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Midterm Project Report Instructions

§ Goal: Evaluate state-of-the-art models on your dataset and identify key issues 
through a detailed error analysis

§ It will inform the design of your new research ideas
§ Report format: 2 column (ICML template)

§ The report should follow a similar structure to a research paper
§ Teams of 3: 8 pages, Teams of 4: 8.5 pages, Teams of 5: 10 pages. Teams of 6: 10.5 pages

§ Number of SOTA models
§ Teams of 3 or 4 should have at least two baseline models
§ Teams of 5 or 6 should have at least three baseline models

§ Error analysis
§ This is one of the most important part of this report. You need to understand where previous 

models can be improved.
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Examples of Possible Error Analysis Approaches

§ Dataset-based:
§ Split correct/incorrect by label
§ Manually inspect the samples that are incorrectly predicted

§ What are the commonalities?
§ What are differences with the correct ones?

§ Sub-dataset analysis: length of question, rare words, cluttered images, 
high frequency in signals?
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Examples of Possible Error Analysis Approaches

§ Perturbation-based:
§ Make targeted changes to specific parts of the image.
§ Change one word/paraphrase/add redundant tokens.
§ See whether the model remains robust
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Examples of Possible Error Analysis Approaches

§ Model-based:
§ Visualize feature attributions: LIME, 1st/2nd order gradients
§ Ablation studies to understand what model components are important

§ Theory-based:
§ Write out the math! From optimization and learning perspective, does 

the model do what’s expected?
§ Some useful tools: consider linear case/other simplest case and derive 

solution, do empirical sanity checks first.

[Liang et al., MultiViz: An Analysis Benchmark for Visualizing and Understanding Multimodal Models. arXiv 2022]
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Examples of Possible Error Analysis Approaches

[Reddi et al., On the Convergence of Adam and Beyond. ICLR 2018]
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Examples of Possible Error Analysis Approaches

[Hendricks et al., Women also Snowboard: Overcoming Bias in Captioning Models. ECCV 2018]

Finding: Image captioning models capture spurious 
correlations between gender and generated actions

You’ll see more in today’s reasoning lecture and in quantification lectures
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Midterm Project Report Instructions

Main report sections:
§ Abstract
§ Introduction
§ Related work
§ Problem statement
§ Multimodal baseline models
§ Experimental methodology
§ Results and discussion
§ New research ideas

The structure is 
similar to a 
research paper 
submission J
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Upcoming Deadlines

§ Monday October 31st 8pm: Midterm report deadline
§ Tuesday and Thursday (11/1 and 11/3): midterm presentations

§ All students are expected to attend both presentation sessions in person
§ Each team will present either Tuesday or Thursday
§ The focus of these presentations is about your research ideas
§ Feedback will be given by all students, instructors and TAs
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Reasoning

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

Modality A

Modality B

+ Aligned representation

Reasoning 𝒚

Local representation
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Reasoning

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

∧ 𝑡𝑟𝑢𝑒

𝑧
or

or

words
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Summary

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

Causal
LogicalToday

Last Thursday Temporal
Hierarchical Continuous 

InteractiveTuesday

Knowledge 
CommonsenseDiscrete Discovery
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Sub-Challenge 3a: Structure Modeling

Structure
Single-step

Concepts

Inference

Dense Representation

Temporal Hierarchical Interactive

Multi-step
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Interactive Structure

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019]

Structure defined through interactive environment
Main difference from temporal - actions taken at previous time steps affect future states

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻...

𝑠! =

𝑎'

𝑠" = 𝑠# = 𝑠$ =

𝑎( 𝑎) 𝑎*

Integrates multimodality into the reinforcement learning framework
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Interactive Structure

Modality A

Modality B

…

…

Local representation
+ Aligned representation

Policy 𝒂

Structure defined through interactive environment
Main difference from temporal - actions taken at previous time steps affect future states

Reasoning
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Fully known MDP
states

transitions
rewards

Bellman 
optimality
equations

Q-value iteration

Value iteration

Summary: Exact Methods
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Fully known MDP
states

transitions
rewards

Bellman 
optimality
equations

Q-value iteration

Value iteration

Summary: Exact Methods
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Fully known MDP
states

transitions
rewards

Bellman 
optimality
equations

Q-value iteration

Value iteration

Summary: Exact Methods
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Fully known MDP
states

transitions
rewards

Bellman 
optimality
equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete state and action space

Update equations require fully observable MDP and known transitions

Q-value iteration

Value iteration

Summary: Exact Methods

Bellman 
expectation
equations Policy iteration

Q-policy iteration
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Summary: Tabular Q-learning

MDP
with unknown

transitions

Replace true expectation 
over transitions with 

estimates

Bellman 
optimality
equations

Tabular Q-learning

simulation and exploration, epsilon greedy is important!

Poor estimates of Q(s,a) at the start:

Bad initial estimates in the first few cases can drive policy into sub-optimal 
region, and never explore further.

Gradually decrease epsilon as policy is learned.
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Summary: Tabular Q-learning

MDP
with unknown

transitions

Replace true expectation 
over transitions with 

estimates

Bellman 
optimality
equations

targetold estimate 

Tabular: keep a |S| x |A| table of Q(s,a)
Still requires small and discrete state and action space
How can we generalize to unseen states?

Tabular Q-learning

simulation and exploration, epsilon greedy is important!
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Summary: Deep Q-learning

targetold estimate 

Works for high-dimensional state and action spaces
Generalizes to unseen states

Stochastic gradient descent + Experience replay + Fixed Q-targets  
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Can we Directly Learn the Policy?

Q(s,a) and V(s) very high-dimensional
But policy could be just ‘open/close hand’

[Slides from Fragkiadaki, 10-703 CMU]
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Summary: Policy Gradients

epsilon greedy!

Does not require transition probabilities
Does not estimate Q(), V()

Predicts policy directly

[Slides from Karpathy]
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Summary: Policy Gradients

Gradient estimator:

Interpretation:

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

epsilon greedy
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Summary: Actor-Critic Methods

Actor: decides what actions to take

Critic: evaluates how good the action is 

Problem: The raw reward of a trajectory isn’t necessarily meaningful. E.g. if all rewards are 
positive, you keep pushing up probabilities of all actions.
What is important then? Whether a reward is higher or lower than what you expect to get.

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training both an 
actor (the policy) and a critic (the Q function) Exploration + experience replay

Decorrelate samples
Fixed targets

[Minh et al., Asynchronous Methods for Deep Reinforcement Learning. ICML 2016]
Variance reduction with a baseline
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Summary: RL Methods

Value iteration
Policy iteration

(Deep) Q-learning

Policy gradients

Actor (policy)
Critic (Q-values)

[Slides from Fragkiadaki, 10-703 CMU]

Epsilon greedy + exploration
Experience replay

Decorrelate samples
Fixed targets

Variance reduction with a baseline



28

28

Summary: Interactive Reasoning

Instruction following

“Jump over the 
skull while going 
to the left”

Reward shaping

Embodied learning

Domain knowledge

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019]
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Interactive Reasoning Challenges Open
challenges

Learning from open-ended manuals

[Atari Learning Environment]
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Interactive Reasoning Challenges Open
challenges

Learning from text-based games

[Zhong et al., SILG: The Multi-environment Symbolic Interactive Language Grounding Benchmark. NeurIPS 2021]
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Interactive Reasoning Challenges Open
challenges

Learning from lots of offline data

[Fan et al., MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge. arXiv 2022]
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Interactive Reasoning Challenges Open
challenges

Hard to specify reward, but only final goal

[Habitat Rearrangement Challenge 2022]
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Sub-Challenge 3a: Structure Modeling

Structure
Single-step

Concepts

Composition

Dense Neural

Temporal Hierarchical Interactive

Multi-step

Discovery
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Structure Discovery

[Andreas et al., Neural Module Networks. CVPR 2016]

End-to-end neural module networks

Is there a red shape 
above a circle?

Combine [and]Attend [red]

Attend [circle]

Measure [is]

Re-attend [above]

YES

Recall structure - leverage syntactic structure of language based on parsing
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Structure Discovery

[Hu et al., Learning to Reason: End-to-End Module Networks for Visual Question Answering. ICCV 2017]

End-to-end neural module networks

Can we learn the structure end-to-end?

Is there a red shape 
above a circle?

Combine [and]

Attend [red]

Attend [circle]

Measure [is]

Re-attend [above] YESNMN



36

36

In RL (at least for discrete actions):
- T is a sequence of discrete actions
- p(T; ) is not reparameterizable
- r(T) is a black box function
i.e. the environment

Stochastic Optimization

REINFORCE is a general-purpose solution!

RL

Reward

s

a

r

???
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Revisiting REINFORCE

We want to take gradients wrt      of the term: 

We can now compute a Monte Carlo estimate:

What we derived: sample trajectories and compute:

- z can be discrete or continuous!
- q(z) can be a discrete and continuous distribution!
- q(z) must allow for easy sampling and be differentiable wrt     
- f(z) can be a black box!

(we will revisit this equation for generative models)
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Structure Discovery

[Hu et al., Learning to Reason: End-to-End Module Networks for Visual Question Answering. ICCV 2017]

End-to-end neural module networks

Can we learn the structure end-to-end?

Is there a red shape 
above a circle?

Combine [and]

Attend [red]

Attend [circle]

Measure [is]

Re-attend [above] YESNMNRNN
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Structure Discovery

1. Define basic representation building blocks

Structure fully learned from optimization and data 𝒚

Concat fuse Attention fuse

ReLU Layer norm Conv

Add fuse
2. Define basic fusion building blocks

3. Automatically search for composition using neural 
architecture search

Concat fuse Attention fuse

Layer norm

Conv

Self-attention

Self-attention

Conv Layer norm

Add fuse

Nice, but slow!

[Xu et al., MUFASA: Multimodal Fusion Architecture Search for Electronic Health Records. AAAI 2021]

(valid data)
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Continuous Structure Discovery

Biggest problem: discrete optimization is slow.
Differentiable optimization for structure learning:

1. Approximate selection with softmax:

[Liu et al., DARTS: Differentiable Architecture Search. ICLR 2019]

𝒚

Conv Layer norm

Add fuseConcat fuse Attention fuse2. Solve bi-level optimization problem

(valid data)
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Continuous Structure Discovery

[Liu et al., DARTS: Differentiable Architecture Search. ICLR 2019]

Biggest problem: discrete optimization is slow.
Differentiable optimization for structure learning:

1. Approximate selection with softmax:

2. Solve bi-level optimization problem

3. Convert softmax to argmax
Faster but still non-trivial
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Continuous Structure Discovery

In general, optimization over directed acyclic graphs (DAGs):

Graph G, Data X, Adjacency matrix W:

[Zheng et al., DAGs with NO TEARS: Continuous Optimization for Structure Learning. NeurIPS 2018]
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Continuous Structure Discovery

[Zheng et al., DAGs with NO TEARS: Continuous Optimization for Structure Learning. NeurIPS 2018]
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Continuous Structure Discovery

[Zheng et al., DAGs with NO TEARS: Continuous Optimization for Structure Learning. NeurIPS 2018]
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Continuous Structure Discovery

[Zheng et al., DAGs with NO TEARS: Continuous Optimization for Structure Learning. NeurIPS 2018]
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Continuous Structure Discovery

[Zheng et al., DAGs with NO TEARS: Continuous Optimization for Structure Learning. NeurIPS 2018]

- K-th power of adjacency matrix W counts the number of k-step paths from 
one node to another.
- If the diagonal of the matrix power is all zeros, there are no k-step cycles.
- Acyclic = check all k = 1,2, …, size of graph.

Can now do continuous optimization to solve for W, but nonconvex
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Sub-Challenge 3b: Intermediate Concepts

Concepts

Continuous

Discrete

Definition: The parameterization of individual multimodal concepts in the reasoning process.

or

or

words

Structure
Single-step Multi-step

𝒚
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Discrete Concepts via Hard Attention

Hard attention ‘gates’ (0/1) rather than soft attention (softmax between 0-1)
- Can be seen as discrete layers in between differentiable neural net layers

sentiment/emotion

Hard attention 
scores (0/1)Multimodal 

inputs

Classification 
accuracy

controller classifier

reward

[Xu et al., Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ICML 2015]
[Chen et al., Multimodal Sentiment Analysis with Word-level Fusion and Reinforcement Learning. ICMI 2017]

(valid data)
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Discrete Concepts via Hard Attention

Sentiment analysis,
emotion recognition

Image captioning

[Xu et al., Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ICML 2015]
[Chen et al., Multimodal Sentiment Analysis with Word-level Fusion and Reinforcement Learning. ICMI 2017]

Hard attention ‘gates’ (0/1) rather than soft attention (softmax between 0-1)
- Can be seen as discrete layers in between differentiable neural net layers
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Discrete Concepts via Language

[Zeng et al., Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language. arXiv 2022]

• Large language/video/audio models interacting with each other
• Each language model has its own distinct domain knowledge
• Interaction is scripted and zero-shot

Guided multimodal discussion Combining domain knowledge
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Discrete Concepts via Language

[Zeng et al., Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language. arXiv 2022]

Image captioning
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Discrete Concepts via Language

[Zeng et al., Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language. arXiv 2022]

Robot perception and planning
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Discrete Concepts via Language

[Zeng et al., Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language. arXiv 2022]

Video reasoning
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Sub-Challenge 3b: Intermediate Concepts

Many open directions

Prompt engineering – what is going on???

Open
challenges

We’ll see more of this in transference

[Liu et al., Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv 2021]
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Sub-Challenge 3c: Inference Paradigm

Representation

Inference

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

Potential issues:
- Models may capture spurious correlations
- Not robust to targeted manipulations
- Lack of interpretability/control

Recall representation fusion:

Modality A

Modality B

Fusion

Concepts

Structure
Single-step Multi-step
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Sub-Challenge 3c: Inference Paradigm

Representation

∧

Inference

Logical

𝑡𝑟𝑢𝑒

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

Towards explicit inference paradigms:
1. Logical inference: given premises inferred from multimodal 

evidence, how can one derive logical conclusions?
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Logical Inference

Inference through logical operators in question

[Gokhale et al., VQA-LOL: Visual Question Answering Under the Lens of Logic. ECCV 2020]

Is there beer? Is the man wearing shoes?

Is the man NOT wearing 
shoes AND is there beer?

Is there beer AND is there a 
WINE GLASS?

Logical connectives

Basic premises

Adversarial antonyms

Existing models struggle to capture logical connectives.
How can we make them more logical?

Recall error 
analysis!
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Logical Inference

[Gokhale et al., VQA-LOL: Visual Question Answering Under the Lens of Logic. ECCV 2020]

Inference through logical operators in question

Are they in a 
restaurant? 

Are they all 
boys? 

Are they in a 
restaurant AND

are they all boys? 

Differentiable AND composition operator!

Also applies to other logic connectives:
AND, OR, NOT

AND
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Soft Logical Operators

[Gokhale et al., VQA-LOL: Visual Question Answering Under the Lens of Logic. ECCV 2020]

Inference through logical operators in question

Differentiable AND composition operator!
AND

Fréchet inequalities:
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Soft Logical Operators

[Gokhale et al., VQA-LOL: Visual Question Answering Under the Lens of Logic. ECCV 2020]

Inference through logical operators in question

Differentiable OR composition operator!
OR

Fréchet inequalities:

Differentiable, so you can now optimize wrt  and
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Logical Inference Challenges

Many open directions

Open
challenges

[Yang et al., Differentiable Learning of Logical Rules for Knowledge Base Reasoning. NeurIPS 2017]

Differentiable knowledge base reasoning
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Sub-Challenge 3c: Inference Paradigm

Representation

∧

Inference

Causal

Logical

𝑡𝑟𝑢𝑒

𝑧

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

Towards explicit inference paradigms:
1. Logical inference
2. Causal inference: how can one 

determine the actual causal effect of a 
variable in a larger system?
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Causal Inference

Association vs causation

Example: How does class size impact student outcomes?

Why can’t we just compare student outcomes among different class sizes? 
● Poorer districts may have larger class sizes. 
● Students in poorer districts may have access to fewer resources, more difficult 

family circumstances, etc. 
● All of these factors may impact student outcomes.

Association describes how things are. Causation describes how things would have 
been under different circumstances.

(side note: correlation is a specific type of linear association)

[Slides from Victoria Lin]
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Causal Inference

Association vs causation

[Slides from Victoria Lin]
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Causal Inference

Association vs causation

[Slides from Victoria Lin]
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Causal Inference

Intervention

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

Causal inference is reliant on the idea of interventions —what outcome might have 
occurred if X happened (an intervention), possibly contrary to observed data. 

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Causal Inference

Intervention

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

Causal inference is reliant on the idea of interventions —what outcome might have 
occurred if X happened (an intervention), possibly contrary to observed data. 

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Causal Inference

Intervention

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

Causal inference is reliant on the idea of interventions —what outcome might have 
occurred if X happened (an intervention), possibly contrary to observed data. 

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Causal Inference

Intervention

Causal inference is reliant on the idea of interventions —what outcome might have 
occurred if X happened (an intervention), possibly contrary to observed data. 

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Causal Inference

Intervention

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

Let’s say I really want to set the value of x to 3.

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Causal Inference

Intervention

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

Let’s say I really want to set the value of x to 3. What happens to y?

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Causal Inference

Intervention

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

The marginal distribution of y: p(y | do(x=3)). The marginal distribution of y: p(y | x=3).

The joint distribution of data alone is insufficient to predict behavior under interventions.

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Causal Inference

Causal diagrams: arrow pointing from cause to effect.

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/


74

Causal Inference

Intervention mutilates the graph by removing all edges that point into the variable on which 
intervention is applied (in this case x).

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Causal Inference

Intervention in real-life is typically very hard!

E.g., does treatment x treat disease y?

Can I estimate the intervention p(y|do(X=x))?
Requires answering: all else being equal, what would be the patient’s outcome if they had not 
taken the treatment?

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

treatment 
variable

confounding 
variable

outcome

Lots of work, see Judea Pearl, The Book of Why

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Causal Inference

Causal VQA: does my multimodal model capture causation or correlation?

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]

predictionzebras

i.e., treatment 
variable

2Baselines:

BUT: correlation or causation?

Covariant VQA
Target object in question
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Causal Inference

Causal VQA: does my multimodal model capture causation or correlation?

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]

Existing models struggle to adapt to targeted causal interventions.
How can we make them more robust to spurious correlations?

2 2

Covariant VQA
Target object in question

Baselines:

predictionzebras

i.e., treatment 
variable

Interventional conditional: 𝒑(𝒚|𝒅𝒐(𝒛𝒆𝒃𝒓𝒂𝒔 = 𝟏))

Recall error 
analysis!
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Causal Inference

Causal VQA: does my multimodal model capture causation or correlation?

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]

Baselines: pink

umbrella

predictionballoon

i.e., confounding 
variable

Is my model picking up irrelevant objects?

Invariant VQA
Target irrelevant object
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Causal Inference

Causal VQA: does my multimodal model capture causation or correlation?

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]

Invariant VQA
Target irrelevant object

Baselines: pink red

umbrella

predictionballoon

i.e., confounding 
variable

Existing models struggle to adapt to targeted causal interventions.
How can we make them more robust to spurious correlations?

Interventional conditional: 𝒑(𝒚|𝒅𝒐(𝒏𝒐 𝒖𝒎𝒃𝒓𝒆𝒍𝒍𝒂))

Recall error 
analysis!
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Causal Inference

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]

Invariance
(answer stays the same)

Causal inference via data augmentation

With
irrelevant object

Without 
irrelevant object

Covariance

With
relevant object

Without
relevant object

(targeted changes to answer)
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Causal Inference Challenges

Many open directions

Open
challenges

Causal deep learning, see https://www.vanderschaar-lab.com/causal-deep-learning/

https://www.vanderschaar-lab.com/causal-deep-learning/
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Causal Inference Challenges

Many open directions

Open
challenges

Causal deep learning, see https://www.vanderschaar-lab.com/causal-deep-learning/

https://www.vanderschaar-lab.com/causal-deep-learning/


83

Sub-Challenge 3c: Inference Paradigm

Representation

∧

Inference

Causal

Logical

𝑡𝑟𝑢𝑒

𝑧

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

Towards explicit inference paradigms:
1. Logical inference
2. Causal inference

Nice, but you don’t get these for free!

umbrella

predictionballoon

i.e., confounding 
variable
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Sub-Challenge 3d: Knowledge

Domain knowledge

Knowledge graphs

Knowledge in other unstructured formats

Definition: The derivation of knowledge in the study of inference, structure, and reasoning.

∧ 𝑡𝑟𝑢𝑒

𝑧
or

or

words
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External Knowledge: Multimodal Knowledge Graphs

Knowledge can also be gained from external sources

Existing models struggle when external knowledge is needed.
How can we leverage external knowledge?

[Marino et al., OK-VQA: A visual question answering benchmark requiring external knowledge. CVPR 2019] 

Requires knowledge of water 
sports, sports equipment, etc. 

What kind of 
board is this?
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External Knowledge: Multimodal Knowledge Graphs

[Gui et al., KAT: A Knowledge Augmented Transformer for Vision-and-Language. NAACL 2022] 

Knowledge can also be gained from external sources

Object
detector

Language 
model

Wakeboard boat: boat 
designed to create a wake…

Wakeboarder: …

Kitesurfer: …

Skiboarding: …

Boardsport: …

Concepts: interpretable language

Composition: neuralStructure: multi-step retrieval

surfboardWhat kind of 
board is this?
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External Knowledge: Multimodal Knowledge Graphs

[Zhu et al., Building a Large-scale Multimodal Knowledge Base System for Answering Visual Queries. arXiv 2015] 

Knowledge can also be gained from external sources

Concepts: interpretable

Composition: graph-based
Structure: multi-step inference
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External Knowledge Challenges Open
challenges

Atomic: If-then commonsense
[Sap et al., Atomic: An Atlas of Machine Commonsense for If-Then Reasoning. AAAI 2019]
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External Knowledge Challenges Open
challenges

Delphi: Moral commonsense

Social Chemistry: Social commonsense
[Jiang et al., Can Machines Learn Morality? The Delphi Experiment. arXiv 2021]
[Forbes et al., Social Chemistry 101: Learning to Reason about Social and Moral Norms. EMNLP 2020] 
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Summary: Reasoning

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

∧ 𝑡𝑟𝑢𝑒

𝑧
or

or

words
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Summary: Reasoning

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

Causal
LogicalToday

Last Thursday Temporal
Hierarchical Continuous 

InteractiveTuesday

Knowledge 
CommonsenseDiscrete Discovery
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More Reasoning

Structure

Concepts
Inference

Single-step Multi-step

Dense

Interpretable

Representation

Causal
Knowledge

Open challenges:
- Structure: multi-step inference
- Concepts: interpretable + differentiable representations
- Composition: explicit, logical, causal…
- Knowledge: integrating explicit knowledge with pretrained models
- Probing pretraining models for reasoning capabilities

Logical

Open
challenges


