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Administrative Stuff



Midterm Project Report (Due Monday 10/31 at 8pm)

Main goals:

1. Experiment with state-of-the-art approaches
= Run on your own dataset state-of-the-art models
= Teams of 3 or 4 students: 2 state-of-the-art models
= Teams of 5 or 6 students: 3 state-of-the-art models
2. Perform a detailed error analysis
= Visualize the errors made by the state-of-the-art models
= Discuss how you could address these issues

3. Update your research ideas
= You should have N-1 research ideas (N=number of teammates)

= Your ideas should center around multimodal challenges
= At most 1 idea can be unimodal in nature
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Midterm Project Report (Due Monday 10/31 at 8pm)

Some suggestions:

= You do not need to re-implement state-of-the-art models

= But you need to rerun them yourself on your own data
= You may want to fine-tune your baseline models on your data
= |f your dataset is too large:

= You can use a subset of your data.
= But be consistent between experiments

= The most important part is the discussion
= How is your error analysis affecting your proposed research ideas?
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Midterm Project Presentations (Tuesday 11/1 and Thursday 11/3)

See important piazza post:

1. Presenting teams
2. Feedback forms
3. Online students

Information about Midterm Presentations

Hi all,

MALLIVIID T

Here are the details of the midterm presentations. Please also check out the instructions in the Midterm Project Assignment file in the resources section.

Presenting

The day assignments and order of presentations will be as follows:

e Tuesday 11/1: Team 2, Team 5, Team 7, Team 8, Team 9, Team 12, Team 13, Team 14, Team 15, Team 17, Team 22, Team 23
e Thursday 11/3: Team 1, Team 3, Team 4, Team 6, Team 10, Team 11, Team 16, Team 18, Team 19, Team 20, Team 21, Team 24
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Midterm Project Presentations (Tuesday 11/1 and Thursday 11/3)

Main objective:
= Present your research ideas and get feedback from classmates

Presentation length:
= Teams with 3 students: 4 minutes
= Teams with 4 students: 5 minutes
= Teams with 5 students: 6 minutes
= Teams with 6 students: 7 minutes

* Following each presentation, audience will be asked to share feedback
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Midterm Project Presentations (Tuesday 11/1 and Thursday 11/3)

= Administrative guidelines

= All presentations will be done from the same laptop
= Google Drive directory will be shared to host your presentation
= Preferred option: Google Slides
= Second option: Microsoft Powerpoint

= Be sure to be on time! We have many presentations each day ©
= All presentations are in person (no remote presentations)
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Midterm Project Presentations (Tuesday 11/1 and Thursday 11/3)

= Some suggestions:

= Do not present your results from state-of-the-art baseline models
= Only exception: if the result directly justifies one of your research ideas

The focus of your presentation should be about your research ideas
= Plan about 1 minute for each research idea
= Present the ideas at the high-level, so that audience understands it

Only 1 minute (or less) for the intro (dataset, task)
All teammates should be included in the presentation
= Be as visual as possible in your slides
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Midterm Project Presentations (Tuesday 11/1 and Thursday 11/3)

» Grading guidelines for presentations (4 points)
= Quality of the slides (incl. images, videos and clear explanations)
= Good motivation and explanation of the problem
» Future research ideas (describe their future research directions)
= Presentations skKills (incl. explanations, voice and body posture)

= Grade will also be given for audience feedback (1 point)

= You should plan to give feedback for at least 6 teams
= Try to be constructive in your feedback

= Sharing pointer to relevant papers is quite helpful
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Generation

Definition: Learning a generative process to produce raw modalities that
reflects cross-modal interactions, structure, and coherence.

[Summariza’tion\ " Translation \ ( Creation )

. Reduction Maintenance Expansion
Information:
(content) > — <
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Dimension 1: Information Content

How modality interconnections change across multimodal inputs and generated outputs.

@ Modality connections ModaiyA A A A A A

Modalities are often related and ><: I\-\-

share commonality Modality B ‘ ‘ ‘ ‘ ‘

Statistical Semantic
#
Association Dependency Correspondence Relationship
— laptop used for

A—O® A0 A—O A—O

e.g., correlation, co-  e.g., causal, temporal

e.g., groundin e.g., function
occurrence 99 9 9
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Dimension 1: Information Content

How modality interconnections change across multimodal inputs and generated outputs.

A A A A A
@ @ © @)

®
O
Al
y,
. Reduction
Information:
(content) >
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Sub-challenge 4a: Summarization

Definition: Summarizing multimodal data to reduce information content
while highlighting the most salient parts of the input.

Transcript Video

today we are going to show you how to make spanish omelet . 1 'm going to
dice a little bit of peppers here . 1 'm not going to use a lot , 1 'm going to use
very very little . a little bit more then this maybe . you can use red peppers if
you like to get a little bit color in your omelet . some people do and some
people don't .... t is the way they make there spanish omelets that is what she
says . 1 loved it , it actually tasted really good . you are going to take the onion
also and dice it really small . you do n't want big chunks of onion in there
cause 1t 1s just pops out of the omelet . so we are going to dice the up also very
very small . so we have small pieces of onions and peppers ready to go .

How2 video dataset

Complementary ‘
cross-modal Cuban br.eakfgst (not present in text)
interactions Free cooking video
Summary

how to cut peppers to make a spanish omelette; get expert tips and advice on making cuban breakfast recipes in this free
cooking video .

[Palaskar et al., Multimodal Abstractive Summarization for How2 Videos. ACL 2019]
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Dimension 1: Information Content

How modality interconnections change across multimodal inputs and generated outputs.

A A A
I\.\.
@ @ ©

3
| — A o—A
/
. Reduction Maintenance
Information:
(content) > —
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Sub-challenge 4b: Translation

Definition: Translating from one modality to another and keeping information content
while being consistent with cross-modal interactions.

QA A
Oy
3K

D

An armchair in the shape of an avocado

@

[Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021]
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Dimension 1: Information Content

How modality interconnections change across multimodal inputs and generated outputs.

A A A A A A A A A A
A }*.><..I\.\../

>~: o—A I %:

. Reduction Maintenance Expansion
Information:
(content) > — <
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Open

Sub-challenge 4c: Creation challenges

Definition: Simultaneously generating multiple modalities to increase information
content while maintaining coherence within and across modalities.

Recall
Cross-modal interactions representation &
alignment!
Big dog on the beach. Waves crashing, people playing volleyball, ...
Cross-modal interactions
‘woof’ ‘crash’ ‘bounce’ ‘wWhoosh’
—
. Recall
Temporal + causal + logical structure i
reasoning!
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Dimension 2: Generative Process

Generative process to respect modality heterogeneity and decode multimodal data.

Generation
s @ Exemplar Generative
Generative

e ¢ [I2nslation model
00

Training

Translation
Translation model
-3

Exemplar

» Content
Reduction Maintenance Expansion
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Summary: Generation

Definition: Learning a generative process to produce raw modalities that
reflects cross-modal interactions, structure, and coherence.

[Summariza’tion\ " Translation \ ( Creation )

4

. Reduction Maintenance Expansion
Information:
(content) > — <
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Open

Model Evaluation & Ethical Concerns challenges

Open challenges:

- Modalities beyond text + images or video

- Translation beyond descriptive text and images (beyond corresponding cross-modal interactions)
- Creation: fully multimodal generation, with cross-modal coherence + within modality consistency
- Model evaluation: human and automatic

- Ethical concerns of generative models Prompt Generated text
S The man worked as a car salesman at the local
East Stroudsburg Stroudsburg ] Wal-Mart
g [ - The woman worked as| a prostitute under the name of
Original Result .
0 0 ) Hariya
- - The Black man a pimp for 15 years.
GPT-2 worked as
A0 A0 The White man a police officer, a judge, a
. _ (Memorized text | ¥ worked as prosecutor, a prosecutor, and the
Corporation Seabank Centre president of the United States.
b o h Marine Parade Southport The gay person was | his love of dancing, but he also did
o S N . con known for drugs
0 250 500 750 100 O 750 1000 n s BE | ' The straight person | his ability to find his own voice and
Fax: +ill 7 SH ollle was known for to speak clearly.

[Menon et al., PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models. CVPR 2020]
[Carlini et al., Extracting Training Data from Large Language Models. USENIX 2021]
[Sheng et al., The Woman Worked as a Babysitter: On Biases in Language Generation. EMNLP 2019]
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Generative Models

Learn to model p(x) where x = text, images, videos, multimodal data
- Given x, evaluate p(x) - realistic data should have high p(x) and vice versa
- Sample new x according to p(x) - sample realistic looking images

- Unsupervised representation learning - we should be able to learn what these images have in
common, e.g., ears, tail, etc. (features)

INPUT (x) RECONSTRUCTION (AUTR) RECONSTRUCTION (Gen-RNN)
unable to stop herself, she briefly, unable to stop herself, she leaned unable to help her , and

gently, touched his hand. forward, and touched his eyes. her back and her into my way.
why didn’t you tell me? why didn’t you tell me? why didn’t you tell me?”

a strange glow of sunlight shines  the light of the sun was a tiny light on the door,

down from above, paper white shining through the window, and a few inches from behind
and blinding, with no heat. illuminating the room. him out of the door.

he handed her the slip of paper. he handed her a piece of paper. he took a sip of his drink.
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Latent Variable Models

. () Ethnicity

Image X

Only shaded variables x are observed in the data, want to learn latent variables z.
Putaprioronz z~ N(0,/)

p(x | z) =N (ug(z),Xo(z)) where ug,2g are neural networks
Hope that after training, z will correspond to meaningful latent factors of variation.
Even though p(xlz) is simple, marginal p(x) can be very expressive.
Given a new image X, features can be extracted via p(zlx) for representation learning.
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Learning parameters of VAEs

Learning parameters of VAE: we have a joint distribution p(X, Z; 9)

We have a dataset D where for each datapoint the x variables are observed (e.g. images, text)
and the variables z are not observed (latent variables)

We can try maximum likelihood estimation:

log H p(x; 0) = Z log p(x; 0) = Z Iogz p(x,z; 0)

xeD xeD xeD z
(. J
Y
intractable :-(
Need cheaper approximations to - if z binary with 30 dimensions, need
optimize for VAE parameters sum 2730 terms

- if z continuous, integral is hard
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KL Divergence

The KL divergence for variational inference is:
D1 (q(2)p(2]2)) = [ (2) log Fiiksdz

Intuitively, there are three cases
a. If qis low then we don’t care (because of the expectation).
b. If qis high and p is high then we are happy.
c. If qis high and p is low then we pay a price.

Note that p must be > 0 wherever g >0

OK, KL small
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Evidence Lower Bound

Starting from the KL divergence:

Dic(q(2)llp(z/x:0)) = — > _ q(2) log p(z, x; 6) + log p(x; 6) — H(q) > 0

z

Re-derive ELBO from KL divergence:
log p(x; 0) > Z q(z) log p(z,x; 0) + H(q)
Equality holds if g = p(zlx) because KL(qgllp) = O:

log p(x; 0)=) _ q(2) log p(2,x; 6) + H(q)

In general, log p(x; #) = ELBO + Dk (q(2)||p(z|x; 6))
The closer the chosen q is to p(zlx), the closer the ELBO is to the true likelihood.
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Variational Inference

log ps(x)
* ELBO

log-likelihood estimate

¢

log p(x;0) > > q(z:¢)log p(z,x: 6) + H(a(z: ¢)) = L(x: 6, )
z ELBO
= L(x;0,¢) + Dx(q(z: ¢l p(z|x; )

In practice how can we learn encoder parameters p(z|x; 0)
and variational (decoder) parameters jointly? q(z; ¢)
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Learning parameters of VAEs

Y SR E 0
E(X; 97 ¢) - Eq¢(z|x) [|Og p(Z, X, H) - |Og q¢(Z|X))] qe(z|%) ) po (x|2)
— Eq¢(z|x) [Iog p(z, X, 0) — |0g p(z) -+ |0g p(z) — |0g q¢(z|x))] inference model ‘@/ generative model
= Eqy(allog p(x|2z; 0)] — Dki(as(2|x)[|p(2)) o
~ " Figure courtesy: Kingma & Welling, 2014
reconstruction prior
encode decode
Inference Generative

What does the training objective £(x; 6, ¢) do?

@ First term encourages X ~ x’ (x' likely under p(x|2; 6)) N

@ Second term encourages 2 to be likely under the prior p(z)

@ Take a data point x’
@ Map it to 2 by sampling from q,(z|x’) (encoder)
© Reconstruct X by sampling from p(x|2; #) (decoder)

Latent distribution

[Slides from Ermon and Grover]

Language Technologies Institute




Learning parameters of VAEs

L(x;0,0) = Eq,(z)x[logp(z,x;0) — log q4(z|x))]
— Eq¢(z|x) log p(z,x; 0) — log p(z) + log p(z) — log q4(z|x))]
= Eg,@x[log p(x|z; 0)] — Dki(q4(2|x)[|p(2))

We need to compute the gradients VeL(x;0,¢) and V4L(x; 6, ¢)

w_/

easy

VoL(x;0,0) = VoEq,(zx)llog p(x|z; 0)] — Dki(qs(z[x)[|p(2))
— V19Eq¢,(z|x) [lOg p(X|Z; 9)]
— Eq¢(z|x) [VG log p(X|Z; 9)]

1 n
N Z Vo log p(x|z;; 0)
i=1
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Learning parameters of VAEs

L(x;0,0) = Eq,(z)x[logp(z,x;0) — log q4(z|x))]
— Eq¢(z|x) log p(z,x; 0) — log p(z) + log p(z) — log q4(z|x))]
= Eg,@x[log p(x|z; 0)] — Dki(q4(2|x)[|p(2))

We need to compute the gradients VeL(x;0,¢) and V4L(x; 6, ¢)

easy tricky

Expectations also depend on

Vo L(x 0, ) = VyEq, (2 [log p(x|z; 0)] — Dkr(qs(z[x)]|p(2))
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Reparameterization Trick

@ Want to compute a gradient with respect to ¢ of

Evwolr(@)] = [ a(zi $)r(z)dz

where z is now continuous

@ Suppose q(z; ¢) = N(u,0?%1) is Gaussian with parameters ¢ = (u, ). These
are equivalent ways of sampling:

e Sample z ~ q4(2)
o Sample e ~ N(0,1), z= p+ oe = g(e€; §)

@ Using this equivalence we compute the expectation in two ways:
Ermatuir(@)] = Ecenonlr(e(ei )] = [ ple)r(u-+ oo)de
VEqze)r(z)] = VeEclr(g(e ¢))] = E[Ver(g(e: ¢))]

@ Easy to estimate via Monte Carlo if r and g are differentiable w.r.t. ¢ and €
is easy to sample from (backpropagation)

¢ Ee[v¢r(g(€; ¢))] o % Zk V¢r(g(ek; ¢)) where 61’ T 7€k ~ N(07 I)'

[Slides from Ermon and Grover]
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Reparameterization Trick

Ve L(x:0,0) = V4Eq, z1x)[log p(x|z; 0)] — Dkr(qy(z1¥)[|p(2))
V¢Eq¢(z\x)[|og P(X‘Z? 9)] = V¢E6[|Og P(X‘,U + o€, 9)] reparameterize
= E[Vglog p(x|p + o€; 0)]

n

1
~ Z[V¢ log p(x|p + o€;; 0)]
i=1
Original form Reparameterized form

|_ _________________ 1 r—-—"-=-=-"-" - - - - - - =-=-=-=-= 1
I | I |
| f | ' Backprop f :
S S bottlenedk! | : l I :
: ~ q(z]P,x) : N : ot/ az 2 =g(d,xe) : 7 : Deterministic node
| i, oS : | : / T | . - Random node
| ' | / |

! !
I v < oK/, x ~ple)

! !
: ! : = aL/agol |
| ' | |
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Learning parameters of VAEs

L(x;0,0) = Eg,@xlogp(z,x;0) — log q4(z/x))] =
= Equamllog p(z,x;0) — log p(2) + log p(2) — log q(zlx))] ""“Z"‘)dl '
= Eq,(zpllog p(x[z; 0)] — Dy (2|x)[lp(2))

pe(x|2)
generative model

e

— — - 7
Y Y —
. . Figure courtesy: Kingma & Welling, 2014
reconstruction prior
encode decode
Inference Generative

1. Take a datapoint x;.

2. Map it to p, 0 using gy(z|x;). encoder
3. Sample € ~ N(0,/) and compute Z = u + €. reparameterize ‘( .0
4. Reconstruct X by sampling from p(x|2;0). decoder /

Input Image

Latent distribution
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Stochastic Optimization

s Eq,2)[f (2)]
VAEs RL
m?bXL(X 0,9)  Evidence lower bound mquJ(ﬁb) Reward
max Eq, (21 llog p(x|z; 0)] max Ervprig) (7))
Solve by reparameterization! Reparameterization??? ;
X A
p(x|z; H)T We require that: In RL (at least for discrete actions): 7?7
. ‘ - ZIs continuous - T is a sequence of discrete actions a
- q(z) is reparameterizable -p(T: @) is not reparameterizable lals) T
q¢(Z|X) T - f(Z) iS differentiable wrt ¢ - r(T) is a black box function ¢
i.e. the environment S
X o Sample z ~ g4(2)
o Sample e ~ N(0,/), z= p+ o¢

REINFORCE is a general-purpose solution!
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VAEs for Disentangled Generation

Disentangled representation learning
- Very useful for style transfer: disentangling style from content

- - - consistently slow .
consistently good .

disentanglement_lib consistently fast .
my goodness it was so gross .
my husband ’s steak was phenomenal .
my goodness was so awesome .

From negative to positive

it was super dry and had a weird taste to the entire slice .
it was a great meal and the tacos were very kind of good .
it was super flavorful and had a nice texture of the whole side .

[Locatello et al., Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019]

Language Technologies Institute 34



VAEs for Disentangled Generation

Disentangled representation learning
- Very useful for style transfer: disentangling style from content -\ .
Ls(x) = Eq, @0 [logpa(x|2)] — 8 - KL(q4(2|x)||p(2)) /
beta-VAE: beta = 1 recovers VAE, beta > 1 imposes stronger | v
constraint on the latent variables to have independent ;i’;eerlat've ) i Inference
dimensions e Model
Difficult problem! g
Positive results [Hu et al., 2016, Kulkarni et al., 2015] (Sganm/ \ o
Negative results [Mathieu et al., 2019, Locatello et al., 2019] et

Better benchmarks & metrics to measure disentanglement
[Higgins et al., 2017, Kim & Mnih 2018]

[Mathieu et al., Disentangling Disentanglement in Variational Autoencoders. ICML 2019]
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VAEs for Multimodal Generation

Some initial attempts: factorized generation

Unimodal

0/ DOO0DOD Y

1/\42\ 4141

Zat decoder )22>022822
373333333

4 4 4 44U & 4 4 4

z, (nine) SrSES5ESe
b o606 66 ¢

17774951917

Z — decoder § ¥ 3 8B4 88 7%
a2 [N 9} 9794319499
I\/Iodallty1 (SVHN) Modality 2 (MNIST)

Cross-modal interactions

[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019]
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VAEs for Multimodal Generation

Some initial attempts: factorized generation

Unimodal

FlXZaZ\
0| 02 D000 0072
B 17 \N42) 4414
Lyt decoder 12} ) 220282
3 37%33% 3133
4 94440 ¢ 444
Zy prediction (nine) |8 S5S55§5895
6 bt bébtb éUc
g 17774951917
Z decoder .4 § 7 3 B4 8 8 &
a2 O 9 979491 949
Modality 1 (SVHN) Modality 2 (MNIST)

Cross-modal interactions

[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019]
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VAEs for Multimodal Representations

VAESs beyond reconstruction

- It can be hard to reconstruct high-

dimensional input modalities

- Combine VAEs with self-supervised
learning: reconstruct important

signals from the input

Language Technologies Institute

VLW

L o] | e A

RGB image

Force data

e
oY

Robot state

38

Decoders

Action-conditional

robot | optical flow
action e |
4
0/1
Encoder —— contactin

the next step?

Representation . 0/1
time-aligned?

- S/
V

Self-supervised signals

[Lee et al., Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks. ICRA 2019]




VAEs for Multimodal Representations

High success rate from multimodal signals E isode 100

100 Force Only: Can't find box
S 80
2 @ Image Only: Struggles with peg
P alignment
3 40 77
@ 20 0 Force & Image: Can learn full task
0 completion

Force Image Force & Image

Simulation Results
(Randomized box location)

[Lee et al., Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks. ICRA 2019]
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VAEs for Multimodal Representations

Robustness to:
- external forces
- camera occlusion
- moving targets

[Lee et al., Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks. ICRA 2019]
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Summary: Variational Autoencoders

Prominent attributes: White, Fully Visible
Forehead, Mouth Closed, Male, Curly Hair,
Query v Eyes Open, Pale Skin, Frowning, Pointy Nose,
Teeth Not Visible, No Eyewear.

| 3 -
S - GSEER
- Relatively easy to train. A - -
- Explicit inference network g(zlx). GAN Eﬂﬁ
| | CAEDNE -
- More blurry images (due to reconstruction).  VAFGAN  RESSS R A ]
. AS

VAE

p"

Prominent attributes: White, Male, Curly
Hair, Frowning, Eyes Open, Pointy Nose,
Flash, Posed Photo, Eyeglasses, Narrow Eyes,
Teeth Not Visible, Senior, Receding Hairline.

GAN

VAE/GAN
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More Likelihood-based Models: Autoregressive Models

Autoregressive models

occluded completions

s
-—.-a_,j"
* AReaasae

- . . a Figure 1. Image completions sampled from a PixelRNN.

Context Multi-scale context

n2
p(x) = [ [ p(@ilz1, ..., zi-1)
=1

[van den Oord et al., Pixel Recurrent Neural Networks. ICML 2016]
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Autoregressive Models

Autoregressive language models T
p(x) = Hp(xt | z1,...,%¢-1)
t=1
Input Prompt: Recite the first law of robotics

Output:

[Brown et al., Language Models are Few-shot Learners. NeurlPS 2020]
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Autoregressive Models

Oupit @ @ © O © 0 000000 OO O

Hidden .
Layer *

Hidden O O O O O O O O O O O C ’A—> O O
[_ayer Y ./ 7 - ) L \/ - 4 - - -~ -~ \ ' 4

Hidden ~ ~ ~ ~ ~ —~ o~ o~ .
O 00000000000 0 0O 0

Layer

nnt © © O 0O 0000000000 O0O

[van den Oord et al., WaveNet: A Generative Model for Raw Audio. ICML 2016]
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Conditioning Autoregressive Models

We typically want p(xIc) - conditional generation

- cis acategory (e.g. faces, outdoor scenes) from which we want to generate images
- cis animage which we want to describe in natural language

We might also care about p(x2Ix1,c) - style transfer

- cis a stylistic change e.g. negative to positive

From negative to positive

consistently slow .
consistently good .
consistently fast .

my goodness it was so gross .
my husband ’s steak was phenomenal .
my goodness was SO awesome .

it was super dry and had a weird taste to the entire slice .
it was a great meal and the tacos were very kind of good .
it was super flavorful and had a nice texture of the whole side .
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Conditioning Autoregressive Models

Conditioning via prefix tuning A small red boat on the water.
Modeling p(xIc): T T T T T T T
Adapted + pretrained p(xlc)
Pt tt 11t
Adapter Pretrained p(x)

bttt
AA 00000

. A small red boat on the water.

[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurlPS 2021]

Language Technologies Institute 46



Conditioning Autoregressive Models

Conditioning via prefix tuning Blue
0-shot VQA: T
Adapted + pretrained p(xlc)
Adapter Pretrained p(x)

bttt
AA 00000

N
] : i
& T - ’

What color is the car?

[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurlPS 2021]
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Conditioning Autoregressive Models

Conditioning via prefix tuning Steve Jobs

P 1

1-shot outside

knowledge VQA: Adapted + pretrained p(xlc)
rttt ot
Adapter Adapter P(X)

Recall reas.onin_g. T T T T T T T T
— leverage implicit A A OO A A OO

knowledge in LMs .
y Q: Who

invented
this? A:

Q: Who
invented
this? A:
The Wright
brothers.

[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurlPS 2021]
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Conditioning Autoregressive Models

Conditioning via prefix tuning This is a dax.

Pttt

Few-shot image

classification: Adapted + pretrained
rt+tt tttt ot
Adapter Adapter Adapter

rt+ ottt
AA OGO AAOGO AAOGO

M»” N4 This is a Question:
. ] blicket. What is

‘ ! this?
Answer:

N dax.

[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurlPS 2021]
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Conditioning Autoregressive Models

Conditioning via representation tuning

p(xlc) With positive AV
Without AV

|
|
oo
|
|
! |
|
P(x) » Shift I
|
FIOLERER I | o~ With negative AV
| e
|
|
|
|
|
|
|
|

P 111

Attention
Q000
_—1

@ A

[Ziegler et al., Encoder-Agnostic Adaptation for Conditional Language Generation. arXiv 2019]

Lexical Space

[Rahman et al., Integrating Multimodal Information in Large Pretrained Transformers. ACL 2020]
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Conditioning Autoregressive Models

Conditioning via gradient tuning

p(clz)
shin_y » C =+1
delicious » Cc =+1
terrible » Cc=-1

!

Pretrained p(aj)

11
00

The food tastes

[Dathathri et al., Plug and Play Language Models: A Simple Approach to Controlled Text Generation. ICLR 2020]
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Conditioning Autoregressive Models

Conditioning via gradient tuning

p(zlc) o« p(clz)p(z)

p(c|g;) H, are final-layer representations at time t
shiny p C= 41 1. Increasing p(c|x)
delicious » C=+1
. s o= AH; < AH; + aVag, logp(c|Hy + AHy)
t 2. Increasing p(zx)
Pretrained () AH,; + AH; + oXKL(p(z)||pas, (z))
T T T 3. Generate next token using H; + A H;

The food tastes

[Dathathri et al., Plug and Play Language Models: A Simple Approach to Controlled Text Generation. ICLR 2020]
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Summary: Autoregressive Models

- Relatively easy to train. Input Prompt: Recite the first law of robotics

- Slow to sample from.
- Not easy to condition on.

Output:
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Normalizing Flows

Model families so far:

- Autoregressive models provide tractable likelihoods but no direct mechanism for
learning features.

- Variational autoencoders can learn feature representations (via latent variables z)
but have intractable marginal likelihoods.

Can we do both?

Z ~ N(0,1) X ~ P(X)
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Change of Variables — 1D case

@ Let X be a continuous random variable
@ The cumulative density function (CDF) of X is Fx(a) = P(X < a)

@ The probability density function (pdf) of X is px(a) = Fi(a) = —(—lngaa

@ Typically consider parameterized densities:
o Gaussian: X ~ N(u,0) if px(x) = \}_e—(x—u)2/2az

o\ 2

o Uniform: X ~ U(a, b) if px(x) = z751[a < x < b]

Z ~ N(0,1) X ~ P(X)

[Slides from Ermon and Song]
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Change of Variables — 1D case

@ Let Z be a uniform random variable [0, 2] with density pz. What is
pz(1)? 3

1/2
o As a sanity check, f02 % =1
o Let X =4Z, and let px be its density. What is px(4)?

0 2

Intuition: X should be uniform in [0,8], so px(4) =1/8

@ More interesting example: If X = f(Z) = exp(Z) and Z ~ U[0, 2],
what is px(x)?

1/8

0 8

[Slides from Ermon and Song]
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Change of Variables — 1D case

e Change of variables (1D case): If X = f(Z) and f(-) is monotone
with inverse Z = f~1(X) = h(X), then:

1/2
px(x) = pz(h(x))|h'(x)] D

@ Previous example: If X = f(Z) =4Z and Z ~ U0, 2], what is
px(4)?
o Note that h(X) = X /4 1/8
o px(4) =pz(1)W(4) =1/2 x |1/4| =1/8 —
@ More interesting example: If X = f(Z) = exp(Z) and Z ~ U]0, 2], 0 8
what is px(x)?

o Note that h(X) = In(X) 1/2
o px(x) = pz(In(x))|H (x)] = X for x € [exp(0), exp(2)] k
@ Note that the "shape” of px(x) is different (more complex) from that

of the prior pz(z).

[Slides from Ermon and Song]
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Change of Variables — higher D case
Let Z be a vector in [0,1] x [0,1]
Let X = AZ for a square invertible matrix A, with inverse W. How is X distributed?
Geometrically, the matrix A maps the unit square [0, 1] x [0,1] to a parallelogram.

(a+c,b+d)

(0, 1) (1,1) (e

~ (a,b)

(0, 0) 1,0 00

Figure: The matrix A = ( ) maps a unit square to a parallelogram

a ¢
b d

[Slides from Ermon and Song]
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Change of Variables — higher D case

@ The volume of the parallelotope is equal to the absolute value of the ¢ a
determinant of the matrix A
d
det(A) = det( b 4 ) = ad — bc
b

a (5
(a+c)(b+d)y-ab-2bc-cd=ad-bc

o Let X = AZ for a square invertible matrix A, with inverse W = A~ L.
X is uniformly distributed over the parallelotope of area |det(A)|.
Hence, we have

px(x) = pz (Wx) / |det(A)|
= pz (WX) |det(W))

because if W = A1, det(W) = g7y Note similarity with 1D case px(x) = pz(h(x))|H'(x)|

[Slides from Ermon and Song]
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Change of Variables — higher D case

@ For linear transformations specified via A, change in volume is given
by the determinant of A

@ For non-linear transformations f(-), the linearized change in volume is
given by the determinant of the Jacobian of f(-).

e Change of variables (General case): The mapping between Z and
X, given by f : R" — R”, is invertible such that X = f(Z) and

Z = f1(X).
det (“;}X)) ‘

px(x) = pz (F1(x))
@ Note 0: generalizes the previous 1D case px(x) = pz(h(x))|h'(x)
@ Note 1: unlike VAEs, x,z need to be continuous and have the same
dimension. For example, if x € R” then z € R”
o Note 2: For any invertible matrix A, det(A~!) = det(A)~!

det (81;(2)) -

px(x) = pz (2)

[Slides from Ermon and Song]
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Normalizing Flows

Z ~ N(0,1) X ~ P(X)

@ Learning via maximum likelihood over the dataset D

det <8f9;((x) ) ‘

@ Exact likelihood evaluation via inverse tranformation x — z and
change of variables formula

mgxlog px(D;0) = Z log p7 (fo_l(x)) + log
xeD

[Slides from Ermon and Song]
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Normalizing Flows

Z ~ N(0,1) X ~ P(X)

e Sampling via forward transformation z — x

z~ pz(z) x="fy(z)

o Latent representations inferred via inverse transformation (no
inference network required!)

_ -1
[Slides from Ermon and Song] Z= f0 (X)
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Normalizing Flows

fl(Zo) @ fi(zi—l) @fi+1(zi)
,/ \\ ,/ \\
/ \ / \
/ \ / \
] \ ] \
| 1 | 1
\ ] \ I
\ / \ /

zo ~ po(2o) z; ~ pi(2;)
zy ~ p(zy)
X=2Zg = fgo fx-1°° f1(2o)

inference: z; = f;"1(z;_,)

. dz;_,
density: p(z;) = p(z;_,) |det
dZi
training: maximizes data log-likelihood
X dz;_4
log p(x) = logp(zy) + Z log |det
i=1 dz;

[Slides from Eric Xing]
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Normalizing Flows Tips

e Simple prior pz(z) that allows for efficient sampling and tractable
likelihood evaluation. E.g., isotropic Gaussian

@ Invertible transformations with tractable evaluation:

e Likelihood evaluation requires efficient evaluation of x — z mapping
e Sampling requires efficient evaluation of z — x mapping

@ Computing likelihoods also requires the evaluation of determinants of
n X n Jacobian matrices, where n is the data dimensionality

o Computing the determinant for an n X n matrix is O(n®): prohibitively
expensive within a learning loop!
o Key idea: Choose tranformations so that the resulting Jacobian matrix

has special structure. For example, the determinant of a triangular
matrix is the product of the diagonal entries, i.e., an O(n) operation

[Slides from Ermon and Song]
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Normalizing Flows

affine coupling layer

f

invertible 1x1 conv

?

actnorm

T

Description | Function | Reverse Function | Log-determinant
Actnorm. Vi,j:yij =sOx3;+b | Vi,j:xi; = (yi; —b)/s | h-w-sum(log|s|)
See Section 3.1.
Invertible 1 x 1 convolution. | Vi,j : y; ; = Wx; ; Vi,j:xi; = Wly, h-w -log|det(W)|
W : [c X ¢]. or
See Section 3.2. h - w - sum(log |s|)
(see eq. (10))

Affine coupling layer. Xq,Xp = split(x) Ya,¥b = split(y) sum(log(|s]))
See Section 3.3 and (log s, t) = NN(xp) (log s, t) = NN(ys)
(Dinh et al., 2014) s = exp(logs) s = exp(logs)

Yo =5OXq +t Xq = (Yo —t)/s

Yo = Xp Xb = Yb

y = concat(ya,ys) x = concat(Xq, Xp)

[Kingma et al., Generative Flow with Invertible 1x1 Convolutions. NeurlPS 2018]
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Summary: Normalizing Flows

- Relatively easy to train.
- Exact likelihood.

- Very constrained architecture.

Work combining VAESs, autoregressive models, and flow-based models,
see https://lilianweng.github.io/posts/2018-10-13-flow-models/
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https://lilianweng.github.io/posts/2018-10-13-flow-models/

Generative Adversarial Networks

Beyond likelihood-based learning:
Difficulty in evaluating and optimizing p(x) in high-dimensions
High p(x) might not correspond to realistic samples

eeM

Model family

Language Technologies Institute




Generative Adversarial Networks

S1= {x~P}

Given a finite set of samples from two distributions, how can we tell if
these samples are from the same distribution? (i.e. P = Q?)
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Generative Adversarial Networks

Given 51 = {x ~ P} and S = {x ~ Q}, a two-sample test
considers the following hypotheses

e Null hypothesis Hy: P = Q
o Alternate hypothesis Hi: P # Q

Test statistic T compares S; and S, e.g., difference in means,
variances of the two sets of samples

If T is less than a threshold «, then accept Hy else reject it

Key observation: Test statistic is likelihood-free since it does not involve
the densities P or Q, only samples
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Generative Adversarial Networks

0eM

xiNPdata

i=12,..,n Model family

Assume we have access 10 S1 = D = {x ~ pgata}
In addition, we have our model’s distribution pe |
Assume that our model’s distribution permits efficient sampling of S: = {x ~ ps}

Train the generative model to minimize a two-sample test objective between
S1 and S2

Language Technologies Institute



Generative Adversarial Networks

Towards likelihood-free learning

Two Gaussians with different means Two Gaussians with different variances Gaussian and Laplace densities

Prob. Density

Problem: finding a two-sample test objective in high-dimensions is hard
In the generative model setup, we know that S1 and S2 come from

different distributions pdata and pg respectively
Key idea: learn a statistic that maximizes a suitable notion of distance

between the two sets of samples S1 and S2
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Generative Adversarial Networks

A 2 player minimax game between a generator and a discriminator

Gy

Generator: a directed latent variable model from z to x
Minimizes the two-sample test objective: in support of null hypothesis Pdata = Po
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Generative Adversarial Networks

A 2 player minimax game between a generator and a discriminator

Dy

Discriminator: any function (e.g. neural network) that tries to distinguish
‘real’ samples from the datasets from ‘fake’ samples generated by the model
Maximizes the two-sample test objective: in support of alternative
hypothesis pdata 7 Po
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Training the Discriminator

Training objective for discriminator

max V(G, D) = Exvpqaa 108 D(X)] + Exvpllog(1l — D(x))]

For a fixed generator G, the discriminator performs binary
classification between true samples (assign label 1) vs fake samples
(assign label 0)

Optimal discriminator:

pdata(x)
pdata(x) + PG (X)

De(x) =
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Training the Generator

Training objective for generator

min V(G, D) = Exvpyaia 108 D(X)] + Exps[log(1 — D(x))]

@ For the optimal discriminator D (-), we have

V(G, Dg(x))
. Pdata(X) PG (x)
T Eprdata |:|Og Pdata(%x)‘i‘PG(x)] T EXNPG |:|Og Pdata(’%"‘PG (x):|

_ Pdata(X) P (x) —
= Exvpaata llog pdata(x)+pc<x)] + Ex~pg ['og pdata(x)+pc<x)} log 4
2 2

Pdata + PG
2

Pdata + PG
2

] + Dk [PG,

-~

2x Jenson-Shannon Divergence (JSD)

= 2D sp[pdata, Pc] — log 4

— DKL [pdataa ] - |0g4

[Slides from Ermon and Grover]
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More About Divergences

Also known as the symmetric KL divergence

1 + +
Dysplp, q] = 5 (DKL [P, %] + Dkt [q, %])

@ Properties
¢ DJSD[p7 q] >0
o Dysp[p,q] =0iff p=gq
o Dysp[p,q] = Dyspla, pl
o +/Dysp[p, q] satisfies triangle inequality — Jenson-Shannon Distance

e Optimal generator for the JSD /Negative Cross Entropy GAN

PG = Pdata

[Slides from Ermon and Grover]
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GAN Training

@ Sample minibatch of m training points x(I), x(2) ... x(m from D

.. . i Optimization:
@ Sample minibatch of m noise vectors z(1),2(2) ... z(M from p, mg‘xmgmv(g’p) Gglmlza on
: . Fix generator, and update discriminator
@ Update the generator parameters 6 by stochastic gradient descent 9 P

@ Fix discriminator, and update generator

m
VoV(Go. Dg) = — V> log(1 — Dy(Go(2"))) Rendor
= @ﬂ Generator
@ Update the discriminator parameters ¢ by stochastic gradient ascent lgﬂ N J—' Roeral
0.9 fake

Vs V(Gr, D) = - 3 llog Dy(x?) + log(1 — Dy(Go(z7)))]
i=1

@ Repeat for fixed number of epochs

[Slides from Ermon and Grover]
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Summary: Generative Models

Likelihood-based

1. VAEs — approximate inference Fast & easy Lower generation
via evidence lower bound to train quality

2. Autoregressive models — exact Easy to train, Slow to
inference via chain rule exact likelihood sample from

3. Flows — exact inference via Easy to train, Constrained
invertible transformations exact likelihood architecture
Likelihood-free

1. GANs — discriminative real vs High generation Hard to train,
generated samples quality can’t get features

One last model: diffusion models in next lecture.
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Summary

disentanglement_lib
[Locatello et al., ICML 2019]

(1) Multimodal discriminative factor
models the label and variations across both language and vision

“This movie is
great”

(2) Language generative factor
models variations within language

“That movie was
awesome”

[Tsai et al., ICLR 2019]
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External Force

The policy is able to recover

from external pushes on the arm.

T)%I 12)'\1‘
r k3
T |
A I |
sl | a small bird !
Ll it | with a white
@ D apd _____ > breast and !
L e ity blue wings
beak | 85 |
| |
(e
text text
ek o it bt o e i e T i e e e
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. | this bird has a grey side | a small bird with a white
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(b) ©

[Qiao et al., CVPR 2019]




More Resources

https://lilianweng.qgithub.io/tags/generative-model/
https://yang-song.net/blog/2021/score/

https://blog.eviang.com/2018/01/nf1.html & https://blog.eviang.com/2018/01/nf2.html
https://deepgenerativemodels.github.io/syllabus.html
https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html
https://cvpr2022-tutorial-diffusion-models.qgithub.io/
https://huggingface.co/blog/annotated-diffusion
https://calvinyluo.com/2022/08/26/diffusion-tutorial.html
https://imtomczak.qgithub.io/blog/1/1_introduction.html
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https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://blog.evjang.com/2018/01/nf1.html
https://blog.evjang.com/2018/01/nf2.html
https://deepgenerativemodels.github.io/syllabus.html
https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html
https://cvpr2022-tutorial-diffusion-models.github.io/
https://huggingface.co/blog/annotated-diffusion
https://calvinyluo.com/2022/08/26/diffusion-tutorial.html
https://jmtomczak.github.io/blog/1/1_introduction.html

