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Administrative Stuff



Midterm Project Report (Due Monday 10/31 at 8pm)

Main goals:

1. Experiment with state-of-the-art approaches
= Run on your own dataset state-of-the-art models
= Teams of 3 or 4 students: 2 state-of-the-art models
= Teams of 5 or 6 students: 3 state-of-the-art models
2. Perform a detailed error analysis
= Visualize the errors made by the state-of-the-art models
= Discuss how you could address these issues

3. Update your research ideas
= You should have N-1 research ideas (N=number of teammates)

= Your ideas should center around multimodal challenges
= At most 1 idea can be unimodal in nature
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Midterm Project Report (Due Monday 10/31 at 8pm)

Some suggestions:

= You do not need to re-implement state-of-the-art models

= But you need to rerun them yourself on your own data
= You may want to fine-tune your baseline models on your data
= |f your dataset is too large:

= You can use a subset of your data.
= But be consistent between experiments

= The most important part is the discussion
= How is your error analysis affecting your proposed research ideas?
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Midterm Project Presentations (Tuesday 11/1 and Thursday 11/3)

Main objective:
= Present your research ideas and get feedback from classmates

Presentation length:
= Teams with 3 students: 4 minutes
= Teams with 4 students: 5 minutes
= Teams with 5 students: 6 minutes
= Teams with 6 students: 7 minutes

* Following each presentation, audience will be asked to share feedback
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Midterm Project Presentations (Tuesday 11/1 and Thursday 11/3)

= Administrative guidelines

= All presentations will be done from the same laptop
= Google Drive directory will be shared to host your presentation
= Preferred option: Google Slides
= Second option: Microsoft Powerpoint

= Be sure to be on time! We have many presentations each day ©

= All presentations are in person (no remote presentations

= The schedule will be shared soon
= Half the teams on Tuesday and second half on Thursday
= We will use the opposite order for the final presentations

= Audience students should plan to be in person
» Because of room capacity constrained, a few students will be asked to be remote
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Midterm Project Presentations (Tuesday 11/1 and Thursday 11/3)

= Some suggestions:

= Do not present your results from state-of-the-art baseline models
= Only exception: if the result directly justifies one of your research ideas

The focus of your presentation should be about your research ideas
= Plan about 1 minute for each research idea
= Present the ideas at the high-level, so that audience understands it

Only 1 minute (or less) for the intro (dataset, task)
All teammates should be included in the presentation
= Be as visual as possible in your slides
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Midterm Project Presentations (Tuesday 11/1 and Thursday 11/3)

» Grading guidelines for presentations (4 points)
= Quality of the slides (incl. images, videos and clear explanations)
= Good motivation and explanation of the problem
» Future research ideas (describe their future research directions)
= Presentations skKills (incl. explanations, voice and body posture)

= Grade will also be given for audience feedback (1 point)

= You should plan to give feedback for at least 6 teams
= Try to be constructive in your feedback

= Sharing pointer to relevant papers is quite helpful
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Sub-Challenge 3c: Inference Paradigm

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

Towards explicit inference paradigms:
1. Logical inference

2. (Causal inference: how can one
determine the actual causal effect of a
variable in a larger system? B— M , Inference

Representation
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Causal Inference

Intervention

Causal inference is reliant on the idea of interventions —what outcome might have
occurred if X happened (an intervention), possibly contrary to observed data.

z =randn()
y=z+ 1+ sqgrt(3)*randn()
X=2z

x = randn() y =1+ 2*randn()
y =x+ 1+ sqgrt(3)*randn() x = (y-1)/4 + sqrt(3)*randn()/2

8
6 ° ~. [ . pearsonr = 0.47; .= $oe28 pearsonr = 0§4; p = 9.8%539
o 20, 6
4 o 4 t'
@ -
2 [=] ’ e
2 g 2
- > ° L] >
0 ®
0 0
-2
L|oF L]
®
-4 ° ° -4 .. bt
pearsonr = 0,51_ p = 2.5e-34 -4 A e 0
2 0 2 -2 0 2 -2 0 2
X X X

[Example from Ferenc Huszar: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]
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https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/

Causal Inference

Intervention

Let’s say | really want to set the value of xto 3. What happens to y?

z =randn()
X = randn() y =1+ 2*randn() x=3
x=3 x=3 X=2z
y =x+ 1+ sqgrt(3)*randn() x = (y-1)/4 + sqrt(3)*randn()/2 x=3
x=3 x=3 y=z+ 1+ sqgrt(3)*randn()
x=3
8 8 8 °
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= pearsonr =nan,p=1 = pearsonr =nan, p=1 = pearsonr =nan,p=1
= 250 275 3.00 3.25 350 & 250 275 3.00 3.25 3.50 i 250 275 3.00 3.25 3.50
X X X

[Example from Ferenc Huszar: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]
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Causal Inference

Intervention

The marginal distribution of y: p(y | do(x=3)). The marginal distribution of y: p(y | x=3).

ply|do(X = 3)) ply|X = 3)

w— SCript 1 w— SCHIpt 1

-  SCript 2 —  SCript 2

0.20 script 3 0.20 script 3
0.15 0.15
0.10 0.10
0.05 0.05
0.00 0.00

10 5 0 5 10 2 0 2 4 6 8 10 12

The joint distribution of data alone is insufficient to predict behavior under interventions.

[Example from Ferenc Huszar: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]
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Causal Inference

Causal diagrams: arrow pointing from cause to effect.

z = randn()

X = randn() y =1+ 2*randn() _ .
y=x+1+sqi@)randn() | | x=(y-1)/4 + sqri(3)‘randn(y2 | [¥Z2* 1+ sar)randng
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[Example from Ferenc Huszar: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]
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Causal Inference

Intervention mutilates the graph by removing all edges that point into the variable on which
intervention is applied (in this case x).

O OO0 ®/@@

> O ® ®@\@

P(y|do(X)) = p(y|x) P(yldo(X)) = p(y) P(yldo(X)) =

[Example from Ferenc Huszar: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]
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Causal Inference

Intervention in real-life is typically very hard!
E.g., does treatment x treat disease y?

Can | estimate the intervention p(yldo(X=x))?
Requires answering: all else being equal, what would be the patient’s outcome if they had not

taken the treatment?
confounding

variable

O—® (—

treatment outcome
variable

Lots of work, see Judea Pearl, The Book of Why

[Example from Ferenc Huszar: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/]
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Causal Inference

Causal VQA: does my multimodal model capture causation or correlation?

Covariant VQA
Target object in question
Q: How many zebras are there in the picture? i.e., treatment

variable

prediction

Baselines: 2

BUT: correlation or causation?

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]
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Recall error

Causal Inference analysis!

Causal VQA: does my multimodal model capture causation or correlation?

Covariant VQA
Target object in question
Q: How I:arzly zebras are there in the picture? i.e., treatment
= variable
prediction
Baselines: 2 2 Interventional conditional: p(y|do(zebras = 1))

Existing models struggle to adapt to targeted causal interventions.
How can we make them more robust to spurious correlations?

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]
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Causal Inference

Causal VQA: does my multimodal model capture causation or correlation?

Invariant VQA
Target irrelevant object i.e., confounding
Q: What color is the balloon? variable

balloon = prediction

Baselines: pink

Is my model picking up irrelevant objects?

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]
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Recall error

Causal Inference analysis!

Causal VQA: does my multimodal model capture causation or correlation?

Invariant VQA
Target irrelevant object i.e., confounding
Q: What color is the balloon? variable
A:red umbrellas removed; A: red

balloon = prediction

Interventional conditional: p(y|do(no umbrella))

Baselines:

Existing models struggle to adapt to targeted causal interventions.
How can we make them more robust to spurious correlations?

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]
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Causal Inference

Causal inference via data augmentation

Covariance Invariance
(targeted changes to answer) (answer stays the same)
O A O O
A O A O A O A ©
Q: How many zebras are there in the picture? Q: What color is the balloon?
: 2 zebra reoved A:l A: red umbrellas removed; A: red

With Without  With
relevant object relevant object irrelevant object irrelevant object

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]
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Open

Causal Inference Challenges challenges

Many open directions
Application of causality — current state

Do you know
the correct DAG?

QYES 4 NO

Are you willing to make these
assumptions?
1. Sufficiency (no hidden confounder)
2. Functional form (linear)
3. Noise distribution (non-gaussian)

©) YESW® & NO
Causal discovery

PC algorithm .
No tears, etc. Many practitioners are here

Causal reasoning

do-operation
Backdoor criterion, etc.

Causal deep learning, see https://www.vanderschaar-lab.com/causal-deep-learning/
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https://www.vanderschaar-lab.com/causal-deep-learning/

Causal Inference Challenges

Many open directions

Ladder of causation

3 - Counterfactual

1
2 - Intervention

1 - Association

The space between association and intervention

Many interesting ML problems lie in Rung 1.5

Robustness

Distribution shift
Adversarial attack

Generalization

Domain adaptation
Transfer learning
Meta-learning
Few-shot learning

Other potential areas

Fairness
Data augmentation
Etc.

Open
challenges

1. Empirically verifiable
2. “Good enough”

Causal deep learning, see https://www.vanderschaar-lab.com/causal-deep-learning/
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Sub-Challenge 3c: Inference Paradigm

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

Towards explicit inference paradigms:
1. Logical inference

2. Causal inference %

B— B ., Inference

Nice, but you don’t get these for free!

i.e., confounding
variable

balloon ——» prediction

Representation
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Sub-Challenge 3d: Knowledge

Definition: The derivation of knowledge in the study of inference, structure, and reasoning.

words g @ )
z Domain knowledge ——— )\EI I:I(I):Ir - . .ﬁ,\. )
{1\. | A0+
Knowledge graphs I 7
Knowledge in other unstructured formats ®
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External Knowledge: Multimodal Knowledge Graphs

Knowledge can also be gained from external sources

Requires knowledge of water
sports, sports equipment, etc.

Existing models struggle when external knowledge is needed.

What kind of How can we leverage external knowledge?
board is this?

[Marino et al., OK-VQA: A visual question answering benchmark requiring external knowledge. CVPR 2019]
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External Knowledge: Multimodal Knowledge Graphs

Knowledge can also be gained from external sources

| Concepts: interpretable language

Object

detector Wakeboard boat: boat

designed to create a wake...

Wakeboarder: ...

: . Language
Kitesurfer: ... -
odel —p SUrfboard

What kind of Wikidata
board is this?

Skiboarding: ...

4 4 444

Boardsport: ...

—

—_

Structure: multi-step retrieval Composition: neural

[Gui et al., KAT: A Knowledge Augmented Transformer for Vision-and-Language. NAACL 2022]
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External Knowledge: Multimodal Knowledge Graphs

Concepts: interpretable

Structure: multi-step inference

Composition: graph-based
natural
light

m===lp Class auditorium

O Scene category Community and social

Attribute work, taking class for
() Affordance Affordances pe_rs_onal mtergst,
] Image - label religious practices,

waiting, attending the
performing arts

Inter-correlation
[ ] Intra-correlation
congregating, indoor
Attributes lighting, spectating,
enclosed area, glossy

[Zhu et al., Building a Large-scale Multimodal Knowledge Base System for Answering Visual Queries. arXiv 2015]
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External Knowledge Challenges

Yejin Choi

Brett Helsel Professor

Office: 578 Allen Center

Fax: 206-685-2969

email: yejin@cs.washington.edu

News:

- Outstanding Paper Award at ICML 2022
- Best Paper Award at NAACL 2022

Trajectory of ACL and the Next 60 years"

[Sap et al., Atomic: An Atlas of Machine Commonsense for If-Then Reasoning. AAAI 2019]

Paul G. Allen School of Computer Science & Engineering
University of Washington

Box 352350

185 E Stevens Way NE

Seattle, WA 98195-2350

Allen Institute for Artificial Intelligence
2157 N Northlake Way, Suite 110
Seattle, WA 98103

- Keynote at ACL: "2082: An ACL Odyssey: The Dark Matter of Language and Intelligence" along with a fireside chat on "The

- An invited article, "The Curious Case of Commonsense Intellgience" for the Daedalus's special issue on Al & Society
- A podcast interview with the Gradient on commonsense and morality

Photo credit:
Bruce Hemingway

€

MOSAIC

Open
challenges

Attributes of X
their country, to enlist train hard Xis skilled
% X <

N
( Xwantedto N j\’ | /"X needs to know
\grotect others/ X joins the elf-defense ﬁ@
7 Xwantedto N\ < \\\Tlhiay Xi |$

X wanted to serve X needs X needs to

\save themselves /vy, "\ seen as
e ~~_because X before, X |/ / bossy
/
wanted to_ needed to /
Causes for X :

ﬂ pushes hd \
around _/

7\\d/

Xrepels
Y's attack

as a result,
X wants

) as a result,

asa result,\ /
Y feels /(
|

Y feels /
X feels L // |
o\ Y feels [ X
angry ashamed /’ Y wants to
has an

{ yell at X

4
\\ / effect on X has an
\ [ ire effectonY  asa result, \‘
\\ j Y wants Y wants to
\ /' — run home
gains an
{/ Y wants to

/ X gets dizzy attack X again
} Y gets hurt

L Y falls back
>< makes a fool Effects on X

of themselves/

Atomic: If-then commonsense
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External Knowledge Challenges

Killing a bear @

Killing a bear to please your child @

Killing a bear to save your child &

Exploding a nuclear bomb to save your child @

It is rude to judge people
by their appearance

@ Jveniie]

Helping a friend spread fake news

Actions @

We should not pay People
women and men equally

@
Society

Not wanting to share your

feelings in public

@ < It's understandable

Delphi "=

Commonsense Moral Models

Delphi: Moral commonsense

Open
challenges

CK Cultural Pressure

—O

PRESSURE FOR »
Social Jud t trying to make everyone
B 0 crgm ortable in youl;yhome

SooD| DISCRETIONARY

M not being friends
with your neighbors

having an open and
honest dialogue with |
your neighbors.

PRESSURE AGAINST
[ calling the cops wEen]a calling the cops
gyou seepa crime J' on your neighbors
Il h h ’
calling the authorities i O
(your neighbor is being rude M 3

o

... wanting to call the cops on my neighbors ...

&@Anticipated Agreement> Q (@) Moral Foundation
= 0-200
-{w caIIing the cops if someone is committing a crime) @)

calling the cops on a stranger disturbing your neighbors)

CONTROVERSIAL
(Eom
O

LEGAL
(Ietting the authorities know when you are in danger &)

reporting neighbors that
é are breaking minor laws

OLERATED
(making trouble in your neighborhood i

(stealing things from your neig

Social Chemistry: Social commonsense

[Jiang et al., Can Machines Learn Morality? The Delphi Experiment. arXiv 2021]
[Forbes et al., Social Chemistry 101: Learning to Reason about Social and Moral Norms. EMNLP 2020]
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Summary: Reasoning

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

ModalityA A A A ... B
>3

ModalityB @ @ @ ...

> J

Local representation
+ Aligned representation

Language Technologies Institute

Reasoning

y




The Challenge of Compositionality

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

CLIP, VILT, VIiLBERT, etc.
All random chance

Compositional Generalization
to novel combinations outside
of training data

1. Structure: <subject> <verb> <object>
2. Concepts: ‘plants’, ‘lightbulb’

(a) some plants (b) a lightbulb surrounding some plants 3. Inference: ‘surrounding’ — spatial relation
surrounding a 4. Knowledge: from humans!
lightbulb

[Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality. CVPR 2022]
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Sub-Challenge 3a: Structure Modeling

Definition: Defining or learning the relationships over which reasoning occurs.

?
1

y [
A ® A ®
» Structure
Single-step Temporal Hierarchical Interactive Discovery
\ J
I
Multi-step
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Sub-Challenge 3b: Intermediate Concepts

Definition: The parameterization of individual multimodal concepts in the reasoning process.

Concepts
Discrete

words

or
OO0 .

or
CITT]

Continuous
* Structure
Single-step Multi-step
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Sub-Challenge 3c: Inference Paradigm

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

Language Technologies Institute

Concepts

Discrete

Continuous

Representation

B— B ., Inference

Single-step

34

* Structure
Multi-step




Sub-Challenge 3d: External Knowledge

Definition: Leveraging external knowledge in the study of structure, concepts, and inference.

Concepts

Discrete

Inference

Causal

Knowledge

2 8

Logical

Continuous Representation

* Structure
Single-step Multi-step
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Summary: Reasoning

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
words g @ A
)\ or ./\.
—
O OO . \_ Y,
)\ or r N
[(TTT] A N® > true
A @) — . )
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Open

More Reasoning challenges

Concepts 7
Knowledge | ?

Interpretable | o

Inference

»

Logical

Dense Representation

. * Structure
Single-step Multi-step

Open challenges:

- Structure: multi-step inference

- Concepts: interpretable + differentiable representations

- Composition: explicit, logical, causal...

- Knowledge: integrating explicit knowledge with pretrained models
- Probing pretraining models for reasoning capabilities
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Generation

Definition: Learning a generative process to produce raw modalities that
reflects cross-modal interactions, structure, and coherence.

[Summariza’tion\ " Translation \ ( Creation )

. Reduction Maintenance Expansion
Information:
(content) > — <
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Dimension 1: Information Content

How modality interconnections change across multimodal inputs and generated outputs.

@ Modality connections ModaiyA A A A A A

Modalities are often related and ><: I\.\-

share commonality Modality B ‘ ‘ ‘ ‘ ‘

Statistical Semantic
M
Association Dependency Correspondence Relationship

— df
A — . Am. A laptop . Ause or.

e.g., correlation, co-  e.g., causal, temporal

e.g., groundin e.g., function
occurrence 99 9 9

» Content
Reduction Maintenance Expansion

Language Technologies Institute




Dimension 2: Generative Process

Generative process to respect modality heterogeneity and decode multimodal data.

Generation
s @ Exemplar Generative
Generative

e ¢ [I2nslation model
00

Training

Translation
Translation model
-3

Exemplar

» Content
Reduction Maintenance Expansion
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Dimension 2: Generative Process

Heterogeneous modalities

Information present in different modalities will often show diverse
gualities, structures and representations.

g Modality A ) Homogeneous Heterogeneous
) Modalities Modalities
Modality B (with similar qualities) (with diverse qualities)
- g T T 11
Examples: Images Text from Language 299
from 2 2 different and vision
cameras languages

Abstract modalities are more likely to be homogeneous
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Sub-challenge 4a: Translation

Definition: Translating from one modality to another and keeping information content
while being consistent with cross-modal interactions.

QA A
Oy
3K

D

An armchair in the shape of an avocado

@

[Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021]
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Sub-challenge 4a: Translation

DALL:-E: Text-to-image translation at scale

Image
encoder -

Q‘Q

l

Image
decoder

[Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021]
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Sub-challenge 4a: Translation

DALL:-E: Text-to-image translation at scale

Image
encoder -

@ Autoregressive Transformer

An armchair in

'
the shape of an —— @ — A A A — ‘ . ‘
|

avocado. encoder

v

Image
decoder

[Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021]
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Sub-challenge 4a: Translation

DALL:-E: Text-to-image translation at scale

Image
encoder -

@ Autoregressive Transformer

An armchair in

|
the shape of an —— e — A A A — ‘ . ‘

avocado. encoder l

Image
decoder

@ Generation

[Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021]
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Sub-challenge 4a: Translation

DALL:-E: Text-to-image translation at scale

@ Content @ Generation

Coordination via Exemplar (discrete
supervised translation visual codebook)

000
An armchair in
the shape of an —— A A A — ‘ ‘ ‘ l Generative

avocado.

Capture corresponding
cross-modal interactions

[Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021]
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Sub-challenge 4a: Translation

DALL-E 2: Combining with CLIP, diffusion models

CLIP
G
encoder -
() pittusion model Q

An armchair in l

the shape of an — | 1Ot | A NN\ — 0900 Ce:rlﬁlbpeigi?r?:

encoder

avocado. l
Diffusion D\
model \

@ Generation

[Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022]
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Sub-challenge 4a: Translation

DALL-E 2: Combining with CLIP, diffusion models

@ Content @ Generation

Coordination via Fully generative
CLIP similarity (diffusion models)

Capture corresponding

cross-modal interactions . ‘ ‘

An armchair in ]

the shape of an —— A A A = “.

avocado.

[Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022]
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Sub-challenge 4b: Summarization

Definition: Summarizing multimodal data to reduce information content
while highlighting the most salient parts of the input.

Transcript Video

today we are going to show you how to make spanish omelet . 1 'm going to
dice a little bit of peppers here . 1 'm not going to use a lot , 1 'm going to use
very very little . a little bit more then this maybe . you can use red peppers if
you like to get a little bit color in your omelet . some people do and some
people don't .... t is the way they make there spanish omelets that is what she
says . 1 loved it , it actually tasted really good . you are going to take the onion
also and dice it really small . you do n't want big chunks of onion in there
cause 1t 1s just pops out of the omelet . so we are going to dice the up also very
very small . so we have small pieces of onions and peppers ready to go .

How2 video dataset

Complementary ‘
cross-modal Cuban br.eakfgst (not present in text)
interactions Free cooking video
Summary

how to cut peppers to make a spanish omelette; get expert tips and advice on making cuban breakfast recipes in this free
cooking video .

[Palaskar et al., Multimodal Abstractive Summarization for How2 Videos. ACL 2019]
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Sub-challenge 4b: Summarization

Video summarization

@ Content @ Generation

Fusion via
joint representation

Generative =~ abstractive summarization

Exemplar =~ extractive summarization
Capture complementary

cross-modal interactions

AAAAAA%_
000000

[Palaskar et al., Multimodal Abstractive Summarization for How2 Videos. ACL 2019]
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Open

Sub-challenge 4c: Creation challenges

Definition: Simultaneously generating multiple modalities to increase information
content while maintaining coherence within and across modalities.

Recall
Cross-modal interactions representation &
alignment!
Big dog on the beach. Waves crashing, people playing volleyball, ...
Cross-modal interactions
‘woof’ ‘crash’ ‘bounce’ ‘wWhoosh’
—
. Recall
Temporal + causal + logical structure i
reasoning!
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Sub-challenge 4c: Creation

Some initial attempts: factorized generation

Unimodal structures

0/ DOO0DOD Y

1/\42\ 4141

Zat decoder )22>022822
373333333

4 4 4 44U & 4 4 4

z, (nine) SrSES5ESe
b o606 66 ¢

17774951917

Z — decoder § ¥ 3 8B4 88 7%
a2 [N 9} 9794319499
I\/Iodallty1 (SVHN) Modality 2 (MNIST)

Cross-modal interactions

[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019]
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Sub-challenge 4c: Creation

Some initial attempts: factorized generation

Unimodal structures

FlXZaZ\
0| 02 D000 0072
B 17 \N42) 4414
Lyt decoder 12} ) 220282
3 37%33% 3133
4 94440 ¢ 444
Zy prediction (nine) |8 S5S55§5895
6 bt bébtb éUc
g 17774951917
Z decoder .4 § 7 3 B4 8 8 &
a2 O 9 979491 949
Modality 1 (SVHN) Modality 2 (MNIST)

Cross-modal interactions

[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019]
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Sub-challenge 4c: Creation

Some initial attempts: factorized generation

@ Content

Factorized representation

Expanding complementary
cross-modal interactions

[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019]
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Preview: Generation

Definition: Learning a generative process to produce raw modalities that
reflects cross-modal interactions, structure, and coherence.

[Summariza’tion\ " Translation \ ( Creation )

4

. Reduction Maintenance Expansion
Information:
(content) > — <
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Open

Model Evaluation & Ethical Concerns challenges

Open challenges:
- Modalities beyond text + images or video

- Translation beyond descriptive text and images (beyond corresponding cross-modal interactions)
- Creation: fully multimodal generation, with cross-modal coherence + within modality consistency

[Menon et al., PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models. CVPR 2020]
[Carlini et al., Extracting Training Data from Large Language Models. USENIX 2021]

[Sheng et al., The Woman Worked as a Babysitter: On Biases in Language Generation. EMNLP 2019]
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Open

Model Evaluation & Ethical Concerns challenges

Open challenges:

- Modalities beyond text + images or video

- Translation beyond descriptive text and images (beyond corresponding cross-modal interactions)
- Creation: fully multimodal generation, with cross-modal coherence + within modality consistency
- Model evaluation: human and automatic

- Ethical concerns of generative models Prompt Generated text
S The man worked as a car salesman at the local
East Stroudsburg Stroudsburg ] Wal-Mart
g [ - The woman worked as| a prostitute under the name of
Original Result .
0 0 ) Hariya
- - The Black man a pimp for 15 years.
GPT-2 worked as
A0 A0 The White man a police officer, a judge, a
. _ (Memorized text | ¥ worked as prosecutor, a prosecutor, and the
Corporation Seabank Centre president of the United States.
b o h Marine Parade Southport The gay person was | his love of dancing, but he also did
o S N . con known for drugs
0 250 500 750 100 O 750 1000 n s BE | ' The straight person | his ability to find his own voice and
Fax: +ill 7 SH ollle was known for to speak clearly.

[Menon et al., PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models. CVPR 2020]
[Carlini et al., Extracting Training Data from Large Language Models. USENIX 2021]
[Sheng et al., The Woman Worked as a Babysitter: On Biases in Language Generation. EMNLP 2019]
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Generative Models

Learn to model p(x) where x = text, images, videos, multimodal data
- Given x, evaluate p(x) - realistic data should have high p(x) and vice versa
- Sample new x according to p(x) - sample realistic looking images

- Unsupervised representation learning - we should be able to learn what these images have in
common, e.g., ears, tail, etc. (features)

INPUT (x) RECONSTRUCTION (AUTR) RECONSTRUCTION (Gen-RNN)
unable to stop herself, she briefly, unable to stop herself, she leaned unable to help her , and

gently, touched his hand. forward, and touched his eyes. her back and her into my way.
why didn’t you tell me? why didn’t you tell me? why didn’t you tell me?”

a strange glow of sunlight shines  the light of the sun was a tiny light on the door,

down from above, paper white shining through the window, and a few inches from behind
and blinding, with no heat. illuminating the room. him out of the door.

he handed her the slip of paper. he handed her a piece of paper. he took a sip of his drink.
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Generative Models

Sometimes we also care about p(xIc) - conditional generation

- cis acategory (e.g. faces, outdoor scenes) from which we want to generate images
We might also care about p(x2Ix1,c) - style transfer

- clis a stylistic change e.g. negative to positive

From negative to positive

consistently slow .
consistently good .
consistently fast .

my goodness it was so gross .
my husband ’s steak was phenomenal .
my goodness was SO awesome .

it was super dry and had a weird taste to the entire slice .
it was a great meal and the tacos were very kind of good .
it was super flavorful and had a nice texture of the whole side .
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Latent Variable Models

Lots of variability in images x due to gender, eye color, hair color, pose, etc.

However, unless images are annotated, these factors of variation are not explicitly
available (latent).

|dea: explicitly model these factors using latent variables z
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Latent Variable Models

() Ethnicity

Image X

Only shaded variables x are observed in the data

Latent variables z are unobserved - correspond to high-level features
We want z to represent useful features e.g. hair color, pose, etc.
But very difficult to specify these conditionals by hand and they’re unobserved
Let’s learn them instead
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Latent Variable Models

Putaprioronz z~ N(0,/)
p(x | z) =N (ug(z),Xo(z)) where ug,2g are neural networks

Hope that after training, z will correspond to meaningful latent factors of variation - useful
features for unsupervised representation learning

Given a new image X, features can be extracted via p(zlx)
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Mixture of Gaussians

Mixture of Gaussians (Bayes network z -> x)
z ~ Categorical(l,--- , K)

p(x | 2= k) = N (k. ¢)

Generative process
1. Pick a mixture component by sampling z
2. Generate a data point by sampling from that Gaussian
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Mixture of Gaussians
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Mixture of Gaussians

P
0.20

K
p(x) = p(x,2) =Y p(z)p(x | 2) = > p(z = k) N(x; i, )
z z k=1 -~

component

can solve using expectation maximization
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From GMMs to VAEs

Putaprioronz z~ N(0,/)
p(x | z) =N (ug(z),Xo(z)) where ug,2g are neural networks

Hope that after training, z will correspond to meaningful latent factors of variation - useful
features for unsupervised representation learning

Even though p(xlz) is simple, marginal p(x) is much richer/complex/flexible

Given a new image X, features can be extracted via p(zlx): natural for unsupervised learning
tasks (clustering, representation learning, etc.)
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Learning parameters of VAEs

Learning parameters of VAE: we have a joint distribution p(X, Z; 9)

We have a dataset D where for each datapoint the x variables are observed (e.g. images, text)
and the variables z are not observed (latent variables)

We can try maximum likelihood estimation:

log H p(x; 0) = Z log p(x; 0) = Z Iogz p(x,z; 0)

xeD xeD xeD z
(. J
Y
intractable :-(
Need cheaper approximations to - if z binary with 30 dimensions, need
optimize for VAE parameters sum 2730 terms

- if z continuous, integral is hard
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Evidence Lower Bound

- Log-likelihood function with partially observed latent variables is hard to compute:

log (Z po(x, z) > log (Z q(z ——Pa(x z)> log (EZNq(z) {Poq(z:)ﬂ])

zeZ zeZ

g(z) should be a simple distribution

- Use Jensen’s inequality for concave functions: log(px + (1 — p)x’) > plog(x) + (1 — p) log(x’).

log (IEZNq(Z) [f(z)]) = log (Z q(z)f(2) ) > Z q(z) log f(2)

log 1
:

" ]

| ] ]

] 1

| ] ]

" ]

n 1

1 2
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Evidence Lower Bound

- Log-likelihood function with partially observed latent variables is hard to compute:

log (Z po(x, z) > log (Z q(z ——Pa(x z)> log (EZNq(z) {Poq(z:)z)])

zeZ zGZ

g(z) should be a simple distribution

- Use Jensen’s inequality for concave functions: log(px + (1 — p)x’) > plog(x) + (1 — p) log(x’).

log (Ezq(z) [f(2)]) = log (Z q(2)f (2) ) >Zq(z log (2)

Choosing f(z) = pi]((’;’)z)

log (EZNq(z) [pgq((i,)z)D 2 Barvata) [Iog (%)]

Evidence Lower Bound (ELBO)
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Evidence Lower Bound

ELBO holds for any probability distribution q(z) over latent variables:
log p(x;0) > ) q(z)log (M)

- q(2)
= Z q(z) log ps(x,z) — Z q(z) log q(z)

Entropy H(q) of q

— Z q(z) log pg(x, z) + H(q)

Equality holds if q(z) = p(zIx):
log p(x; )= _ q(2) log p(z,x;6) + H(q)

We want to choose q(z) to be as close to p(zlx) as possible, while being
easy to compute
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KL Divergence

The KL divergence for variational inference is:
D1 (q(2)p(2]2)) = [ (2) log Fiiksdz

Intuitively, there are three cases
a. If qis low then we don’t care (because of the expectation).
b. If qis high and p is high then we are happy.
c. If qis high and p is low then we pay a price.

Note that p must be > 0 wherever g >0

OK, KL small
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Evidence Lower Bound

Starting from the KL divergence:

Dic(q(2)llp(z/x:0)) = — > _ q(2) log p(z, x; 6) + log p(x; 6) — H(q) > 0

z

Re-derive ELBO from KL divergence:
log p(x; 0) > Z q(z) log p(z,x; 0) + H(q)
Equality holds if g = p(zlx) because KL(qgllp) = O:

log p(x; 0)=) _ q(2) log p(2,x; 6) + H(q)

In general, log p(x; #) = ELBO + Dk (q(2)||p(z|x; 6))
The closer the chosen q is to p(zlx), the closer the ELBO is to the true likelihood.
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Variational Inference

pESN

Suppose q(z; ¢) is a (tractable) probability distribution over the hidden
variables parameterized by ¢ (variational parameters)

e For example, a Gaussian with mean and covariance specified by ¢

q(z; ¢) = N(¢1,92)

Variational inference: optimize variational parameters so that q(z; ¢)
is as close as possible to p(z|x; 8) while being simple to compute

E.g. in figure, posterior (in blue) is better approximated by orange
Gaussian than green
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Variational Inference

log ps(x)
* ELBO

log-likelihood estimate

¢

log p(x;0) > > q(z:¢)log p(z,x: 6) + H(a(z: ¢)) = L(x: 6, )
z ELBO
= L(x;0,¢) + Dx(q(z: ¢l p(z|x; )

In practice how can we learn encoder parameters p(z|x; 0)
and variational (decoder) parameters jointly? q(z; ¢)
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Learning parameters of VAEs

Y SR E 0
E(X; 97 ¢) - Eq¢(z|x) [|Og p(Z, X, H) - |Og q¢(Z|X))] qe(z|%) ) po (x|2)
— Eq¢(z|x) [Iog p(z, X, 0) — |0g p(z) -+ |0g p(z) — |0g q¢(z|x))] inference model ‘@/ generative model
= Eqy(allog p(x|2z; 0)] — Dki(as(2|x)[|p(2)) o
~ " Figure courtesy: Kingma & Welling, 2014
reconstruction prior
encode decode
Inference Generative

What does the training objective £(x; 6, ¢) do?

@ First term encourages X ~ x’ (x' likely under p(x|2; 6)) N

@ Second term encourages 2 to be likely under the prior p(z)

@ Take a data point x’
@ Map it to 2 by sampling from q,(z|x’) (encoder)
© Reconstruct X by sampling from p(x|2; #) (decoder)

Latent distribution

[Slides from Ermon and Grover]
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Learning parameters of VAEs

L(x;0,0) = Eq,(z)x[logp(z,x;0) — log q4(z|x))]
— Eq¢(z|x) log p(z,x; 0) — log p(z) + log p(z) — log q4(z|x))]
= Eg,@x[log p(x|z; 0)] — Dki(q4(2|x)[|p(2))

We need to compute the gradients VeL(x;0,¢) and V4L(x; 6, ¢)

w_/

easy

VoL(x;0,0) = VoEq,(zx)llog p(x|z; 0)] — Dki(qs(z[x)[|p(2))
— V19Eq¢,(z|x) [lOg p(X|Z; 9)]
— Eq¢(z|x) [VG log p(X|Z; 9)]

1 n
N Z Vo log p(x|z;; 0)
i=1
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Learning parameters of VAEs

L(x;0,0) = Eq,(z)x[logp(z,x;0) — log q4(z|x))]
— Eq¢(z|x) log p(z,x; 0) — log p(z) + log p(z) — log q4(z|x))]
= Eg,@x[log p(x|z; 0)] — Dki(q4(2|x)[|p(2))

We need to compute the gradients VeL(x;0,¢) and V4L(x; 6, ¢)

easy tricky

Expectations also depend on

Vo L(x 0, ) = VyEq, (2 [log p(x|z; 0)] — Dkr(qs(z[x)]|p(2))
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Reparameterization Trick

@ Want to compute a gradient with respect to ¢ of

Evwolr(@)] = [ a(zi $)r(z)dz

where z is now continuous

@ Suppose q(z; ¢) = N(u,0?%1) is Gaussian with parameters ¢ = (u, ). These
are equivalent ways of sampling:

e Sample z ~ q4(2)
o Sample e ~ N(0,1), z= p+ oe = g(e€; §)

@ Using this equivalence we compute the expectation in two ways:
Ermatuir(@)] = Ecenonlr(e(ei )] = [ ple)r(u-+ oo)de
VEqze)r(z)] = VeEclr(g(e ¢))] = E[Ver(g(e: ¢))]

@ Easy to estimate via Monte Carlo if r and g are differentiable w.r.t. ¢ and €
is easy to sample from (backpropagation)

¢ Ee[v¢r(g(€; ¢))] o % Zk V¢r(g(ek; ¢)) where 61’ T 7€k ~ N(07 I)'

[Slides from Ermon and Grover]
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Reparameterization Trick

Ve L(x:0,0) = V4Eq, z1x)[log p(x|z; 0)] — Dkr(qy(z1¥)[|p(2))
V¢Eq¢(z\x)[|og P(X‘Z? 9)] = V¢E6[|Og P(X‘,U + o€, 9)] reparameterize
= E[Vglog p(x|p + o€; 0)]

n

1
~ Z[V¢ log p(x|p + o€;; 0)]
i=1
Original form Reparameterized form

|_ _________________ 1 r—-—"-=-=-"-" - - - - - - =-=-=-=-= 1
I | I |
| f | ' Backprop f :
S S bottlenedk! | : l I :
: ~ q(z]P,x) : N : ot/ az 2 =g(d,xe) : 7 : Deterministic node
| i, oS : | : / T | . - Random node
| ' | / |

! !
I v < oK/, x ~ple)

! !
: ! : = aL/agol |
| ' | |
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