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Administrative Stuff
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Midterm Project Report (Due Monday 10/31 at 8pm)

Main goals:
1. Experiment with state-of-the-art approaches

§ Run on your own dataset state-of-the-art models
§ Teams of 3 or 4 students: 2 state-of-the-art models
§ Teams of 5 or 6 students: 3 state-of-the-art models

2. Perform a detailed error analysis
§ Visualize the errors made by the state-of-the-art models
§ Discuss how you could address these issues

3. Update your research ideas
§ You should have N-1 research ideas (N=number of teammates)
§ Your ideas should center around multimodal challenges

§ At most 1 idea can be unimodal in nature
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Midterm Project Report (Due Monday 10/31 at 8pm)

Some suggestions:
§ You do not need to re-implement state-of-the-art models

§ But you need to rerun them yourself on your own data
§ You may want to fine-tune your baseline models on your data
§ If your dataset is too large:

§ You can use a subset of your data. 
§ But be consistent between experiments

§ The most important part is the discussion
§ How is your error analysis affecting your proposed research ideas?
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Midterm Project Presentations (Tuesday 11/1 and Thursday 11/3)

Main objective: 
§ Present your research ideas and get feedback from classmates

Presentation length:
§ Teams with 3 students: 4 minutes 
§ Teams with 4 students: 5 minutes
§ Teams with 5 students: 6 minutes
§ Teams with 6 students: 7 minutes

§ Following each presentation, audience will be asked to share feedback



6

Midterm Project Presentations (Tuesday 11/1 and Thursday 11/3)

§ Administrative guidelines
§ All presentations will be done from the same laptop

§ Google Drive directory will be shared to host your presentation
§ Preferred option: Google Slides
§ Second option: Microsoft Powerpoint

§ Be sure to be on time! We have many presentations each day J
§ All presentations are in person (no remote presentations

§ The schedule will be shared soon
§ Half the teams on Tuesday and second half on Thursday
§ We will use the opposite order for the final presentations

§ Audience students should plan to be in person
§ Because of room capacity constrained, a few students will be asked to be remote
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Midterm Project Presentations (Tuesday 11/1 and Thursday 11/3)

§ Some suggestions:
§ Do not present your results from state-of-the-art baseline models

§ Only exception: if the result directly justifies one of your research ideas
§ The focus of your presentation should be about your research ideas

§ Plan about 1 minute for each research idea
§ Present the ideas at the high-level, so that audience understands it

§ Only 1 minute (or less) for the intro (dataset, task)
§ All teammates should be included in the presentation
§ Be as visual as possible in your slides
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Midterm Project Presentations (Tuesday 11/1 and Thursday 11/3)

§ Grading guidelines for presentations (4 points)
§ Quality of the slides (incl. images, videos and clear explanations)
§ Good motivation and explanation of the problem
§ Future research ideas (describe their future research directions)
§ Presentations skills (incl. explanations, voice and body posture)

§ Grade will also be given for audience feedback (1 point)
§ You should plan to give feedback for at least 6 teams
§ Try to be constructive in your feedback
§ Sharing pointer to relevant papers is quite helpful
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Sub-Challenge 3c: Inference Paradigm

Representation

∧

Inference

Causal

Logical

𝑡𝑟𝑢𝑒

𝑧

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

Towards explicit inference paradigms:
1. Logical inference
2. Causal inference: how can one 

determine the actual causal effect of a 
variable in a larger system?
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Causal Inference

Intervention

Causal inference is reliant on the idea of interventions —what outcome might have 
occurred if X happened (an intervention), possibly contrary to observed data. 

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/


11

Causal Inference

Intervention

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

Let’s say I really want to set the value of x to 3. What happens to y?

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Causal Inference

Intervention

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

The marginal distribution of y: p(y | do(x=3)). The marginal distribution of y: p(y | x=3).

The joint distribution of data alone is insufficient to predict behavior under interventions.

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Causal Inference

Causal diagrams: arrow pointing from cause to effect.

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/


14

Causal Inference

Intervention mutilates the graph by removing all edges that point into the variable on which 
intervention is applied (in this case x).

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Causal Inference

Intervention in real-life is typically very hard!

E.g., does treatment x treat disease y?

Can I estimate the intervention p(y|do(X=x))?
Requires answering: all else being equal, what would be the patient’s outcome if they had not 
taken the treatment?

[Example from Ferenc Huszár: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]

treatment 
variable

confounding 
variable

outcome

Lots of work, see Judea Pearl, The Book of Why

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Causal Inference

Causal VQA: does my multimodal model capture causation or correlation?

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]

predictionzebras

i.e., treatment 
variable

2Baselines:

BUT: correlation or causation?

Covariant VQA
Target object in question
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Causal Inference

Causal VQA: does my multimodal model capture causation or correlation?

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]

Existing models struggle to adapt to targeted causal interventions.
How can we make them more robust to spurious correlations?

2 2

Covariant VQA
Target object in question

Baselines:

predictionzebras

i.e., treatment 
variable

Interventional conditional: 𝒑(𝒚|𝒅𝒐(𝒛𝒆𝒃𝒓𝒂𝒔 = 𝟏))

Recall error 
analysis!
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Causal Inference

Causal VQA: does my multimodal model capture causation or correlation?

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]

Baselines: pink

umbrella

predictionballoon

i.e., confounding 
variable

Is my model picking up irrelevant objects?

Invariant VQA
Target irrelevant object
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Causal Inference

Causal VQA: does my multimodal model capture causation or correlation?

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]

Invariant VQA
Target irrelevant object

Baselines: pink red

umbrella

predictionballoon

i.e., confounding 
variable

Existing models struggle to adapt to targeted causal interventions.
How can we make them more robust to spurious correlations?

Interventional conditional: 𝒑(𝒚|𝒅𝒐(𝒏𝒐 𝒖𝒎𝒃𝒓𝒆𝒍𝒍𝒂))

Recall error 
analysis!



20

Causal Inference

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]

Invariance
(answer stays the same)

Causal inference via data augmentation

With
irrelevant object

Without 
irrelevant object

Covariance

With
relevant object

Without
relevant object

(targeted changes to answer)
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Causal Inference Challenges

Many open directions

Open
challenges

Causal deep learning, see https://www.vanderschaar-lab.com/causal-deep-learning/

https://www.vanderschaar-lab.com/causal-deep-learning/
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Causal Inference Challenges

Many open directions

Open
challenges

Causal deep learning, see https://www.vanderschaar-lab.com/causal-deep-learning/

https://www.vanderschaar-lab.com/causal-deep-learning/
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Sub-Challenge 3c: Inference Paradigm

Representation

∧

Inference

Causal

Logical

𝑡𝑟𝑢𝑒

𝑧

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

Towards explicit inference paradigms:
1. Logical inference
2. Causal inference

Nice, but you don’t get these for free!

umbrella

predictionballoon

i.e., confounding 
variable
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Sub-Challenge 3d: Knowledge

Domain knowledge

Knowledge graphs

Knowledge in other unstructured formats

Definition: The derivation of knowledge in the study of inference, structure, and reasoning.

∧ 𝑡𝑟𝑢𝑒

𝑧
or

or

words
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External Knowledge: Multimodal Knowledge Graphs

Knowledge can also be gained from external sources

Existing models struggle when external knowledge is needed.
How can we leverage external knowledge?

[Marino et al., OK-VQA: A visual question answering benchmark requiring external knowledge. CVPR 2019] 

Requires knowledge of water 
sports, sports equipment, etc. 

What kind of 
board is this?
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External Knowledge: Multimodal Knowledge Graphs

[Gui et al., KAT: A Knowledge Augmented Transformer for Vision-and-Language. NAACL 2022] 

Knowledge can also be gained from external sources

Object
detector

Language 
model

Wakeboard boat: boat 
designed to create a wake…

Wakeboarder: …

Kitesurfer: …

Skiboarding: …

Boardsport: …

Concepts: interpretable language

Composition: neuralStructure: multi-step retrieval

surfboardWhat kind of 
board is this?
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External Knowledge: Multimodal Knowledge Graphs

[Zhu et al., Building a Large-scale Multimodal Knowledge Base System for Answering Visual Queries. arXiv 2015] 

Knowledge can also be gained from external sources

Concepts: interpretable

Composition: graph-based
Structure: multi-step inference
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External Knowledge Challenges Open
challenges

Atomic: If-then commonsense
[Sap et al., Atomic: An Atlas of Machine Commonsense for If-Then Reasoning. AAAI 2019]
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External Knowledge Challenges Open
challenges

Delphi: Moral commonsense

Social Chemistry: Social commonsense
[Jiang et al., Can Machines Learn Morality? The Delphi Experiment. arXiv 2021]
[Forbes et al., Social Chemistry 101: Learning to Reason about Social and Moral Norms. EMNLP 2020] 
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Summary: Reasoning

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

Modality A

Modality B

+ Aligned representation

Reasoning 𝒚

Local representation
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The Challenge of Compositionality

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

[Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality. CVPR 2022]

CLIP, ViLT, ViLBERT, etc.
All random chance 

1. Structure: <subject> <verb> <object>
2. Concepts: ‘plants’, ‘lightbulb’
3. Inference: ‘surrounding’ – spatial relation
4. Knowledge: from humans!

Compositional Generalization
to novel combinations outside 

of training data
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Sub-Challenge 3a: Structure Modeling

Structure
Single-step Temporal Hierarchical Interactive

Multi-step

Discovery

𝒚

𝒚

Definition: Defining or learning the relationships over which reasoning occurs.
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Structure

Concepts

Single-step Multi-step

Sub-Challenge 3b: Intermediate Concepts

Definition: The parameterization of individual multimodal concepts in the reasoning process.

or

or

words

Continuous

Discrete
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Structure

Concepts

Single-step Multi-step

Sub-Challenge 3c: Inference Paradigm

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

∧

Inference

Representation

Causal

Logical

𝑡𝑟𝑢𝑒

𝑧

Continuous

Discrete
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Sub-Challenge 3d: External Knowledge

Structure

Concepts

Inference

Single-step Multi-step

Knowledge

Definition: Leveraging external knowledge in the study of structure, concepts, and inference.

Representation

Logical

Causal

Continuous

Discrete
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Summary: Reasoning

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

∧ 𝑡𝑟𝑢𝑒

𝑧
or

or

words
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More Reasoning

Structure

Concepts
Inference

Single-step Multi-step

Dense

Interpretable

Representation

Causal
Knowledge

Open challenges:
- Structure: multi-step inference
- Concepts: interpretable + differentiable representations
- Composition: explicit, logical, causal…
- Knowledge: integrating explicit knowledge with pretrained models
- Probing pretraining models for reasoning capabilities

Logical

Open
challenges
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Generation

Definition: Learning a generative process to produce raw modalities that 
reflects cross-modal interactions, structure, and coherence.

Big dog
on the 
beach

Big dog
on the 
beach

‘woof’
‘crash?’(video)

Big dog
on the 
beach

Reduction ExpansionMaintenance

>
Information:

(content) = <
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Dimension 1: Information Content

How modality interconnections change across multimodal inputs and generated outputs.

Reduction ExpansionMaintenance
Content

Statistical Semantic

Association

e.g., correlation, co-
occurrence

Dependency

e.g., causal, temporal

Correspondence

e.g., grounding

Relationship

= laptop used for

e.g., function

1 Modality connections

Modalities are often related and 
share commonality

Modality A

Modality B
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Dimension 2: Generative Process

Generation

Exemplar

Generative

Content

ExemplarA GenerativeB

Generative process to respect modality heterogeneity and decode multimodal data.

Reduction ExpansionMaintenance
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Dimension 2: Generative Process

Information present in different modalities will often show diverse 
qualities, structures and representations.

Homogeneous 
Modalities

Heterogeneous 
Modalities

(with similar qualities) (with diverse qualities)

Modality A

Modality B

Text from 
2 different 
languages

Language 
and vision

Images 
from 2 

cameras

???Examples:

Abstract modalities are more likely to be homogeneous

Heterogeneous modalities
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Sub-challenge 4a: Translation

[Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021]

An armchair in the shape of an avocado

Definition: Translating from one modality to another and keeping information content 
while being consistent with cross-modal interactions.
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Sub-challenge 4a: Translation

[Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021]

DALL·E: Text-to-image translation at scale

Image
encoder

Image
decoder

Discrete VAE1



44

44

Sub-challenge 4a: Translation

[Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021]

DALL·E: Text-to-image translation at scale

An armchair in 
the shape of an 

avocado.
Text

encoder

Image
encoder

Image
decoder

Autoregressive Transformer2

Discrete VAE1
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Sub-challenge 4a: Translation

[Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021]

DALL·E: Text-to-image translation at scale

An armchair in 
the shape of an 

avocado.
Text

encoder

Image
encoder

Image
decoder

Autoregressive Transformer2

Discrete VAE1

3 Generation
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Sub-challenge 4a: Translation

[Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021]

DALL·E: Text-to-image translation at scale

Coordination via 
supervised translation

ContentA GenerationB

Capture corresponding
cross-modal interactions 

Exemplar (discrete 
visual codebook)

Generative
An armchair in 
the shape of an 

avocado.
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Sub-challenge 4a: Translation

DALL·E 2: Combining with CLIP, diffusion models

[Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022]

An armchair in 
the shape of an 

avocado.
Text

encoder

CLIP
encoder

Diffusion 
model

Diffusion model2

CLIP encoder1

3 Generation

CLIP image
embedding
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Sub-challenge 4a: Translation

DALL·E 2: Combining with CLIP, diffusion models

Coordination via
CLIP similarity

ContentA B

Capture corresponding 
cross-modal interactions 

Fully generative 
(diffusion models)

An armchair in 
the shape of an 

avocado.

[Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022]

Generation
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Sub-challenge 4b: Summarization

Definition: Summarizing multimodal data to reduce information content 
while highlighting the most salient parts of the input.

[Palaskar et al., Multimodal Abstractive Summarization for How2 Videos. ACL 2019]

How2 video dataset

Complementary 
cross-modal 
interactions

(not present in text)Cuban breakfast
Free cooking video



50

Sub-challenge 4b: Summarization

Generative ≈ abstractive summarization

ContentA B

Bird in the sky

Fusion via
joint representation

Capture complementary 
cross-modal interactions 

Video summarization

[Palaskar et al., Multimodal Abstractive Summarization for How2 Videos. ACL 2019]

Generation

Exemplar ≈ extractive summarization
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Sub-challenge 4c: Creation

Definition: Simultaneously generating multiple modalities to increase information 
content while maintaining coherence within and across modalities.

Big dog on the beach. Waves crashing, people playing volleyball, …

‘woof’

Open
challenges

‘crash’ ‘bounce’ ‘whoosh’

Cross-modal interactions

Cross-modal interactions

Temporal + causal + logical structure

Recall 
representation & 

alignment!

Recall
reasoning!

Many
goals!
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Sub-challenge 4c: Creation

[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019]

Some initial attempts: factorized generation

Cross-modal interactions

Unimodal structures

decoder

decoder

prediction (nine)

Fix 𝐙𝐲

Modality 1 (SVHN) Modality 2 (MNIST)
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Sub-challenge 4c: Creation

[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019]

Some initial attempts: factorized generation

Cross-modal interactions

Unimodal structures

decoder

decoder

prediction (nine)

Modality 1 (SVHN) Modality 2 (MNIST)

Fix 𝐙𝐚" Fix 𝐙𝐚#
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Sub-challenge 4c: Creation

Generative model

ContentA GenerationB

Factorized representation

Expanding complementary 
cross-modal interactions 

[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019]

Some initial attempts: factorized generation
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Preview: Generation

Definition: Learning a generative process to produce raw modalities that 
reflects cross-modal interactions, structure, and coherence.

Big dog
on the 
beach

Big dog
on the 
beach

‘woof’
‘crash?’(video)

Big dog
on the 
beach

Reduction ExpansionMaintenance

>
Information:

(content) = <
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Model Evaluation & Ethical Concerns Open
challenges

Open challenges:
- Modalities beyond text + images or video
- Translation beyond descriptive text and images (beyond corresponding cross-modal interactions)
- Creation: fully multimodal generation, with cross-modal coherence + within modality consistency

[Sheng et al., The Woman Worked as a Babysitter: On Biases in Language Generation. EMNLP 2019]
[Carlini et al., Extracting Training Data from Large Language Models. USENIX 2021]
[Menon et al., PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models. CVPR 2020]
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Model Evaluation & Ethical Concerns Open
challenges

Open challenges:
- Modalities beyond text + images or video
- Translation beyond descriptive text and images (beyond corresponding cross-modal interactions)
- Creation: fully multimodal generation, with cross-modal coherence + within modality consistency
- Model evaluation: human and automatic
- Ethical concerns of generative models

[Sheng et al., The Woman Worked as a Babysitter: On Biases in Language Generation. EMNLP 2019]
[Carlini et al., Extracting Training Data from Large Language Models. USENIX 2021]
[Menon et al., PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models. CVPR 2020]
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Learn to model p(x) where x = text, images, videos, multimodal data
- Given x, evaluate p(x) - realistic data should have high p(x) and vice versa
- Sample new x according to p(x) - sample realistic looking images
- Unsupervised representation learning - we should be able to learn what these images have in 

common, e.g., ears, tail, etc. (features)

Generative Models
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Generative Models

Sometimes we also care about p(x|c) - conditional generation
- c is a category (e.g. faces, outdoor scenes) from which we want to generate images
We might also care about p(x2|x1,c) - style transfer
- c is a stylistic change e.g. negative to positive
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Latent Variable Models

- Lots of variability in images x due to gender, eye color, hair color, pose, etc.
- However, unless images are annotated, these factors of variation are not explicitly 

available (latent).
- Idea: explicitly model these factors using latent variables z
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Latent Variable Models

- Only shaded variables x are observed in the data
- Latent variables z are unobserved - correspond to high-level features

- We want z to represent useful features e.g. hair color, pose, etc.
- But very difficult to specify these conditionals by hand and they’re unobserved
- Let’s learn them instead
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Latent Variable Models

- Put a prior on z 

- Hope that after training, z will correspond to meaningful latent factors of variation - useful 
features for unsupervised representation learning

- Given a new image x, features can be extracted via p(z|x)
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Mixture of Gaussians

Mixture of Gaussians (Bayes network z -> x)

Generative process
1. Pick a mixture component by sampling z
2. Generate a data point by sampling from that Gaussian
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Mixture of Gaussians
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Mixture of Gaussians

Combining simple models into more expressive ones

can solve using expectation maximization
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From GMMs to VAEs

- Put a prior on z 

- Hope that after training, z will correspond to meaningful latent factors of variation - useful 
features for unsupervised representation learning

- Even though p(x|z) is simple, marginal p(x) is much richer/complex/flexible
- Given a new image x, features can be extracted via p(z|x): natural for unsupervised learning 

tasks (clustering, representation learning, etc.)
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Learning parameters of VAEs

- Learning parameters of VAE: we have a joint distribution 𝑝(𝐗, 𝐙; 𝜃)
- We have a dataset D where for each datapoint the x variables are observed (e.g. images, text) 

and the variables z are not observed (latent variables)
- We can try maximum likelihood estimation:

intractable :-(
- if z binary with 30 dimensions, need 
sum 2^30 terms
- if z continuous, integral is hard

Need cheaper approximations to 
optimize for VAE parameters
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Evidence Lower Bound

- Log-likelihood function with partially observed latent variables is hard to compute:

q(z) should be a simple distribution

- Use Jensen’s inequality for concave functions:
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Evidence Lower Bound

- Log-likelihood function with partially observed latent variables is hard to compute:

q(z) should be a simple distribution

- Use Jensen’s inequality for concave functions:

Evidence Lower Bound (ELBO)
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Evidence Lower Bound

- ELBO holds for any probability distribution q(z) over latent variables:

- Equality holds if q(z) = p(z|x):

- We want to choose q(z) to be as close to p(z|x) as possible, while being 
easy to compute
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KL Divergence

- The KL divergence for variational inference is:

- Intuitively, there are three cases
a. If q is low then we don’t care (because of the expectation).
b. If q is high and p is high then we are happy.
c. If q is high and p is low then we pay a price.

- Note that p must be > 0 wherever q > 0
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- Starting from the KL divergence:

- Re-derive ELBO from KL divergence:

- Equality holds if q = p(z|x) because KL(q||p) = 0:

- In general, 
- The closer the chosen q is to p(z|x), the closer the ELBO is to the true likelihood.

Evidence Lower Bound
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Variational Inference

- Variational inference: optimize variational parameters so that             
is as close as possible to while being simple to compute          

- E.g. in figure, posterior (in blue) is better approximated by orange 
Gaussian than green
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Variational Inference

- In practice how can we learn encoder parameters
and variational (decoder) parameters jointly?
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Learning parameters of VAEs

[Slides from Ermon and Grover]

reconstruction prior
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Learning parameters of VAEs

easy

- We need to compute the gradients 
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Learning parameters of VAEs

easy tricky

- We need to compute the gradients 

- Expectations also depend on  
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Reparameterization Trick

[Slides from Ermon and Grover]
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Reparameterization Trick

reparameterize


