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Administrative Stuff



Reading Assignments are Back!

= Four main steps for the reading assignments
» Monday 8pm: Official start of the assignment
= Wednesday 8pm: Select your paper
= Friday 8pm: Post your summary
= Monday 8pm: Post your extra comments (5 posts)

= 4 papers: multimodal multi-hop reasoning, multimodal geometric
reasoning, multimodal robotics, multimodal knowledge bases.
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Final Project Report (Due Sunday 12/11 at 8pm)

Main goals:

1. Produce a research paper which will motivate your research problem,
describe the prior work, present your research contributions, explain the

details of your experiments, and discuss your results.
2. Novel research ideas (N-1 new ideas for N students)

= Novel algorithm
= Novel application

3. Incorporate feedback from previous milestones

4. Compare to multimodal baselines from midterm report
1. Did the proposed ideas solve the errors highlighted in error analysis?
2. Broader implications of proposed ideas.
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Final Project Report (Due Sunday 12/11 at 8pm)

Some suggestions:

= Proposed ideas
= Explain how it tackles the challenges identified through error analysis
* Formally explain the method and novelty
= Experimental setup
= Datasets, metrics, baselines, methodology
= Ablation studies
= Results

= One subsection for each research question

= The most important part is the discussion: what do the results mean, what
implications they have, how should they be interpreted in the broader
context?
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Final Project Report (Due Sunday 12/11 at 8pm)

Some suggestions:
= (Clear motivated research questions
= (Clear ablation studies, revisit error analysis, add visualizations

= Not about results, but discussion
= |f it works, why does it work
= |fit doesn’t idea, why did it not work and how can we fix it
= |f your dataset is too large:
= You can use a subset of your data or train for fewer epochs
= But be consistent between experiments

= 3 students: 8 pages, 4 students: 9 pages, 5 students: 10 pages, 6
students: 11 pages

Language Technologies Institute 6



Final Project Presentations (Tuesday 12/6 and Thursday 12/8)

Main objective:
= Present your research ideas and get feedback from classmates
= Focus on only one of your new research ideas
= All students should present and answer questions
= Be sure to be on time! We have many presentations each day ©
= All presentations are in person (no remote presentations)

Presentation length:
= 30-seconds elevator pitch
= 4-minute full presentation — all students should present

* Following each presentation, audience will be asked to share feedback
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Final Project Presentations (Tuesday 12/6 and Thursday 12/8)

We will give more details about grading, presentation order, etc.
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11-877 Next Semester!

Advanced Topics in MultiModal
Machine Learning

11-877 » Spring 2022 + Camegie Mellon University

S
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Multimodal machine learning (MMML) is a vibrant multi-disciplinary research field which addresses some of the
original goals of artificial intelligence by integrating and modeling multiple communicative modalities, including
language, vision, and acoustic. This research field brings some unique challenges for multimodal researchers given
the heterogeneity of the data and the contingency often found between modalities. This course is designed to be a
graduate-level course covering recent research papers in multimodal machine learning, including technical challenges
with representation, alignment, reasoning, generation, co-learning and quantifications. The main goal of the course is
to increase critical thinking skills, knowledge of recent technical achievements, and understanding of future research
directions.

« Time: Friday 10:10-11:30 am

« Location: Virtual for the first 2 weeks (find zoom link in piazza), GHC 5222 thereafter

« Discussion and Q&A: Piazza

« Assignment submissions: Canvas (for registered students only)

« Contact: Students should ask all course-related questions on Piazza, where you will also find announcements.

Instructor Amir Zadeh
Email: abagherz@cs.cmu.edu

Instructor Louis-Philippe Morency
A Email: morency@cs.cmu.edu

Instructor Paul Liang
Email: pliang@cs.cmu.edu

1/28 Week 2: Cross-modal interactions [synopsis]

What are the different ways in which modalities can interact with each other
in multimodal tasks? Can we formalize a taxonomy of such cross-modal
interactions, which will enable us to compare and contrast them more
precisely?

What are the design decisions (aka inductive biases) that can be used when
modeling these cross-modal interactions in machine learning models?
What are the advantages and drawbacks of designing models to capture
each type of cross-modal interaction? Consider not just prediction
performance, but tradeoffs in time/space complexity, interpretability, etc.
Given an arbitrary dataset and prediction task, how can we systematically
decide what type of cross-modal interactions exist, and how can that inform
our modeling decisions?

Given trained multimodal models, how can we understand or visualize the
nature of cross-modal interactions?

2/4  Week 3: Multimodal co-learning [synopsis]

What are the types of cross-modal interactions involved to enable such co-
learning scenarios where multimodal training ends up generalizing to
unimodal testing?

What are some design decisions (inductive bias) that could be made to
promote transfer of information from one modality to another?

How do we ensure that during co-learning, only useful information is
transferred, and not some undesirable bias? This may become a bigger
issue in low-resource settings.

How can we know if co-learning has succeeded? Or failed? What
approaches could we develop to visualize and probe the success of co-
learning?

How can we formally, empirically, or intuitively measure the additional
information provided by auxiliary modality? How can we design controlled
experiments to test these hypotheses?

What are the advantages and drawbacks of information transfer during co-
learning? Consider not just prediction performance, but also tradeoffs with
complexity, interpretability, fairness, etc.

https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/

Language Technologies Institute

Does my multimodal model learn cross-modal
interactions? It's harder to tell than you might think!
What Does BERT with Vision Look At?
Multiplicative Interactions and Where to Find Them
Cooperative Learning for Multi-view Analysis
Vision-and-Language or Vision-for-Language? On
Cross-Modal Influence in Multimodal Transformers
Seeing past words: Testing the cross-modal
capabilities of pretrained V&L models on counting
tasks

Multimodal Prototypical Networks for Few-shot
Learning

SMIL: Multimodal Learning with Severely Missing
Modality

Multimodal Co-learning: Challenges, Applications
with Datasets, Recent Advances and Future
Directions

Vokenization: Improving Language Understanding
with Contextualized, Visual-Grounded Supervision
What Makes Multi-modal Learning Better than Single
(Provably)

Found in Translation: Learning Robust Joint
Representations by Cyclic Translations Between
Modalities

Zero-Shot Learning Through Cross-Modal Transfer
12-in-1: Multi-Task Vision and Language
Representation Learning

A Survey of Reinforcement Learning Informed by
Natural Language



https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/

Generative Adversarial Networks

Beyond likelihood-based learning:
Difficulty in evaluating and optimizing p(x) in high-dimensions
High p(x) might not correspond to realistic samples

eeM

Model family
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Generative Adversarial Networks

S1= {x~P}

Given a finite set of samples from two distributions, how can we tell if
these samples are from the same distribution? (i.e. P = Q?)
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Generative Adversarial Networks

A 2 player minimax game between a generator and a discriminator

Gg

Generator: a directed latent variable model from z to x
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Generative Adversarial Networks

A 2 player minimax game between a generator and a discriminator

Dy

Discriminator: any function (e.g. neural network) that tries to distinguish
‘real’ samples from the datasets from ‘fake’ samples generated by the model
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GAN Training

Training objective for discriminator:
max V(G, D) = Exxpyuallog D(X)] + Exvpglog(1 — D(x))]

For a fixed generator G, the discriminator performs binary
classification between true samples (assign label 1) vs generated

samples (assign label 0)

Training objective for generator:
min V(G, D) = Exvpyaia108 D(X)] + Exps[log(1 — D(x))]

= Exvpsllog(l — D(x))]

Generator attempts to fool the discriminator to assign high likelihood
to generated samples
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GAN Training

@ Sample minibatch of m training points x(I), x(2) ... x(m from D

.. . i Optimization:
@ Sample minibatch of m noise vectors z(1),2(2) ... z(M from p, mg‘xmgmv(g’p) Gglmlza on
: . Fix generator, and update discriminator
@ Update the generator parameters 6 by stochastic gradient descent 9 P

@ Fix discriminator, and update generator

m
VoV(Go. Dg) = — V> log(1 — Dy(Go(2"))) Rendor
= @ﬂ Generator
@ Update the discriminator parameters ¢ by stochastic gradient ascent lgﬂ N J—' Roeral
0.9 fake

Vs V(Gr, D) = - 3 llog Dy(x?) + log(1 — Dy(Go(z7)))]
i=1

@ Repeat for fixed number of epochs

[Slides from Ermon and Grover]
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Summary: Generative Models

Likelihood-based

1. VAEs — approximate inference Fast & easy Lower generation
via evidence lower bound to train quality

2. Autoregressive models — exact Easy to train, Slow to
inference via chain rule exact likelihood sample from

3. Flows — exact inference via Easy to train, Constrained
invertible transformations exact likelihood architecture
Likelihood-free |

1. GANs — discriminative real vs High generation Hard to train,
generated samples quality can’t get features
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Diffusion Models

po(zo|z1) po(zt-1|Tt)  po(Tt|Tit1) po(zr_1|lzT)  Reverse diffusion
£ A N £ process
N_7
q(xr|er_1) Diffusion process

Encoding via adding noise:  q(x; | ®t—1) = N(@4;v/ozxi—1,(1 — a)I)  Noise parameters

Decoding via denoising: p(zo.r) = p(zr) | [ po(®io1 | @) where p(xr) = N (21;0,1)

t=1
[Tutorial by Calvin Luo and Yang Song]
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Diffusion Models

Generative modeling via denoising

p0(330|3?1) po(fvt—1|ﬂ?t) P0($t|ﬂ3t+1) po(fUT—1|37T)

q($1|$0) Q($t|33t—1) Q($t+1|5€t) Q(»’UT‘$T—1)

Similar to variational autoencoder, but:

1. The latent dimension is exactly equal to the data dimension.

2. Encoder g is not learned, but pre-defined as a Gaussian distribution centered
around the output of previous timestep.

3. Gaussian parameters of latent encoders vary over time such that distribution of
final latent is a standard Gaussian.

[Tutorial by Calvin Luo and Yang Song]
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Learning Diffusion Models

Key idea: use variational inference

po(xo|T1) po(Ti—1]z¢)  po(Tt|Tis1) po(Tr—1|TT)
q($1|$0) Q($t|fl7t—1) Q($t+1|37t) Q(xT‘$T—1)
p(wo:T) ]
logp(x) > Ey(e: iz |10
gp( )— q(x1.7|T0) [ gC_I(iBl:T | 5130)
= Eq(@1|ao) 08 po(To | 21)] — Drlg(@r | o) || p(r))
reconstru‘crtion term prior ma':c?ling term
T
- Z{Eq(mamo) DkL(g(zi—1 | Tt o) || po(xi—1 | 24))]

t=2 Vv

denoising matching term

[Tutorial by Calvin Luo and Yang Song]
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Learning Diffusion Models

Key idea: use variational inference

q(@e-1|ze; x0)  q(Te|Te41, T0)

po(xo|z1) po(xe—1lTt)  po(Tt|Trs1) po(xr—_1|TT)

— P £ N

N_7 N T 7T N_7T

q(l“ﬂfl?o) Q(xt‘xt—l) Q($t+1‘$t) (J(IT’J?T—l)
T
— Y Eywilzo) [PrL(q(@i-1 | T, 0) || po(@i—1 | 2))]
t=2 v

denoising matching term

[Tutorial by Calvin Luo and Yang Song]
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Learning Diffusion Models

B ZEQ(mt|wo) [Dkr(g(@i—1 | 24, %0) || po (-1 | mt))l

t=2 R
denoising matching term

Reparameterization as adding noise:

xT; = Joyxi_1 ++1— oze with e ~ N(€;0,1)
g(xi_1 | T2, @) = q(xy | i1, T0)q(Ti—1 | To) Li_1 = \/O4_1Ts_9 + \/1 — Q1€ with € ~ N(E; 0, I)

q(z¢ | zo)
z; ~ N (245 vVarxo, (1 — ) I)

Essentially this is proportional to a Gaussian N (iL’t—1; Py, g (t))

po(Ti—1 | 1) =N (xs—1; g, Xq (t)) Also parameterize this as a Gaussian model
argeminDKL(q(:ct_l | ¢, x0) || po(Ti—1 | Tt))

— argeminDKL (N (wt_1; Ky, Zq (t)) || N(wt—l; Mg, Zq (t)))

= argmin ;3 [0 — 1|
_arg;nm 202@) Ko — Kgll,

[Tutorial by Calvin Luo and Yang Song]
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Learning Diffusion Models

B ZEQ(mt|wo) [Dkr(g(@i—1 | 24, %0) || po (-1 | mt))l

t=2 R
denoising matching term

Vor(l —ae—1)xe + /—1(1 — at)xo

q(Ti—1 | 1, o) = N (mt_l;uq, pI (t)) “’q(mta ZB()) — 1—ay
ar(l —ap—1)xe + /or—1(1 — o) g (T, 1)
po(Ti—1 | 1) = N (x1—1; pg, g (1)) po(Ts,t) = vor s

Neural network to predicts perfect image x,
from noisy image x; at time t.

arggﬂinDKL(Q(th—l | iL’t,iL’o) || pe(wt—1 | mt))

= arg;ninDKL (N (@15 195 g (1)) [| N (@115 129, Zq (1))

. 1 5475_1(]. — let)z
— arg min

o 202(t) (1— )

[ECOEEN
[Tutorial by Calvin Luo and Yang Song]
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Learning Diffusion Models

p9($0|$1) pe(xt—1|$t) p9($t|33t+1) pe(iUT—1|33T)

ORI

N_7T N T _7 N_7

q(w1|wo) q(ze|ri-1) q(Tey1]Te) q(zr|rr-1)
T
logp(x) 2 Eq(ay|ao) 108 po(xo | 21)] — Dkr(q(xr | o) || p(2T)) Z g(ai|zo) [PrL(q(@t—1 | Tt, o) || Po(®t—1 | X1))]
reconstru‘crtion term prior mat‘c?nng term t=2" denoising m:tching term
T
arg;nin > Eqaslzo) [PRL(q(Te—1 | T4, 0) || po(@i—1 | @1))]
t=2

. 1 a1l —on)? gy, 2
— K Eq(e,|z — [ 1) — ]
argemln t~U{2,T} [ q(xt|zo) [203(75) (1 — a)2 |Z6 (@, t) — @oll5

[Tutorial by Calvin Luo and Yang Song]
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Learning Noise Parameters

q(xs | Ti—1,@0) = q(x¢ | T4—1) = N(24; Vsxs—1, (1 — a)I)
Reparameterization:

T = \Joyxyi_1 + 1 — aze with e ~ N(€;0,1)
Tt 1 = \/Ot_1L¢_2 + \/1 — Op—1€ with € ~ N(G, O, I)

x; ~ N (x5 Varxo, (1 — a;)I)

O_Zt:Hsz' Choose (X1 > +++ > QUT
)

i.e., add smaller noise at the beginning of the diffusion process and
gradually increase noise when the samples get noisier.

[Tutorial by Calvin Luo and Yang Song]
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Diffusion Models Interpretations

3 related interpretations:

1. Learning a model to predict original image x, from noisy image x; at timestep t.

Vor(l —ae—1)®e + /—1(1 — ar)xo

q(@e1 | 20, 0) = N (@1_1; g, Zq (1)) po (e, o) = —a,
ar(l —ap—1)xe + /or—1(1 — o) Tg (s, 1)
po(Ti—1 | ) = N (Ti—1; g, 34 (1)) Ne(mta t) — \/_ 1— a

2. Learning a model to predict the noise ¢; added at timestep t.
q(xs | T1—1,®0) = q(zs | 1) = N(24; Vosxs—1, (1 — a)I)
x; = \Jorxi_1 + V1 — oze with e ~ N(€;0,1)
z; = /ouxo + V1 — areo
Vor (1l —ai—1)xe + /ou—1(1 — o) o

,'l’q(mta wO) — 1 1— 8% N

1 —a po(Xy, t) = ——x — = €0
1 1— oy ' ol ) \/ Ol V1 — o /oy

= —X —

= €0
\/ Ot \/l—at,/at
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Diffusion Models and Score-based Models

3 related interpretations:

3. Learning a model to predict the score function — these are good because they don’t need to be normalized!

Ep(x) [||39(€13) — Vlogp(w)llg]

score
10,

-10 -5
[Tutorial by Yang Song]
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Diffusion Models and Score-based Models

3 related interpretations:

3. Learning a model to predict the score function: score matching

Ep(x) [||89(€13) — Vlogp(w)llg]
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Diffusion Models and Score-based Models

Using the score function to sampling with Langevin dynamics
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Diffusion Models and Score-based Models

4

|

Score-based models

¢ .

2 n

Data samples

{X17X27 e 7XN} 1}\’ p(X)

[Tutorial by Yang Song]
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Data scores Estimated scores

Data density

th score-based models
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Diffusion Models and Score-based Models
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Diffusion Models and Score-based Models
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Diffusion Models and Score-based Models
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Diffusion Models as Differential Equations

From discrete diffusion process to continuous diffusion process
- Higher quality samples s s -

Exact log-likelihood = e O
- Controllable generation B SR

[Tutorial by Yang Song]
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Diffusion Models as Differential Equations

From discrete diffusion process to continuous diffusion process

Forward SDE (data — noise)

x(0) dx = f(x,t)dt + g(t)dw

score function

£0x,1) — 6 (£)Vx log e (x)

Reverse SDE (noise — data)

| S

dt + g(t)dw

Think ‘infinite-layer’ latent variable model

[Tutorial by Calvin Luo and Yang Song]
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Diffusion Models as Differential Equations

From discrete diffusion process to continuous diffusion process

[Tutorial by Calvin Luo and Yang Song]
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Conditioning Diffusion Models

1. Directly training diffusion models with conditional information

p(zor) = p(er) | [ po(®iz1 | @) —— p(wo.r | y) =p(z7) | [ po (i | 2,7)

1. Conditional original image prediction Lo(xt,t,y) = o
2. Conditional noise prediction €o(Tt,1,Y) = €
3. Conditional score function estimation  sg(x¢,t,y) ~ Vlogp(x; | y)

[Tutorial by Calvin Luo and Yang Song]
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Text-to-Image Generation

1. Directly training diffusion models with conditional information
Conditional latent variables are pretrained CLIP embeddings, then diffusion model to

generate image.
@ CLIP encoder

CLIP é
C—
] encoder
@ Autoregressive model

An armchair in l

the shape of an — | 1&Xt | A NN\ — 0900 Ce:rlﬁlbpeigi?r?:

encoder

avocado. l
Diffusion
model \

@ Generation

[Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022]
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Text-to-Image Generation with Latent Diffusion

1. Directly training diffusion models with conditional information
Diffusion process in latent space instead of pixel space — faster training and inference.
Use autoencoder for perceptual compression, diffusion model for semantic compression.

20

— Autoencoder+GAN

20 Semantic Compression Latent Space Conditioning
g — Generative Model: . L Diffusion Process ) emanti
5 60 Latent Diffusion Model (LDM) l Ma; |
- Denoising U-Net €g 2T Text
s
-f§ =0 Perceptual Compression Repres
2 I - entations
Z

-

6

o
®
°
®
®
®
®

0 0.5 1 i3
Rate (bits/dim)

B R B =

denoising step crossattention  switch  skip connection concat - J

Pixel Space

[Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022]
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Text-to-Image Generation with Latent Diffusion

Text-to-Image Synthesis on LAION. 1.45B Model.

’A street sign that reads ’A zombie in the "An image of an animal "An illustration of a slightly ’A painting of a ’A watercolor painting of a ’A shirt with the inscription:

“Latent Diffusion” ’ style of Picasso’ half mouse half octopus’ conscious neural network’ squirrel eating a burger’ chair that looks like an octopus’ “I love generative models!” ’

)

i iy,
LATENT
DIFFUSION

Generative
Models!

[Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022]
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Text-to-Image Generation with Latent Diffusion

Semantic Synthesis on Flickr-Landscapes [21]

[Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022]
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Text-to-Image Generation with Latent Diffusion

- . P . ——

R g

[Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022]
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Conditioning Diffusion Models

2. Training unconditional diffusion model then classifier guidance

Viegp(z: |y) = Vlegp(z:) + vVlogp(y | z¢)

unconditional score classifier gradient
shiny > y =+1
delicious > Yy =+1

terrible > y=-1

!

Pretrained

Pt 1
@00

The food tastes

[Tutorial by Calvin Luo and Yang Song]
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Conditioning Diffusion Models

3. Training unconditional diffusion model then classifier-free guidance

Vliogp(z: | y) = Viogp(xt) + v (Viegp(z: | y) — Vg p(xt))
= Vlogp(x:) +vVlogp(x: | y) — vV log p(z:)
= yVlogp(z: | y) + (1 — 7)Vlogp(z:)

7 \ - s

' '
conditional score unconditional score

2 separate diffusion models, one conditional and one unconditional?

Just 1 diffusion model, unconditional training can be seen as setting y=constant

See empirical comparison by GLIDE paper — classifier-free guidance is more preferred

[Nichol et al., GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. arXiv 2022]
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Summary: Generative Models

Likelihood-based

1. VAEs — approximate inference Fast & easy Lower generation
via evidence lower bound to train quality

2. Autoregressive models — exact Easy to train, Slow to
inference via chain rule exact likelihood Sample from

3. Flows — exact inference via Easy to train, Constrained
invertible transformations exact likelihood architecture

.4. Diffusion_ model - apprqximate High generation Slow to
inference via modeling noise quality sample from

Likelihood-free
1. GANs — discriminative real vs High generation Hard to train,
generated samples quality can’t get features
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Summary: Conditioning and Controlling Generative Models

1. Disentanglement Ls(X) = Eq,zx[log pa(X|2)] — B8 - KL(q4(2]x)|[p(2))
T
2. Conditioning p(iBO:T | y) = p(a:T) Hpg(a:t_l | T, y)
t=1
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Summary: Conditioning and Controlling Generative Models

1. Disentanglement Blue
!
2. Conditioning Adapted + pretrained p(xlc)
rFt t 11t

3. Prompt tuning
Adapter Pretrained p(x)

bttt
AA 00000

N
NI : i
& T E :

What color is the car?
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Summary: Conditioning and Controlling Generative Models

1. Disentanglement

2. Conditioning B ]

3. Prompt tuning p(x) / » Shift

Pretrained I

4. Representation tuning T T T T

Attention

_—1
@ A
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Summary: Conditioning and Controlling Generative Models

1. Disentanglement Ls(X) = Eq, 210 [l0g po(x|2)] — B - KL(g¢(z|X)||p(2))
T

2. Conditioning p(xo.7 | y) = p(xT) Hpg(a:t_l | 1, y)
t=1

3. Prompt tuning

4. Representation tuning

Vi = VI Vi
5. Classifier gradient tuning ogp(@: | y) ~ ng(mtz T ogP(y | 331:2

~~

unconditional score classifier gradient
N | Viogp(z: | y) = yViogp(x: | y) + (1 — v)V log p(x;)
6. Classifier-free tuning ~ ~ ~ ~ ~
conditional score unconditional score
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Open
challenges

Open Challenges

Definition: Simultaneously generating multiple modalities to increase information
content while maintaining coherence within and across modalities.

Recall
Cross-modal interactions representation &
alignment!
Big dog on the beach. Waves crashing, people playing volleyball, ...
Cross-modal interactions
‘woof’ ‘crash’ ‘bounce’ ‘wWhoosh’
—
. Recall
Temporal + causal + logical structure i
reasoning!
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Open
challenges

Open Challenges

1. Synchronized generation over multiple modalities.

2. What’s special about diffusion models from multimodal perspective?

2. Combining generation with explicit reasoning to enable compositional generation.
3. Better representation fusion and alignment in generation.

4. More control over large-scale generative models, fine-grained + few-shot control.
5. Human-centered evaluation of generative models.

More resources:

https://lilianwengq.qgithub.io/tags/generative-model/
https://yang-song.net/blog/2021/score/

https://blog.eviang.com/2018/01/nf1.html & https://blog.eviang.com/2018/01/nf2.html
https://deepgenerativemodels.github.io/syllabus.html
https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html
https://cvpr2022-tutorial-diffusion-models.qgithub.io/
https://huggingface.co/blog/annotated-diffusion
https://calvinyluo.com/2022/08/26/diffusion-tutorial.html
https://imtomczak.qgithub.io/blog/1/1_introduction.html

Language Technologies Institute 50



https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://blog.evjang.com/2018/01/nf1.html
https://blog.evjang.com/2018/01/nf2.html
https://deepgenerativemodels.github.io/syllabus.html
https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html
https://cvpr2022-tutorial-diffusion-models.github.io/
https://huggingface.co/blog/annotated-diffusion
https://calvinyluo.com/2022/08/26/diffusion-tutorial.html
https://jmtomczak.github.io/blog/1/1_introduction.html

Transference

Definition: Transfer knowledge between modalities, usually to help the
primary modality which may be noisy or with limited resources

Sub-challenges:
Transfer Co-learning Model Induction
y ‘ 1 2
I : 1 I
—1 i
I f (R f |
A O A O A O
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Sub-Challenge 5a: Transfer via Pretrained Models

Definition: Transferring knowledge from large-scale pretrained models to downstream
tasks involving the primary modality.

rTTTEEEES
( Y \
T |

I [ Knowledge in the form
O) I Adapt of network parameters
lg T . | I
3 | !
g | | e.g. BERT
| | |

| A AAAA 0000

N o _ ModaiyA Modality B
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Sub-Challenge 5a: Transfer via Pretrained Models

Transfer via prefix tuning This is a dax.

Pttt

Few-shot image

classification: Adapted + pretrained
rt+tt tttt ot
Adapter Adapter Adapter

rt+ ottt
AA OGO AAOGO AAOGO

M»” N4 This is a Question:
. ] blicket. What is

‘ ! this?
Answer:

N dax.

[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurlPS 2021]
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Sub-Challenge 5a: Transfer via Pretrained Models

Transfer via representation tuning

With positive AV
Without AV

|
|
o
|
|
! |
|
» Shift |
|
FIOLERER I | ~ With negative AV
| e
|
|
|
|
|
|
|
|

P 111

Attention
Q000
_—1

@ A

[Ziegler et al., Encoder-Agnostic Adaptation for Conditional Language Generation. arXiv 2019]

Lexical Space

[Rahman et al., Integrating Multimodal Information in Large Pretrained Transformers. ACL 2020]
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Sub-Challenge 5a: Transfer via Pretrained Models

1. Disentanglement Ls(X) = Eq, 210 [l0g po(x|2)] — B - KL(g¢(z|X)||p(2))
T

2. Conditioning p(xo.7 | y) = p(xT) Hpg(a:t_l | 1, y)
t=1

3. Prompt tuning

4. Representation tuning

Vi = VI Vi
5. Classifier gradient tuning ogp(@: | y) ~ ng(mtz T ogP(y | 331:2

~~

unconditional score classifier gradient
N | Viogp(z: | y) = yViogp(x: | y) + (1 — v)V log p(x;)
6. Classifier-free tuning ~ ~ ~ ~ ~
conditional score unconditional score
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