Technologies Institute

89

Language-assisted RL: Domain knowledge

Map tile attributes:

- Terrain type (e.¢ puntain, etc)

The natural resources available where a population - Tile resources (&g™m o, wildlife, etc)
settles affects its ability to pgadice food and goods. City attributes:
: : , : - City population
Bu:jd your C{ty on a pla/qs 'o grasslandfsquare with e L e Y
a river running through it if possible. Unit attributes:

- Unit type (e.g., worker, explorer, archer, etc)
- Isunitin a city ?

1. Choose relevant sentences
2. Label words into action-description, state-
description, or background

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]

Language Technologies Institute 90

Language-assisted RL: Domain knowledge

e Phalanxes are twice as effective at defending cities as warriors. /
e Build the city on plains or grassland with a river running through it. /
e You can rename the city if you like, but we'll refer to it as washington. Releva nt sentences

e There are many different strategies dictating the order in which
advances are researched

e After the road is built, use the settlers to start improving the terrain.

5 5 B A A A A A
e When the settlers becomes active, chose build road. A: action-d escription
S S S A A A

e Use settlers or engineers to improve a terrain square within me C|_ty radius S State_descrlptlon

A S¥ A A S Ax S S S S

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]

Language Technologies Institute o1

Summary: Interactive Reasoning

Instruction following Embodied learning

Q: What color is the car?

Train 5
Go to the short red torch . X C] ann '. [:] ? t I T t ' tHt ¢
Go to the blue keycard 0 ©©‘ | ni = 1 =
Go to the largest yellow object A = & i &
Go to the green object]

Test

S elune o =p i M
Go to the green torch Go to the smallest blue object)P 1‘"“IHH"““”'""

Reward shaping

The natural resources available where a population
settles affects its ability to produce food and goods.
o Build your city on a plains or grassland square with
«— Jum p over the a river running through it if possible.
skull while going

to the left”

Figure 1: An excerpt from the user manual of the game
Civilization II.

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. [JCAI 2019]

Language Technologies Institute 92

Summary

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
Temporal .
Last Thursday Hierarpchical Continuous

Today / Interactive

/

RL basics

Language Technologies Institute

Summary: RL Methods

Epsilon greedy + exploration
Experience replay
Decorrelate samples

Fixed targets » Value Based
Value iteration - Learned Value Function
Policy iteration

(Deep) Q-learning Implicit policy (e.g. e-greedy)

» Policy Based
Policy gradients - No Value Function

- Learned Policy
Variance reduction with a baseline

» Actor-Critic

Actor (policy) Learned Value Function

Critic (Q-values)
- Learned Policy

[Slides from Fragkiadaki, 10-703 CMU]

Language Technologies Institute

Summary

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
Temporal .
Last Thursday rempor Continuous
Hierarchical
Today Interactive
. Causal Knowledge
Thursda Discover Discrete)
y scovery Logical Commonsense

Language Technologies Institute

