

Language Technologies Institute

Multimodal Machine Learning

Lecture 11.2: Transference 2 – Co-learning and Co-training Paul Liang

> * Co-lecturer: Louis-Philippe Morency. Original course co-developed with Tadas Baltrusaitis. Spring 2021 edition taught by Yonatan Bisk

- Four main steps for the reading assignments
 - Monday 8pm: Official start of the assignment
 - Wednesday 8pm: Select your paper
 - Friday 8pm: Post your summary
 - Monday 8pm: Post your extra comments (5 posts)
- 4 papers: multimodal multi-hop reasoning, multimodal geometric reasoning, multimodal robotics, multimodal knowledge bases.

Main goals:

- 1. Produce a research paper which will motivate your research problem, describe the prior work, present your research contributions, explain the details of your experiments, and discuss your results.
- 2. Novel research ideas (N-1 new ideas for N students)
 - Novel algorithm
 - Novel application
- 3. Incorporate feedback from previous milestones
- 4. Compare to multimodal baselines from midterm report
 - 1. Did the proposed ideas solve the errors highlighted in error analysis?
 - 2. Broader implications of proposed ideas.

Main objective:

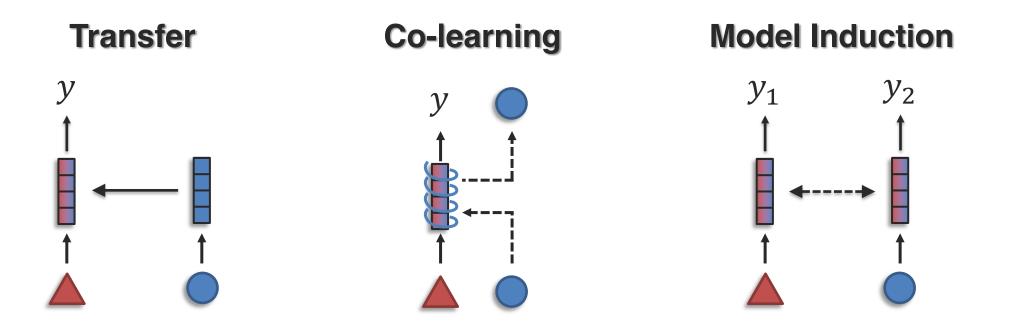
- Present your research ideas and get feedback from classmates
- Focus on only one of your new research ideas
- All students should present and answer questions
- Be sure to be on time! We have many presentations each day ③
- All presentations are in person (no remote presentations)

Presentation length:

- 30-seconds elevator pitch
- 4-minute full presentation all students should present
- Following each presentation, audience will be asked to share feedback

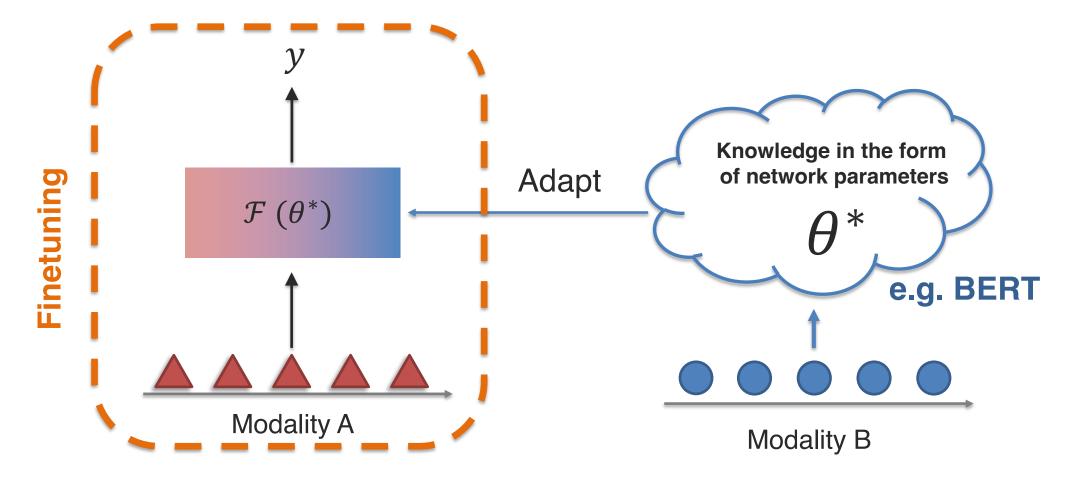
Definition: Transfer knowledge between modalities, usually to help the primary modality which may be noisy or with limited resources

Sub-challenges:

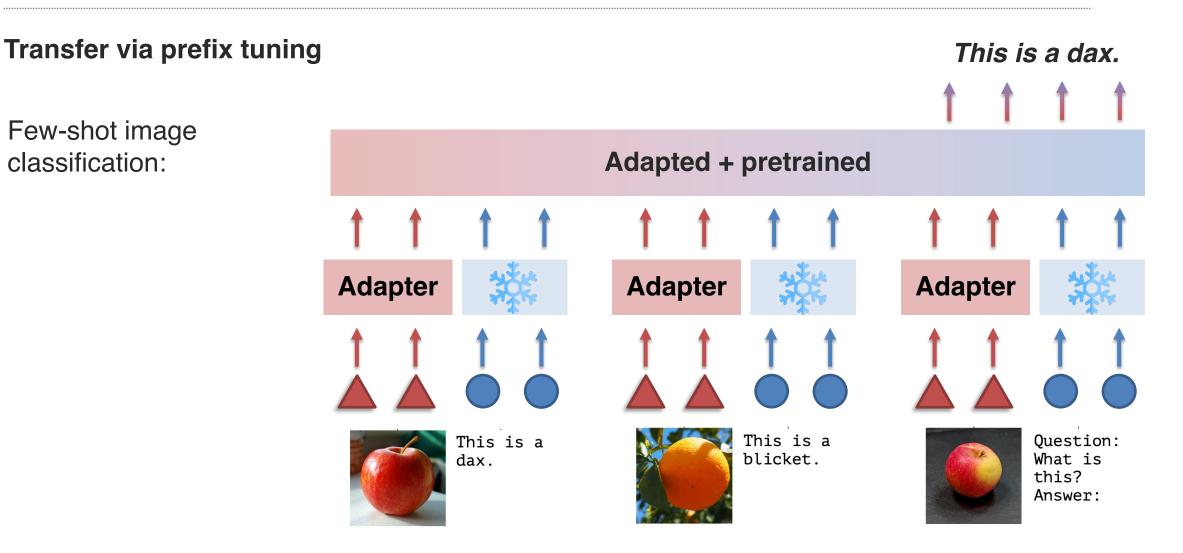


勜

Definition: Transferring knowledge from large-scale pretrained models to downstream tasks involving the primary modality.

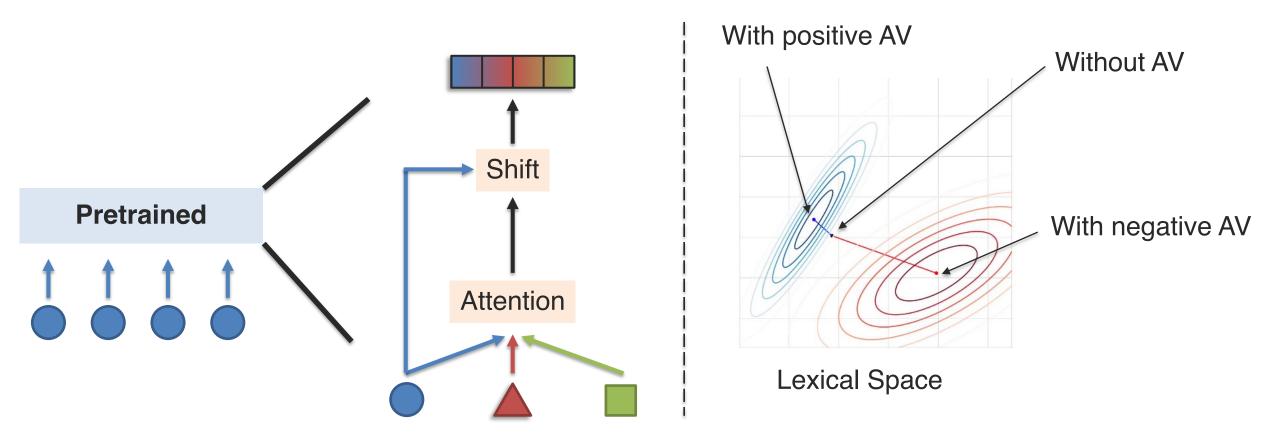


勞



[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurIPS 2021]

Transfer via representation tuning



[Ziegler et al., Encoder-Agnostic Adaptation for Conditional Language Generation. arXiv 2019] [Rahman et al., Integrating Multimodal Information in Large Pretrained Transformers. ACL 2020]

1. Disentanglement

$$\mathcal{L}_{\beta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta \cdot \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

 \mathbf{T}

2. Conditioning

$$p(\boldsymbol{x}_{0:T} \mid y) = p(\boldsymbol{x}_T) \prod_{t=1}^{I} p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t, y)$$

3. Prompt tuning

4. Representation tuning

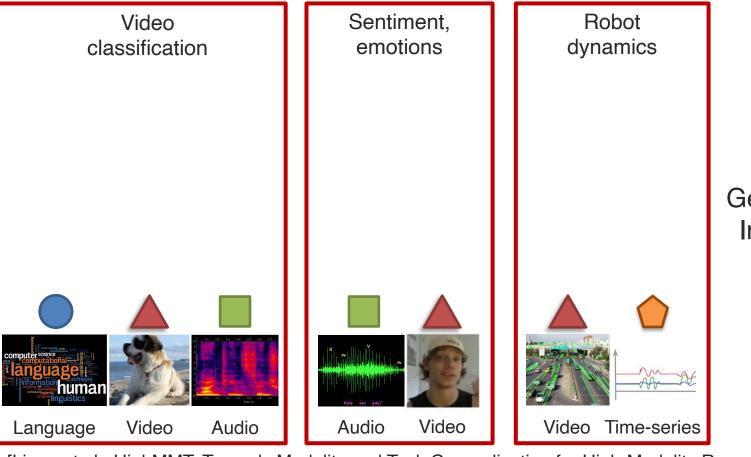
5. Classifier gradient tuning

6. Classifier-free tuning

$$\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{y}) = \underbrace{\nabla \log p(\boldsymbol{x}_t)}_{\text{unconditional score}} + \gamma \underbrace{\nabla \log p(\boldsymbol{y} \mid \boldsymbol{x}_t)}_{\text{classifier gradient}}$$
$$\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{y}) = \underbrace{\gamma \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{y})}_{\text{conditional score}} + \underbrace{(1 - \gamma) \nabla \log p(\boldsymbol{x}_t)}_{\text{unconditional score}}$$

勜

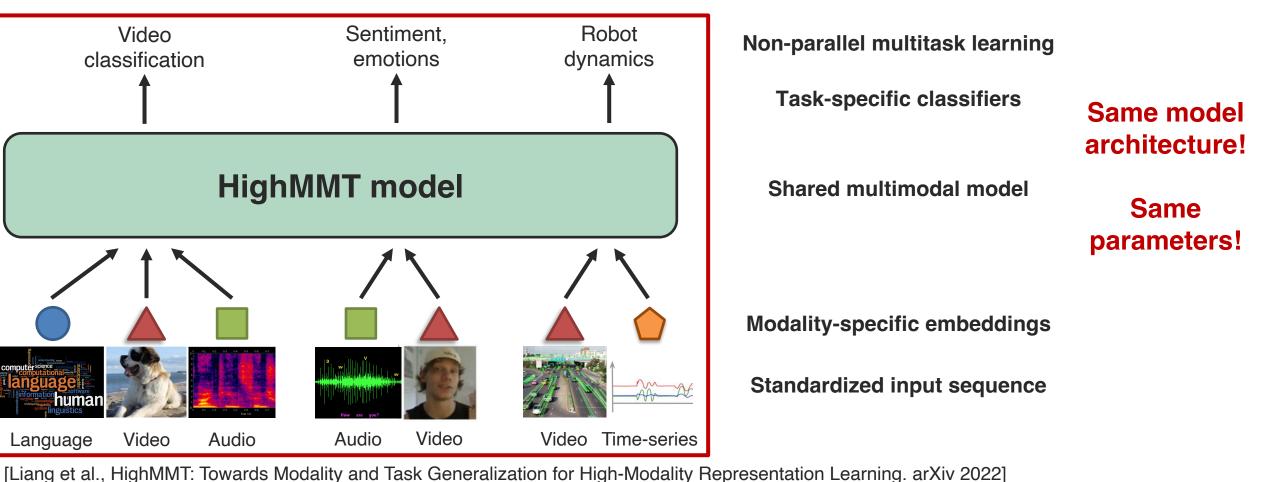
How can we transfer knowledge across multiple tasks, each over a different subset of modalities?



Generalization across modalities and tasks Important if some tasks are low-resource

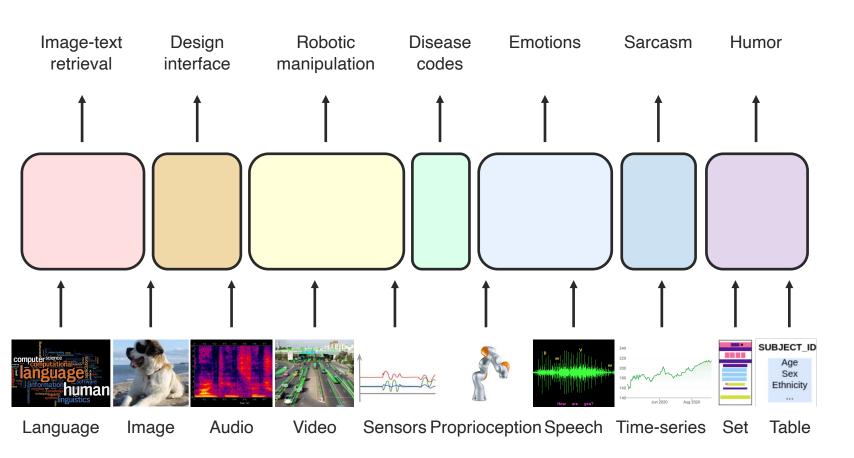
Transfer across partially observable modalities

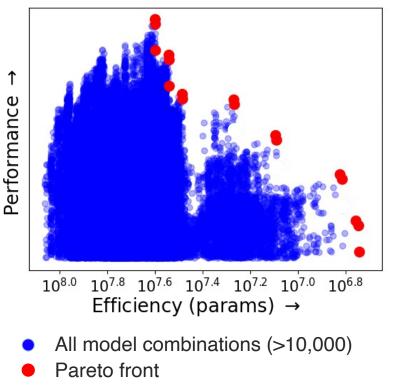
HighMMT: unified model + parameter sharing + multitask and transfer learning



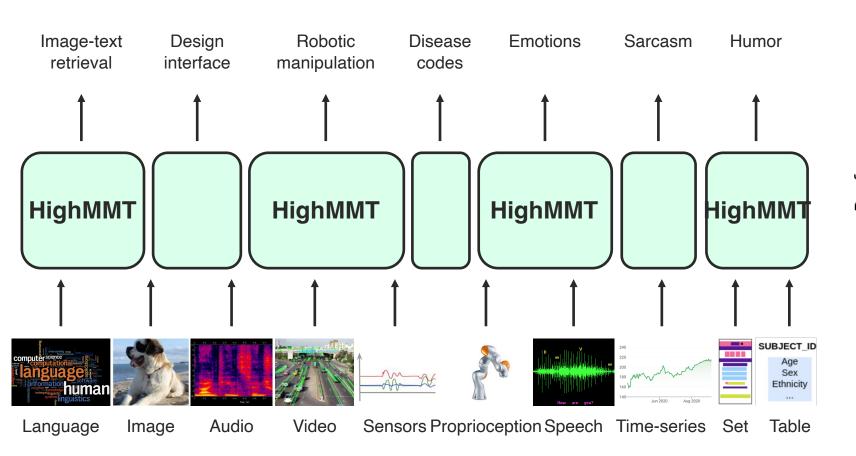
Language Technologies Institute

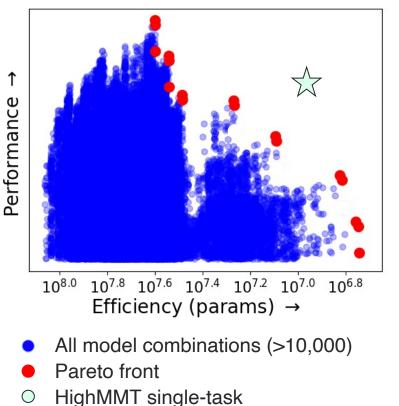
Traditional approaches: different model + different parameters





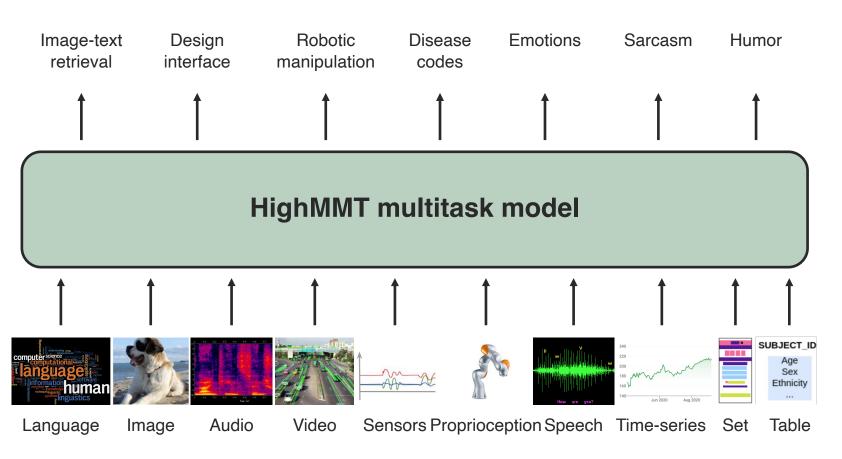
Traditional approaches: different model + different parameters

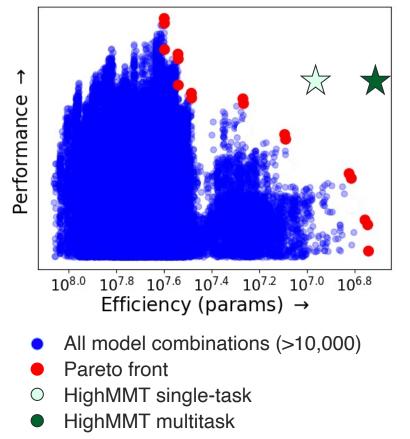




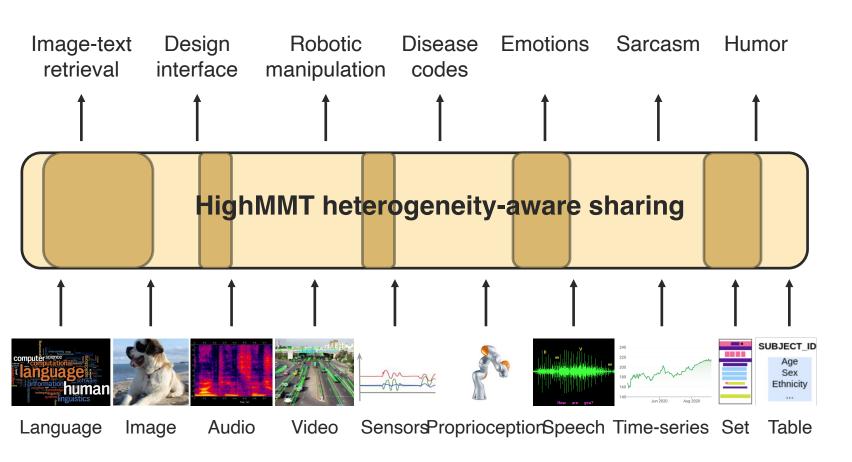
Traditional approaches: different model + different parameters

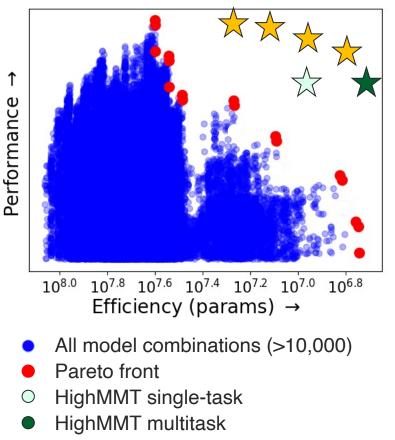
Multitask and Transfer Learning





HighMMT heterogeneity-aware sharing: estimate heterogeneity to determine parameter sharing

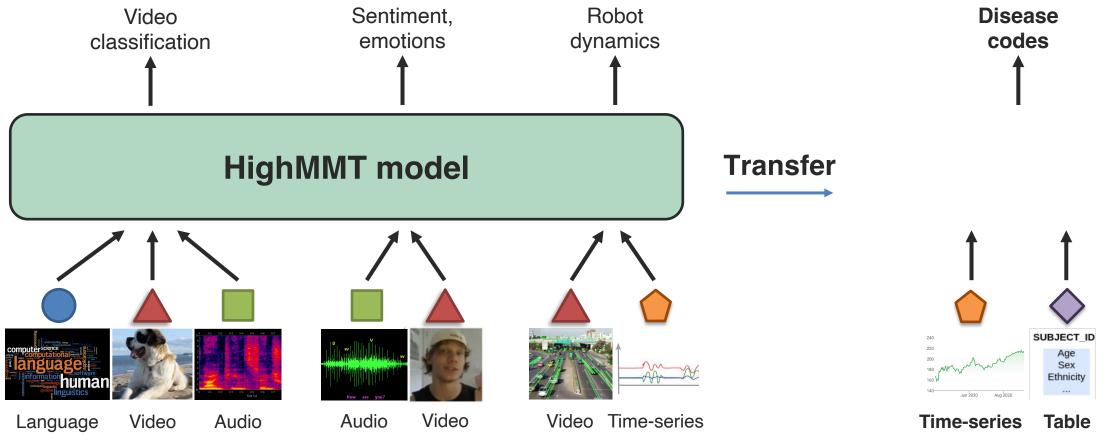




HighMMT heterogeneity-aware

Transfer across partially observable modalities

HighMMT: unified model + parameter sharing + multitask and transfer learning

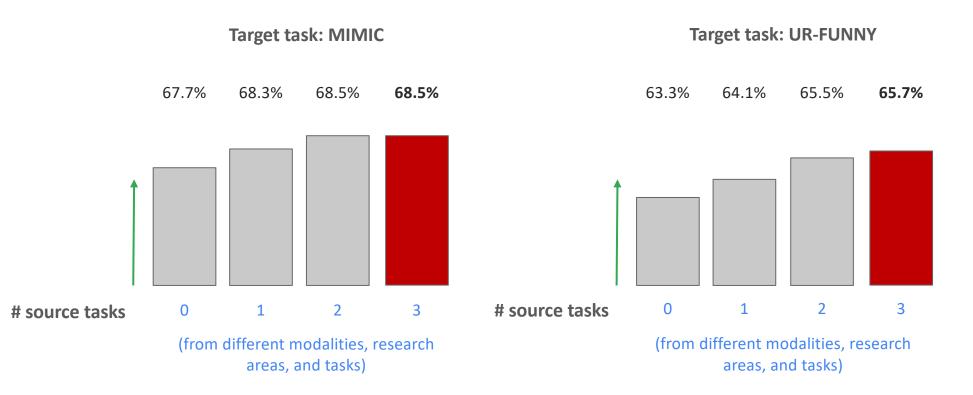


[Liang et al., HighMMT: Towards Modality and Task Generalization for High-Modality Representation Learning. arXiv 2022]

🗰 Language Technologies Institute

Transfer across partially observable modalities

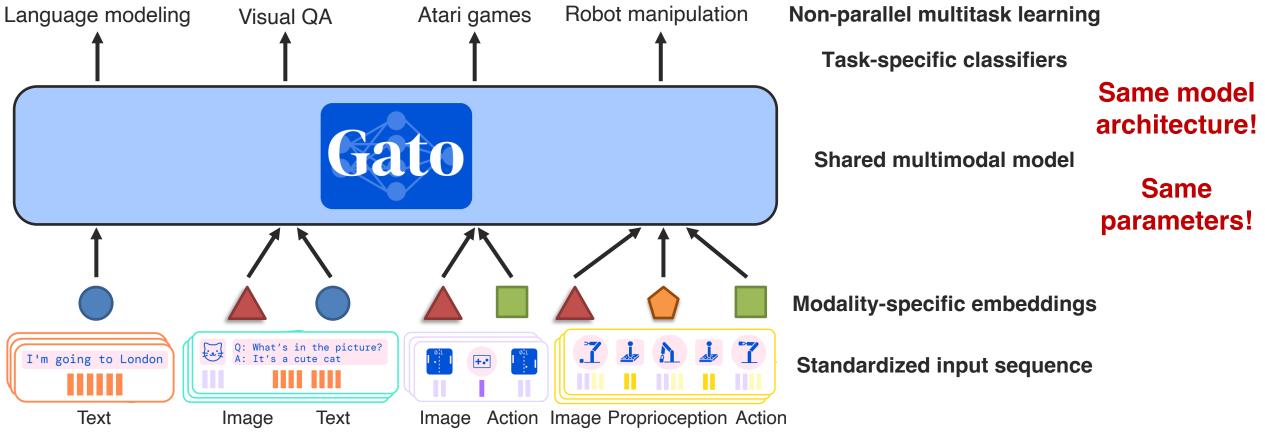
HighMMT: unified model + parameter sharing + multitask and transfer learning



Achieves both multitask and transfer capabilities across modalities and tasks

Transfer across partially observable modalities

Gato: unified model + parameter sharing + multitask learning

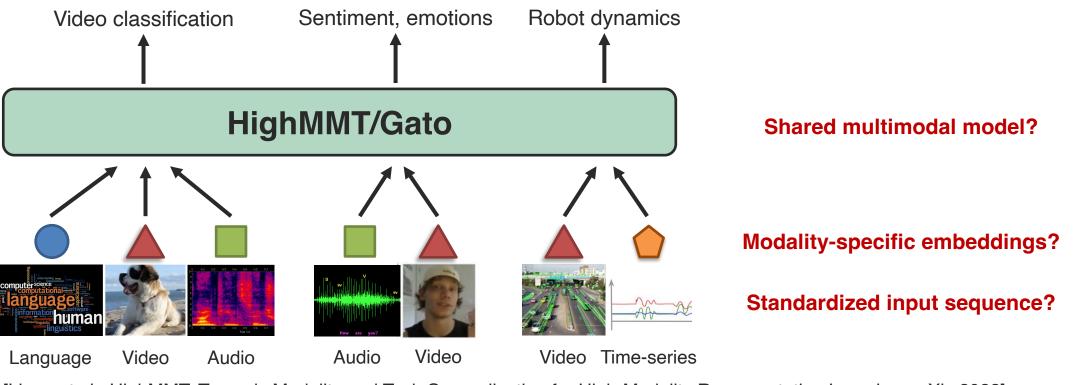


[Reed et al., A Generalist Agent. arXiv 2022]

Open challenges

Some implicit assumptions:

- All modalities can be represented as sequences without losing information.
- Dimensions of heterogeneity can be perfectly captured by modality-specific embeddings.
- Cross-modal connections & interactions are shared across modalities and tasks.

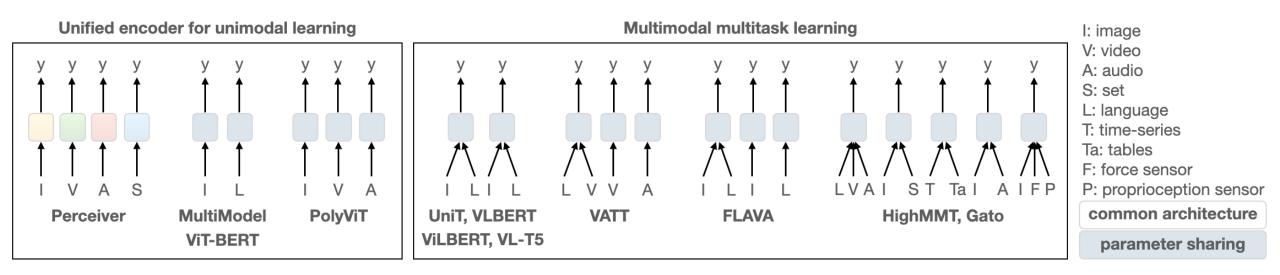


[Liang et al., HighMMT: Towards Modality and Task Generalization for High-Modality Representation Learning. arXiv 2022]

Carnegie Mellon University

Open challenges

Many more dimensions of transfer

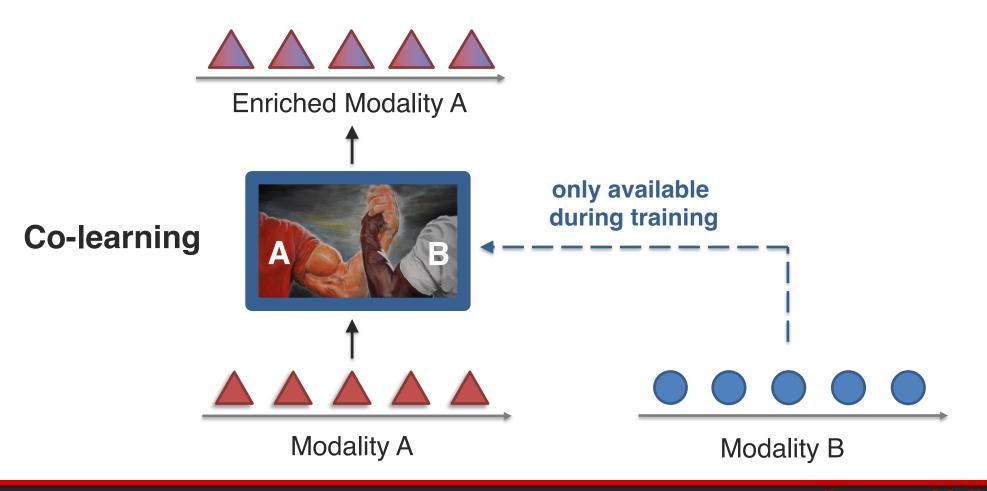


Open challenges:

- Low-resource: little downstream data, lack of paired data, robustness (next section)
- Beyond language and vision
- Settings where SOTA unimodal encoders are not deep learning e.g., tabular data
- Complexity in data, modeling, and training
- Interpretability (next section)

Sub-Challenge 5b: Co-learning

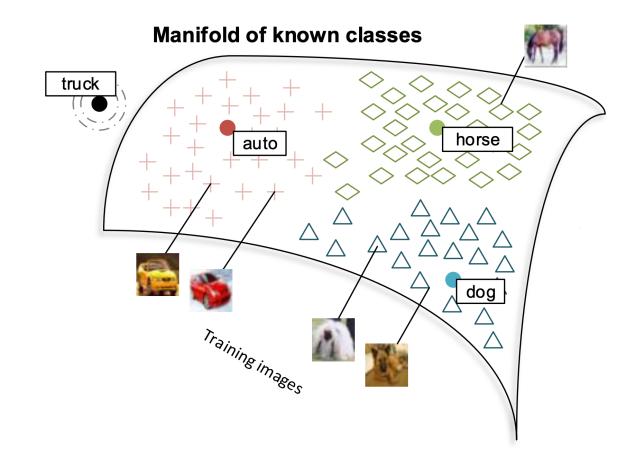
Definition: Transferring information from secondary to primary modality by sharing representation spaces between both modalities.



勞

Co-learning via Representation

Representation coordination: word embedding space for zero-shot visual classification



[Socher et al., Zero-Shot Learning Through Cross-Modal Transfer. NeurIPS 2013]

Carnegie Mellon Universit

 \boldsymbol{Z}_B

 $g(\mathbf{z}_A, \mathbf{z}_B)$

Recall representation coordination!

encoder

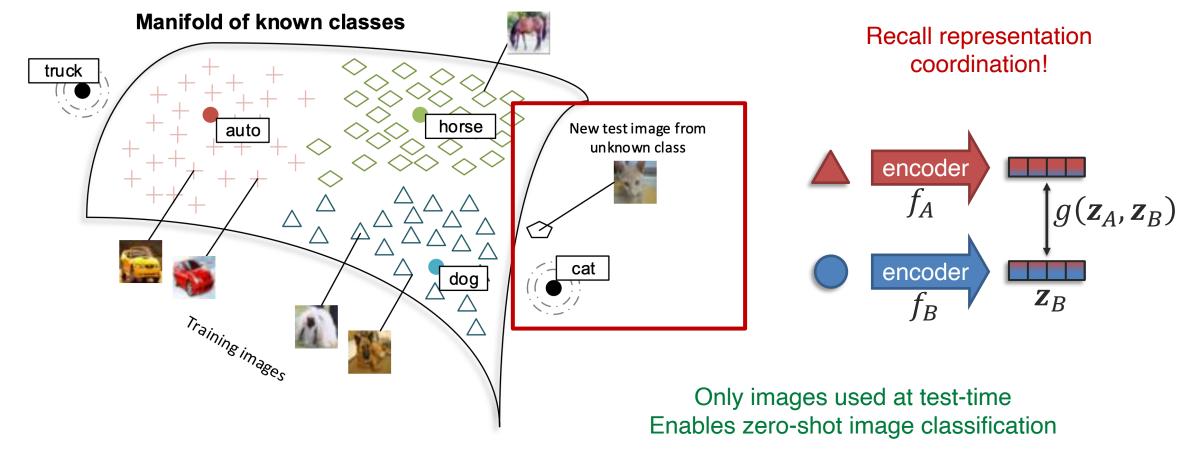
 f_A

encoder

Ťв

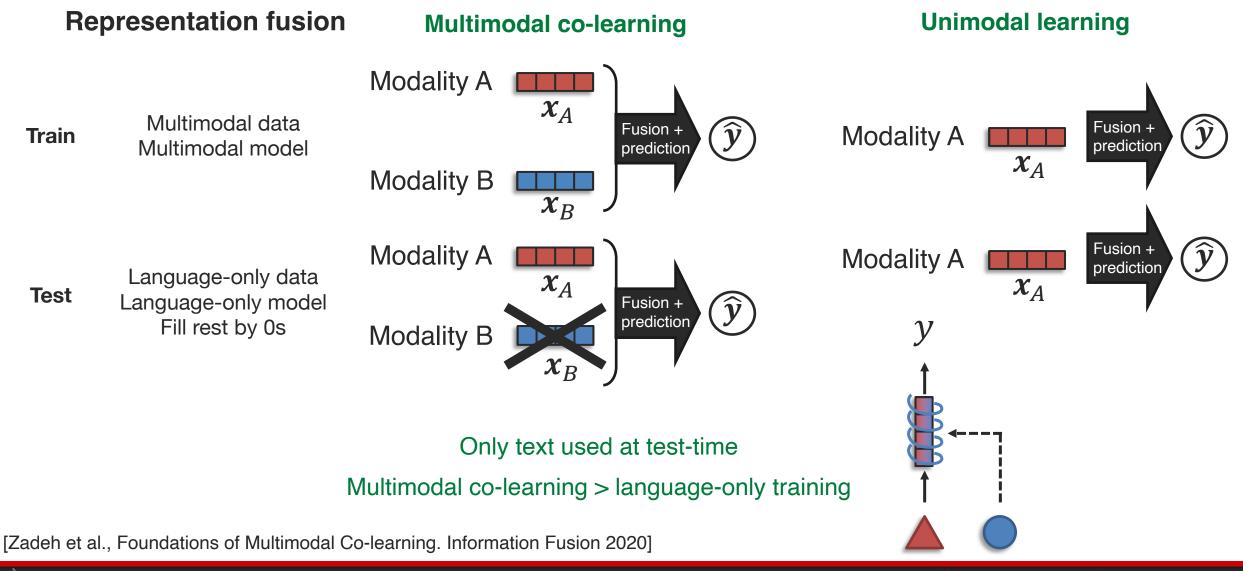
Co-learning via Representation

Representation coordination: word embedding space for zero-shot visual classification

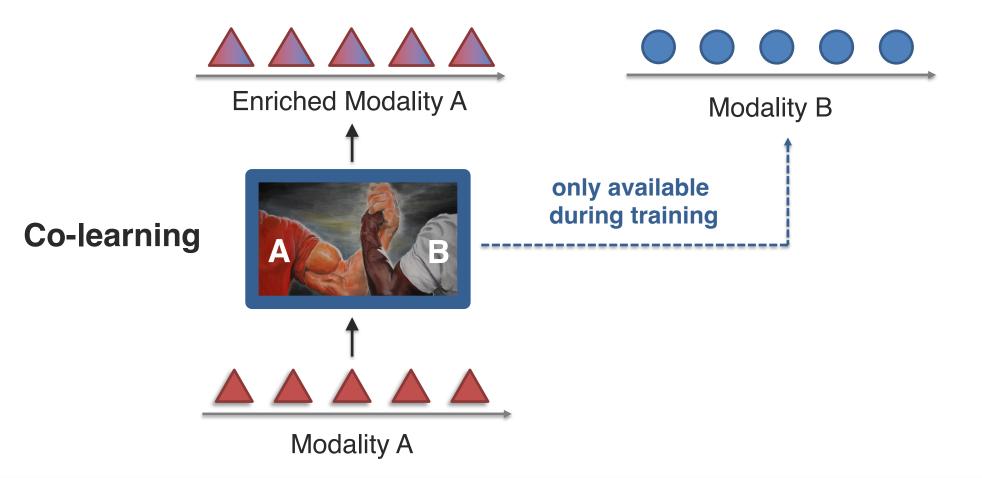


[Socher et al., Zero-Shot Learning Through Cross-Modal Transfer. NeurIPS 2013]

Co-learning via Representation

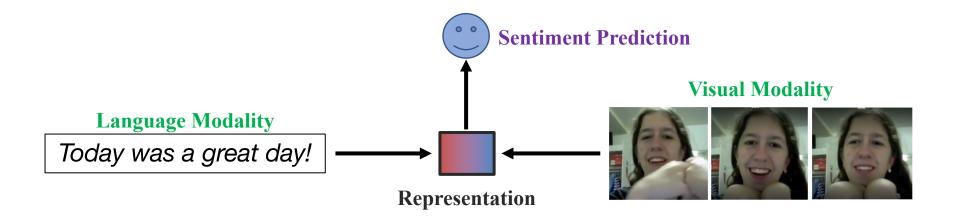


Definition: Transferring information from secondary to primary modality by using the secondary modality as a generation target.



勞

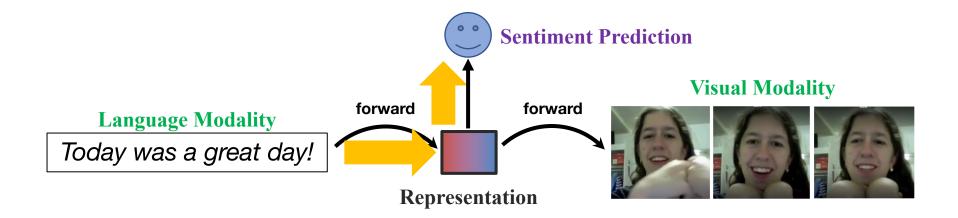
Bimodal translations



Both modalities required at test time! Sensitive to noisy/missing visual modality.

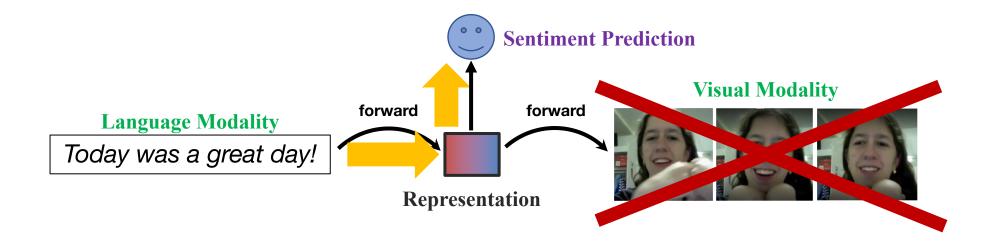
We want to leverage information from visual modality while being robust to it during test-time.

Bimodal translations



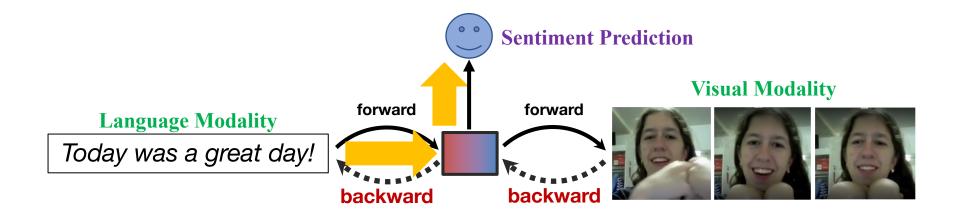
Cross-modal translation during training Only language modality required at test time!

Bimodal translations



Problem: how do you ensure that both modalities are being used?

Bimodal cyclic translations



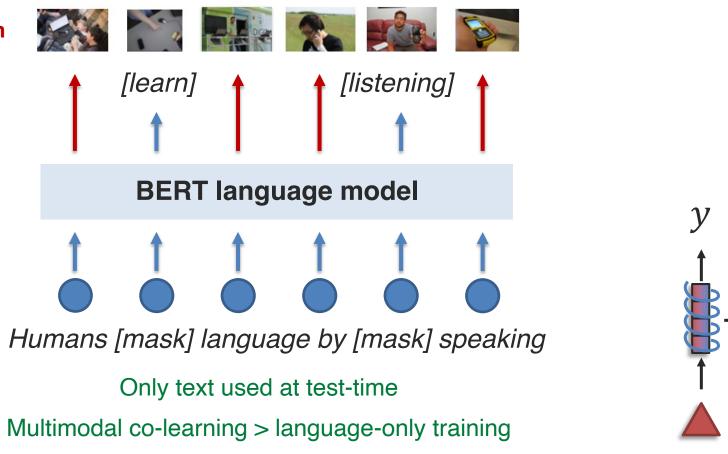
Solution: cyclic translations from visual back to language

Cross-modal translation during training Only language modality required at test time!

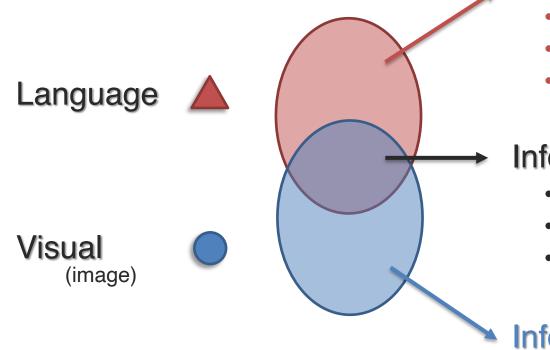
Predicting images from corresponding language

Voken (visual token) classification

Masked language modeling



[Tan and Bansal, Vokenization: Improving Language Understanding with Contextualized, Visual-Grounded Supervision. EMNLP 2020]



Information primarily in language modality

Syntactic structure

. . .

. . .

. . .

• Vocabulary, morphology

Information in both modalities

- Described people, objects, actions
- Illustrative gestures, motion

Information primarily in visual modality

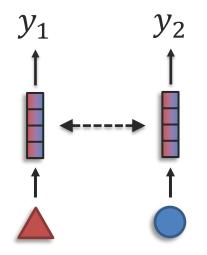
- Texture, visual appearance
- Depth, perspective, motion

獤

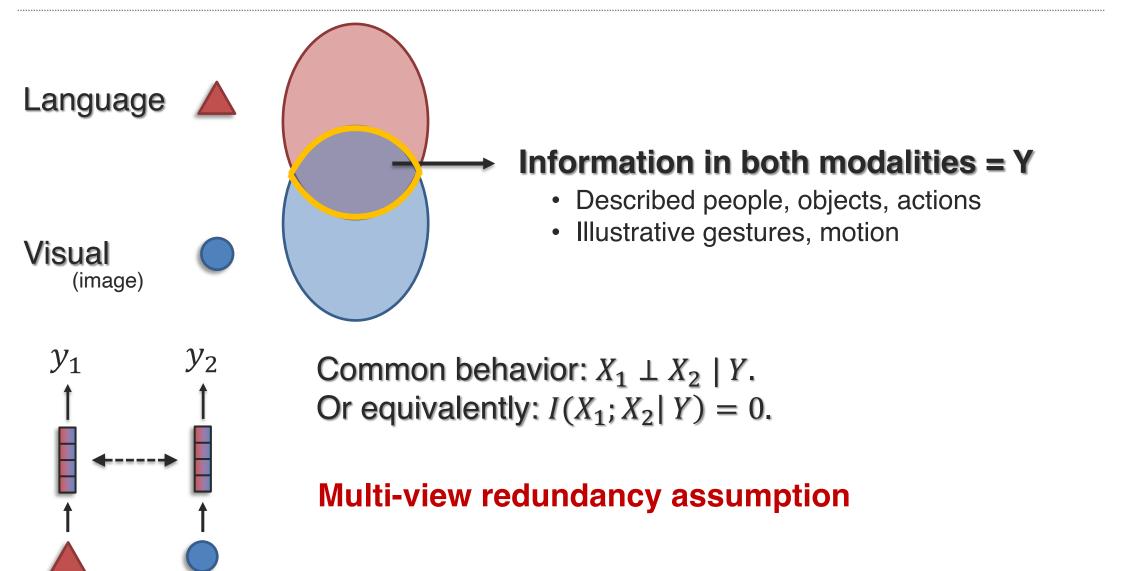
Sub-challenge 5c: Model Induction

Definition: Keeping individual unimodal models separate but inducing common behavior across separate models.

Model Induction



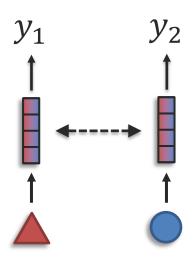
Sub-challenge 5c: Model Induction



猕

Co-training

Setup



Common behavior: $X_1 \perp X_2 \mid Y$. Or equivalently: $I(X_1; X_2 \mid Y) = 0$.

Multi-view redundancy assumption

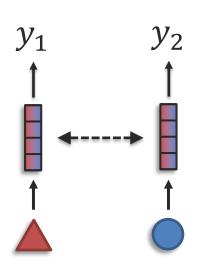
1. X_1 = text on the web page.

- 2. X_2 = text on hyperlinks pointing into the web page.
- 3. *Y* = category of web page: academic, sports, news, music etc.

[Blum and Mitchell, Combining Labeled and Unlabeled Data with Co-Training. COLT 1998]

Co-training

Algorithm



Assume:

- **1**. Labeled data $\{X_1, X_2, Y\}$.
- 2. Unlabeled data $\{X_1, X_2\}$.

Train:

1. Train classifier f_1 on $\{X_1, X_2, Y\}$ and f_2 on $\{X_1, X_2, Y\}$. 2. Use classifier f_1 to label the most confident examples in $\{X_1, X_2\}$

and add it to the labeled set $\{X_1, X_2, Y = f_1(X_1)\}$.

3. Use classifier f_2 to label the most confident examples in $\{X_1, X_2\}$ and add it to the labeled set $\{X_1, X_2, Y = f_2(X_2)\}$.

4. Go to 1, and repeat until there are no more unlabeled samples.

Test:

1. For a new unlabeled sample $\{X_1, X_2\}$, ensemble $f_1(X_1)$ and $f_2(X_2)$.

[Blum and Mitchell, Combining Labeled and Unlabeled Data with Co-Training. COLT 1998]

y

Warmup: a single view – Self-training

Assume:

- 1. Labeled data $\{X_1, Y\}$.
- 2. Unlabeled data $\{X_1\}$.

Train:

1. Train classifier f_1 on $\{X_1, Y\}$.

2. Use classifier f_1 to label the most confident examples in $\{X_1\}$ and add it to the labeled set $\{X_1, Y = (X_1)\}$.

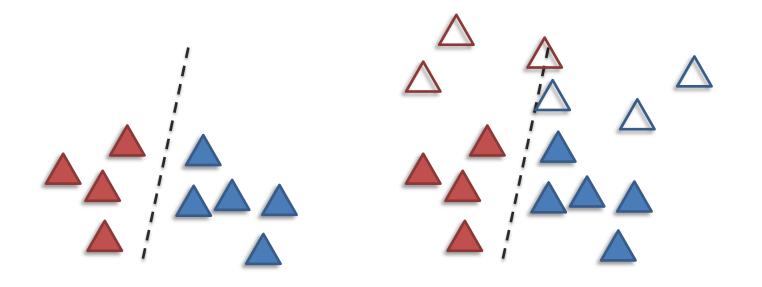
3. Go to 1, and repeat until there are no more unlabeled samples.

Test:

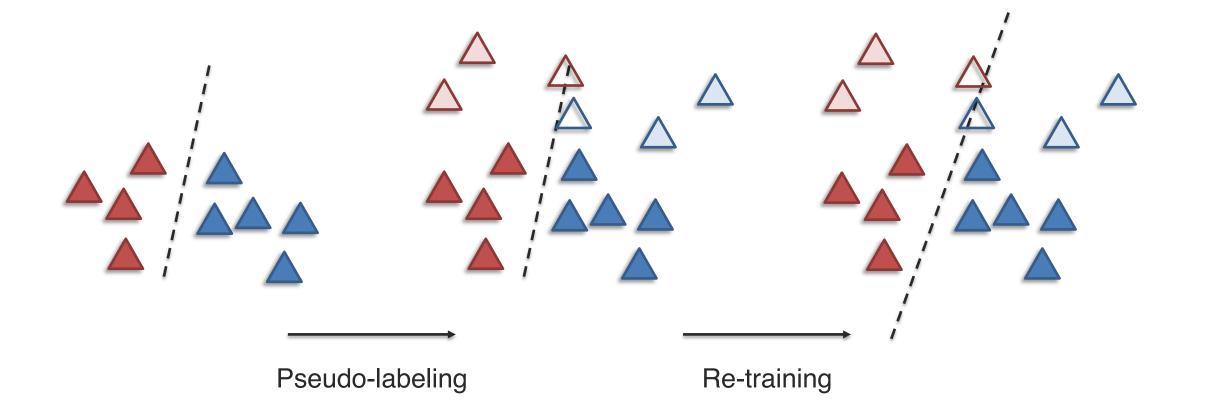
1. For a new unlabeled sample $\{X_1\}$, output $f_1(X_1)$.

猕

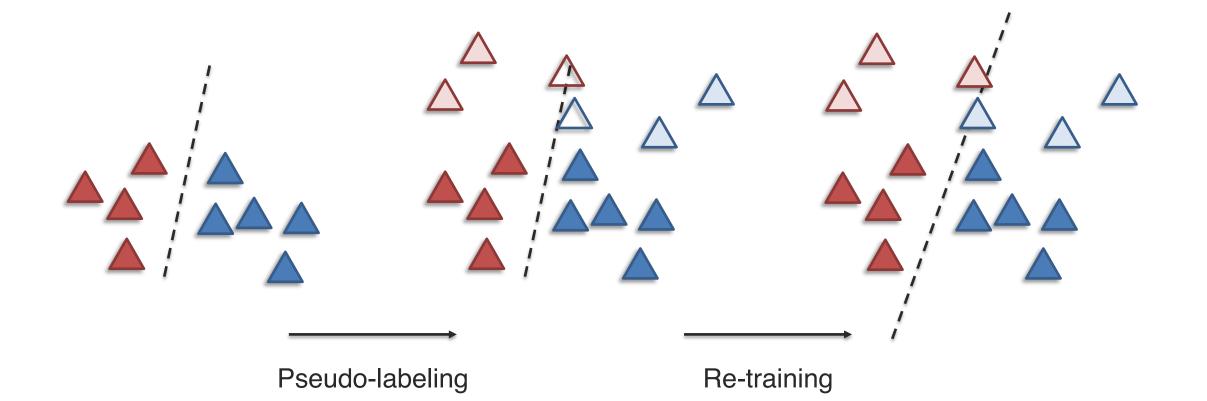
Warmup: a single view – Self-training



Warmup: a single view – Self-training



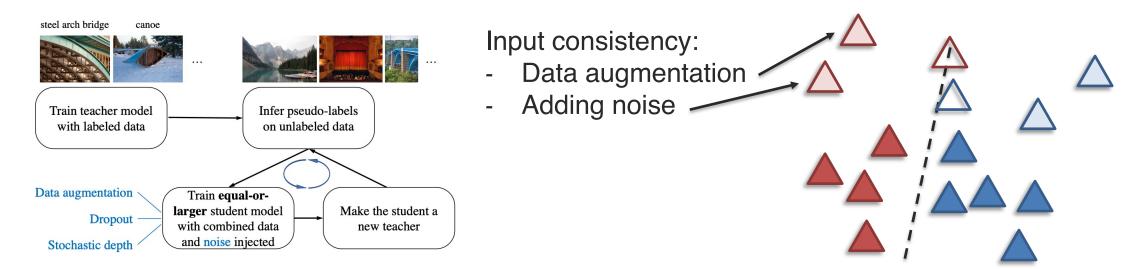
Warmup: a single view – Self-training



Key-words: semi-supervised learning, label propagation, domain adaptation/shift

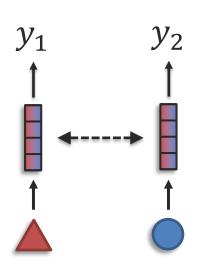
Critical:

- 1. Can't label all unlabeled data in one step, or you recover original classifier just trained on labeled data.
- 2. Sequence of pseudo-labeling is important to gradually shift classification boundary.
- 3. Input consistency regularization: shape of data space is important implicit assumption that similar datapoints have similar labels (i.e., label consistency)



[Wei et al., Theoretical Analysis of Self-Training with Deep Networks on Unlabeled Data. ICLR 2021]

Co-training



Assume:

- **1.** Labeled data $\{X_1, X_2, Y\}$.
- 2. Unlabeled data $\{X_1, X_2\}$.

Train:

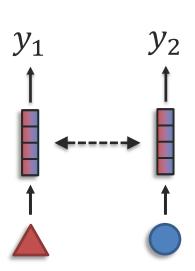
1. Train classifier f_1 on $\{X_1, X_2, Y\}$ and f_2 on $\{X_1, X_2, Y\}$. 2. Use classifier f_1 to label the most confident examples in $\{X_1, X_2\}$ and add it to the labeled set $\{X_1, X_2, Y = f_1(X_1)\}$. 3. Use classifier f_2 to label the most confident examples in $\{X_1, X_2\}$ and add it to the labeled set $\{X_1, X_2, Y = f_2(X_2)\}$. 4. Repeat until there are no more unlabeled samples.

Test:

1. For a new unlabeled sample $\{X_1, X_2\}$, ensemble $f_1(X_1)$ and $f_2(X_2)$.

Co-training

1. X_1 = text on the web page, X_2 = text on hyperlinks pointing into the web page. 3. Y = category of web page: academic, sports, news, music etc.



Leonardo Associate Professor of Computer Science. School of Computer Science, Carnegie Mellon Universit Gates-Hillman Center (GHC) Office 5411, 5000 Forbes Avenue, Pittsburgh, PA 15213

I am tenure-track Faculty at CMU Language Technology Institute where I lead the Multimodal Communication and Machine Learning Laboratory (MultiComp Lab). I was previously Research Faculty at USC Computer Science Department. I received my Ph.D. in Computer Science from MIT Computer Science and Artificial Intelligence Laboratory

My research focuses on building the computational foundations to enable computers with the abilities to analyze, recognize and predict subtle human communicative behaviors during social interactions. Central to this research effort is the technical challenge of multimodal machine learning: mathematical foundation to study heterogeneous multimodal data and the contingency often found between modalities. This multi-disciplinary research topic overlaps the fields of multimodal interaction, social psychology, computer vision, machine learning and artificial intelligence, and has many applications in areas as diverse as medicine, robotics and education.

Graduate Students Advising (see all group members at MultiComp Lab website)

Amir Ali Bagherzade, Ph.D. program (LTI) Chaitanya Ahuja, Ph.D. program (LTI) Volkan Cirik, Ph.D. program (LTI co-supervised with Taylor Berg-Kirkpatrick) Alexandria Vail, Ph.D. program (HCII) Paul Liang, Ph.D. program (MLD, co-supervised with Ruslan Salakhutdinov) Hubert Tsai, Ph.D. program (MLD, co-supervised with Ruslan Salakhutdinov) Torsten Wörtwein, Ph.D. program (LTI)

Labeled, learn that $X_1 = CMU \rightarrow academic'$ and $X_2 = advised by \rightarrow academic'$

I am a fourth-year Ph.D. student in the Machine Learning Department at Carnegie Mellon University, advised by Louis-Philippe Morency and Ruslan Salakhutdinov. I also collaborate closely with Manuel Blum, Lenore Blum, and Daniel Rubin at Berkeley and Stanford. My research lies in the foundations of multimodal machine learning with applications in socially intelligent AI, understanding human and machine intelligence, natural language processing, healthcare, and education. As steps towards this goal, I work or

Unlabeled, label using ' f_1 : $X_1 = CMU \rightarrow academic'$ and learn that ' $X_2 = PhD$ program $\rightarrow academic'$

Another student -> Unlabeled, label using $f_2: X_2 = PhD$ program -> academic' and learn that $X_1 = Berkeley -> academic'$

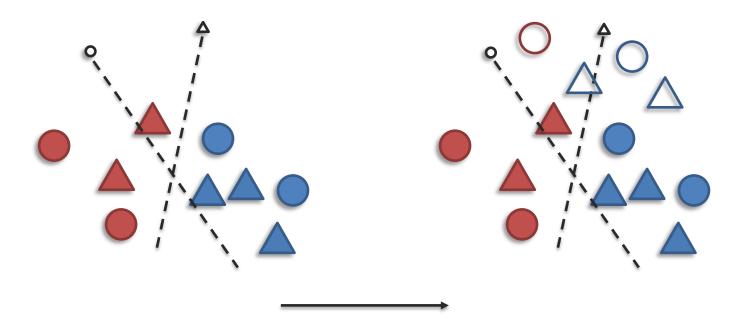
From self-training to co-training

Assumptions:

1. Either view is sufficient to predict the label alone.

2. Views should be as independent as possible: examples where f_1 has high confidence but not f_2 and vice-versa.

From self-training to co-training



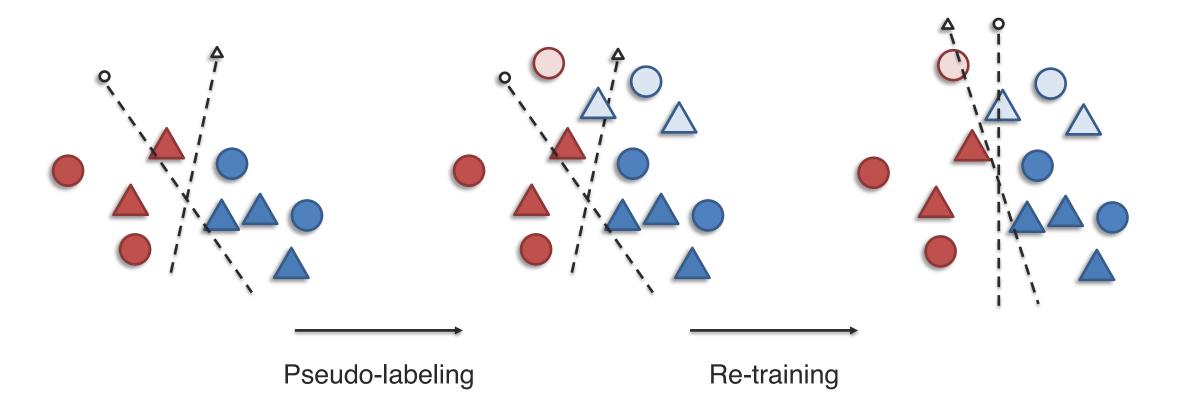
Pseudo-labeling

From self-training to co-training



Pseudo-labeling

From self-training to co-training Key idea: functions on both views must be compatible and agree



From self-training to co-training Key idea: functions on both views must be compatible and agree

Intuitions:

- 1. Either view is sufficient to predict the label alone.
- 2. Views should be as independent as possible: examples where f_1 has high confidence but not f_2 and vice-versa.
- 3. Input consistency regularization: shape of data space is important implicit assumption that similar datapoints have similar labels (i.e., label consistency).
- \rightarrow In co-training, data from another view help us to supplement the label space!
- \rightarrow Views independent given label = points in different views being in different spaces.
- \rightarrow Both views must agree = input consistency which enables cross-view pseudo-labeling.
- 4. Eventually, will converge on 2 classifiers that agree and each separate both views.

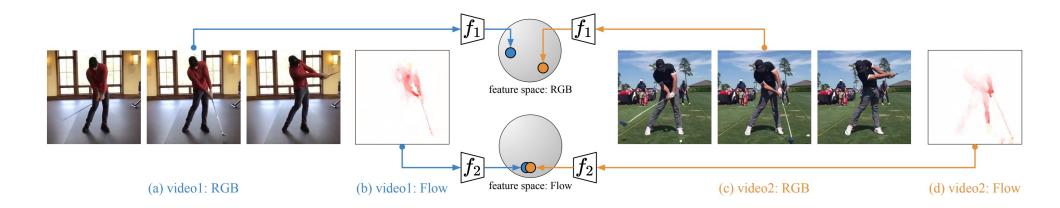
 y_2

 y_1

Recent applications of co-training

Self-supervised learning with positive and negative samples

- → Positive samples hard to discover in RGB space can be easily found in flow space, and vice-versa (e.g., RGB sensitive to background differences but not flow).
- \rightarrow Can use co-training between 2 RGB and flow contrastive learning modules.

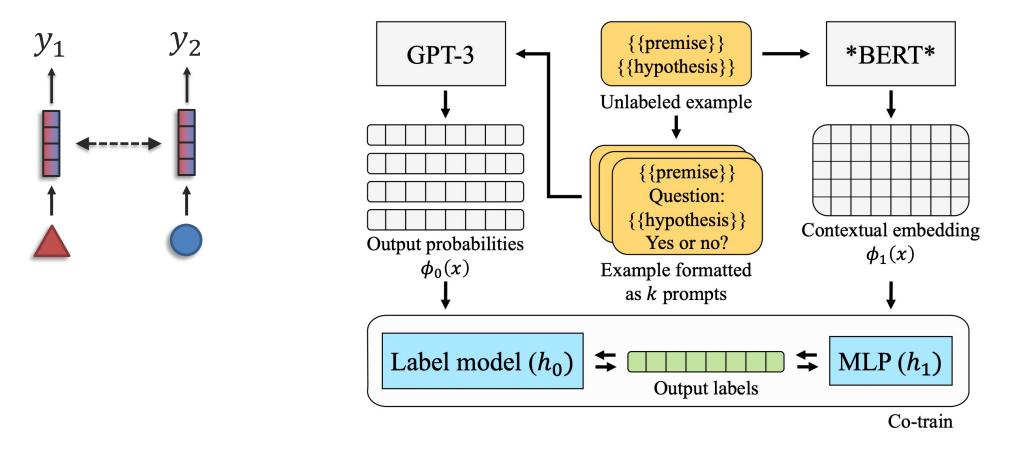


[Han et al., Self-supervised Co-training for Video Representation Learning. NeurIPS 2020]

Carnegie Mellon Universit

Recent applications of co-training

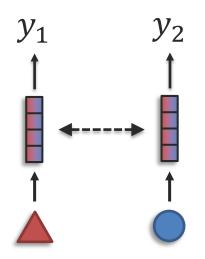
Language-model prompting



[Lang et al., Co-training Improves Prompt-based Learning for Large Language Models. ICML 2022]

Co-regularization

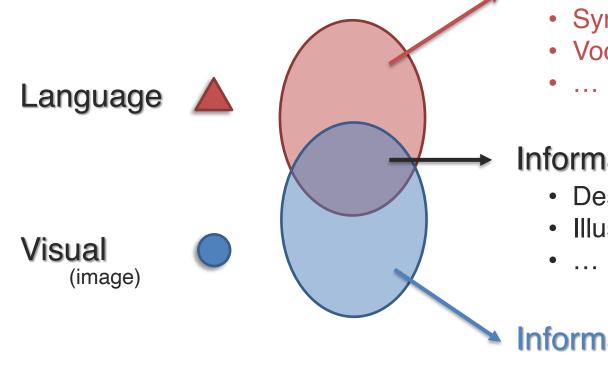
Add a loss term to ensure both model predictions are similar: $L = (f_1(X_1) - f_2(X_2))^2$



Recall representation coordination.

[Sridharan and Kakade, An Information Theoretic Framework for Multi-view Learning. COLT 2008]

Sub-challenge 5c: Model Induction



Information primarily in language modality

- Syntactic structure
- Vocabulary, morphology

Information in both modalities

- Described people, objects, actions
- Illustrative gestures, motion

Information primarily in visual modality

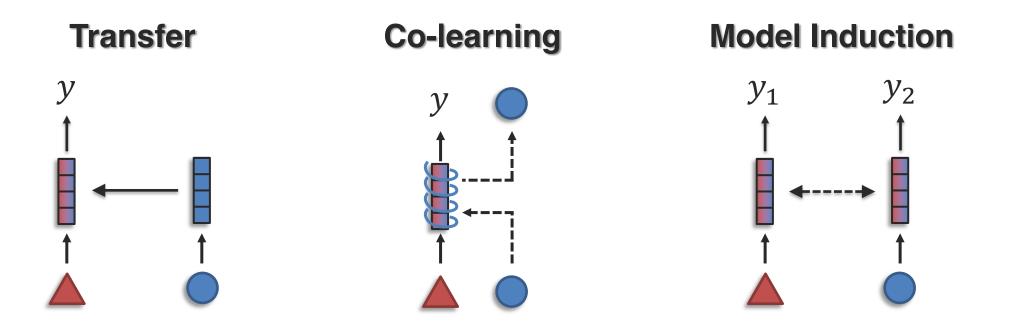
- Texture, visual appearance
- Depth, perspective, motion

獤

. . .

Definition: Transfer knowledge between modalities, usually to help the primary modality which may be noisy or with limited resources.

Sub-challenges:



勜

More Transference

Open challenges

Many more dimensions of transfer:

- → Multimodal {multitask, transfer, few-shot, meta} learning.
- \rightarrow Domain adaptation, domain shift, label shift.
- → Core: representation, alignment, reasoning!

Open challenges:

- Low-resource: little downstream data, lack of paired data, robustness (next section).
- Settings where SOTA unimodal encoders are not deep learning e.g., tabular data.
- Evaluating reasoning and robustness and large models.
- Limits of transfer beyond redundancy/joint information.
- Interpretability (next section).