

Language Technologies Institute

Multimodal Machine Learning

Lecture 12.2: New Research Directions

Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

Administrative Stuff

Lecture Schedule

Classes	Tuesday Lectures	Thursday Lectures
Week 1 8/30 & 9/1	 Course introduction Multimodal core challenges Course syllabus 	 Multimodal applications and datasets Research tasks and datasets Team projects
Week 2 9/6 & 9/8 Read due: 9/9	 Basic concepts: neural networks Loss functions and neural networks Gradient and optimization 	 Unimodal representations Dimensions of heterogeneity Visual representations
Week 3 9/13 & 9/15 Read due: 9/16 Proj. Due: 9/14	 Unimodal representations Language representations Signals, graphs and other modalities 	 Multimodal representations Cross-modal interactions Multimodal fusion
Week 4 9/20 & 9/22 Proj. due: 9/25	 Multimodal representations Coordinated representations Multimodal fission 	Multimodal alignmentExplicit alignmentMultimodal grounding
Week 5 9/27 & 9/29 Read due: 9/30	Project hours (Research ideas)	 Aligned representations Self-attention transformer models Masking and self-supervised learning
Week 6 10/4 & 10/6 Proj. due: 10/9	 Multimodal aligned representations Multimodal transformers Video and graph representations 	 Multimodal Reasoning Structured and hierarchical models Memory models

췟

Lecture Schedule

Classes	Tuesday Lectures	Thursday Lectures
Week 7 10/11 & 10/13 Read due: 10/14	 Multimodal Reasoning Reinforcement learning Discrete structure learning 	 Multimodal Reasoning Logical and causal inference External knowledge
Week 8 10/18 & 10/20	Fall Break – No lectures	
Week 9 10/25 & 10/27 Proj. due: 10/30	 Generation Translation, summarization, creation Generative models: VAEs 	 Generation GANs and diffusion models Model evaluation and ethics
Week 10	Project presentations (midterm)	Project presentations (midterm)
Week 11 11/8 & 11/10 Read due: 11/12	TransferenceMulti-taskModality transfer	TransferenceMultimodal co-learningCo-training
Week 12 11/15 & 11/17 Read due: 11/21	 Quantification Heterogeneity and interactions Biases and fairness 	 New research directions Recent approaches in multimodal ML

췟

Lecture Schedule

Classes	Tuesday Lectures				
Week 13 11/22 & 11/24	Thanksgiving Week – No Class –				
Week 14 11/30 & 12/2	 Language, Vision, and Actions Robots, navigation and embodied AI Guest lecturer: Yonatan Bisk 	 Multimodal Language Grounding Grounded semantics and pragmatics Guest lecturer: Daniel Fried 			
Week 15 12/6 & 12/8 Proj. due: 12/11	Project presentations (final)	Project presentations (final)	Final assignment due on Sunday 12/11		

Main goals:

- 1. Produce a research paper which will motivate your research problem, describe the prior work, present your research contributions, explain the details of your experiments, and discuss your results.
- 2. Novel research ideas (N-1 new ideas for N students)
 - Novel algorithm
 - Novel application
- 3. Incorporate feedback from previous milestones
- 4. Compare to multimodal baselines from midterm report
 - 1. Did the proposed ideas solve the errors highlighted in error analysis?
 - 2. Broader implications of proposed ideas.

Main objective:

- Present your research ideas to the broad community
- Focus on only one (or few) of your new research ideas
- All students should present and answer questions
- All presentations are in person (no remote presentations)
- Non-presenting students will be asked to give feedback

Presentation length:

- 30-seconds elevator pitch
- 4-minute full presentation all students should present
- Best poster award each day! (1 extra day for final report)

Last Reading Assignment

- Four main steps for the reading assignments
 - Monday 8pm: Official start of the assignment
 - Wednesday 8pm: Select your paper
 - Friday 8pm: Post your summary
 - Monday 8pm: Post your extra comments

Advanced Topics in Multimodal ML (11-877)

Advanced Topics in MultiModal Machine Learning

11-877 · Spring 2022 · Carnegie Mellon University

Multimodal machine learning (MMML) is a vibrant multi-disciplinary research field which addresses some of the original goals of artificial intelligence by integrating and modeling multiple communicative modalities, including language, vision, and acoustic. This research field brings some unique challenges for multimodal researchers given the heterogeneity of the data and the contingency often found between modalities. This course is designed to be a graduate-level course covering recent research papers in multimodal machine learning, including technical challenges with representation, alignment, reasoning, generation, co-learning and quantifications. The main goal of the course is to increase critical thinking skills, knowledge of recent technical achievements, and understanding of future research directions.

1/28 Week 2: Cross-modal interactions [synopsis]

- · What are the different ways in which modalities can interact with each other in multimodal tasks? Can we formalize a taxonomy of such cross-modal interactions, which will enable us to compare and contrast them more precisely?
- · What are the design decisions (aka inductive biases) that can be used when modeling these cross-modal interactions in machine learning models?
- · What are the advantages and drawbacks of designing models to capture each type of cross-modal interaction? Consider not just prediction performance, but tradeoffs in time/space complexity, interpretability, etc.
- · Given an arbitrary dataset and prediction task, how can we systematically decide what type of cross-modal interactions exist, and how can that inform our modeling decisions?
- · Given trained multimodal models, how can we understand or visualize the nature of cross-modal interactions?

- Does my multimodal model learn cross-modal interactions? It's harder to tell than you might think!
- What Does BERT with Vision Look At?
- · Multiplicative Interactions and Where to Find Them
- Cooperative Learning for Multi-view Analysis
- Vision-and-Language or Vision-for-Language? On Cross-Modal Influence in Multimodal Transformers
- · Seeing past words: Testing the cross-modal capabilities of pretrained V&L models on counting tasks

- Time: Friday 10:10-11:30 am
- Location: Virtual for the first 2 weeks (find zoom link in piazza). GHC 5222 thereafter
- Discussion and Q&A: Piazza
- Assignment submissions: Canvas (for registered students only)
- Contact: Students should ask all course-related questions on Piazza, where you will also find announcements.

Instructor Louis-Philippe Morency Email: morency@cs.cmu.edu

Email: abagherz@cs.cmu.edu

Instructor Paul Liang Email: pliang@cs.cmu.edu

Week 3: Multimodal co-learning [synopsis] 2/4 · What are the types of cross-modal interactions involved to enable such co-

- learning scenarios where multimodal training ends up generalizing to unimodal testing?
- · What are some design decisions (inductive bias) that could be made to promote transfer of information from one modality to another?
- · How do we ensure that during co-learning, only useful information is transferred, and not some undesirable bias? This may become a bigger issue in low-resource settings.
- · How can we know if co-learning has succeeded? Or failed? What approaches could we develop to visualize and probe the success of colearning?
- · How can we formally, empirically, or intuitively measure the additional information provided by auxiliary modality? How can we design controlled experiments to test these hypotheses?
- · What are the advantages and drawbacks of information transfer during colearning? Consider not just prediction performance, but also tradeoffs with complexity, interpretability, fairness, etc.

- Multimodal Prototypical Networks for Few-shot Learning
- SMIL: Multimodal Learning with Severely Missing Modality
- · Multimodal Co-learning: Challenges, Applications with Datasets, Recent Advances and Future Directions
- Vokenization: Improving Language Understanding with Contextualized, Visual-Grounded Supervision
- What Makes Multi-modal Learning Better than Single (Provably)
- Found in Translation: Learning Robust Joint Representations by Cyclic Translations Between Modalities
- Zero-Shot Learning Through Cross-Modal Transfer
- 12-in-1: Multi-Task Vision and Language Representation Learning
- A Survey of Reinforcement Learning Informed by Natural Language

https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/

Language Technologies Institute

勜

- Seminar-style course (reading discussions)
- Fridays 3pm
- Two versions:
 - 6-credit version: reading discussions only
 - 12-credit version: + independent study (team course project)
- Open to all students (but only registered students)
- More details in the coming weeks...

Language Technologies Institute

Multimodal Machine Learning

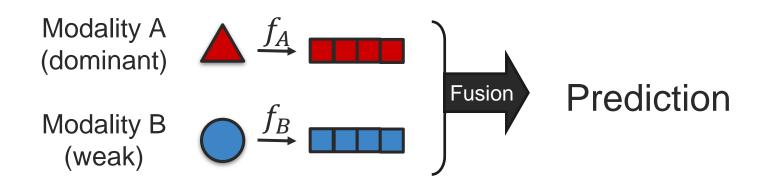
Lecture 12.2: New Research Directions

Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

Representation Fusion

Modality dominance Under-optimized unimodal representations (even when multimodal model performs better)



Modality dominance Under-optimized unimodal representations (even when multimodal model performs better)

 $\widehat{\mathbf{y}} = f(\mathbf{x}_A, \mathbf{x}_B) = \mathbf{w}_A \cdot f_A(\mathbf{x}_A) + \mathbf{w}_B \cdot f_B(\mathbf{x}_B) + b$

Problem: The dominant modality (with largest weights W_A or W_B) gets most of the gradient updates

Problem: The dominant modality (with largest weights W_A or W_B) gets most of the gradient updates

$$W_A^{t+1} = W_A^t - \eta \cdot \nabla_{W_A} L$$

= $W_A^t - \eta \cdot \frac{1}{N} \sum_{i=1}^N \frac{\partial L}{\partial f(\mathbf{x}_A^i, \mathbf{x}_B^i)} \frac{\partial f(\mathbf{x}_A^i, \mathbf{x}_B^i)}{W_A}$
= $W_A^t - \eta \cdot \frac{1}{N} \sum_{i=1}^N \frac{\partial L}{\partial f(\mathbf{x}_A^i, \mathbf{x}_B^i)} f_A(\mathbf{x}_A)$

The gradient for each modality is weighted by the joint discriminative loss

This joint discriminative loss is dependent on the weights W_A or W_B

$$\widehat{\mathbf{y}} = f(\mathbf{x}_A, \mathbf{x}_B) = \mathbf{w}_A \cdot f_A(\mathbf{x}_A) + \mathbf{w}_B \cdot f_B(\mathbf{x}_B) + b$$

- **Problem:** The dominant modality (with largest weights W_A or W_B) gets most of the gradient updates
- **Solution:** Weight the gradient based on its contribution to the learning objective

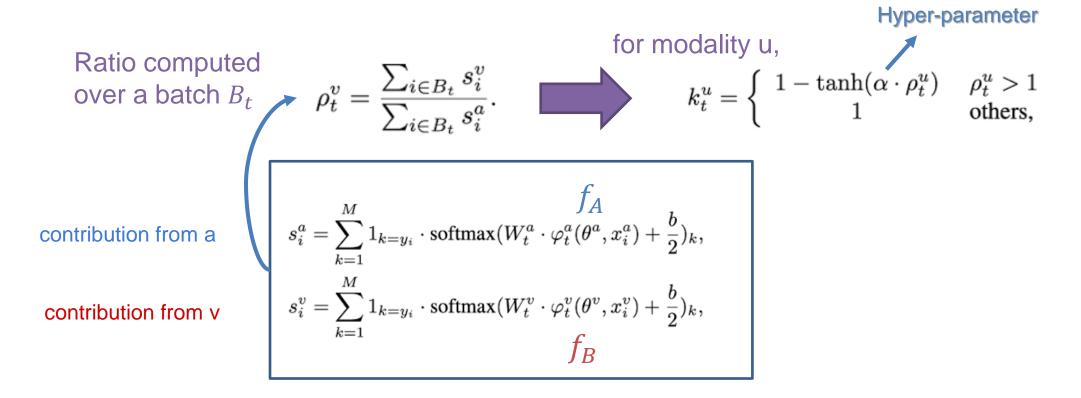
$$W_A^{t+1} = W_A^t - \eta \cdot k_t^A \cdot \nabla_{W_A} L$$

On-the-fly Gradient Modulation (OGM)

monitor discrepancy of each modality's contribution to the objective

Solution: Weight the gradient based on its contribution to the learning objective

$$W_A^{t+1} = W_A^t - \eta \cdot \mathbf{k}_t^A \cdot \nabla_{W_A} L$$



	Dataset	CRE	MA-D	VGGSound		
	Method	Acc	mAP	Acc	mAP	
	Audio-only	52.5	54.2	44.3	48.4	
	Visual-only	41.9	43.0	31.0	34.3	
_	Baseline	50.8	52.6	48.4	51.7	
	Concatenation	51.7	53.5	49.1	52.5	
	Summation	51.5	53.5	49.1	52.4	
	FiLM [32]	50.6	52.1	48.5	51.6	
<u>ן</u> _	Baseline [†]	54.4	56.2	50.1	53.5	
	Concatenation [†]	61.9	63.9	50.6	53.9	
	Summation [†]	62.2	64.3	50.4	53.6	
כפ	FiLM†	55.6	57.4	50.0	52.9	

Achieve considerable improvement over common fusion methods on different multimodal tasks

Extra contribution:

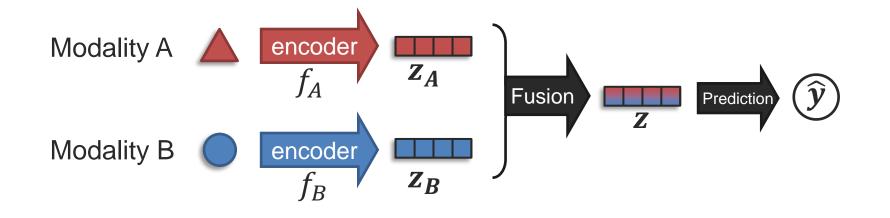
Generalization Enhancement (GE)

introduce extra dynamic Gaussian noise to avoid generalization drop

勜

Representation Fusion

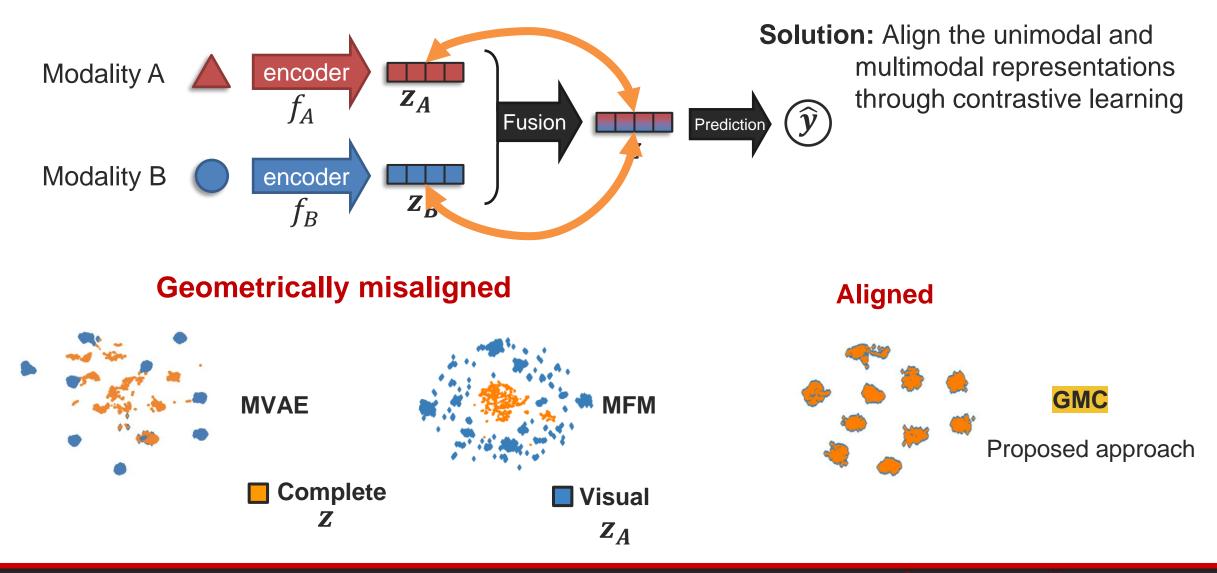
Geometric Multimodal Contrastive Representation Learning



Challenge: To help with robustness, we would like the unimodal representations (z_A and z_B) to be close to the multimodal representation z

But in practice, they end up not being aligned! (related to the "heterogeneity" gap)

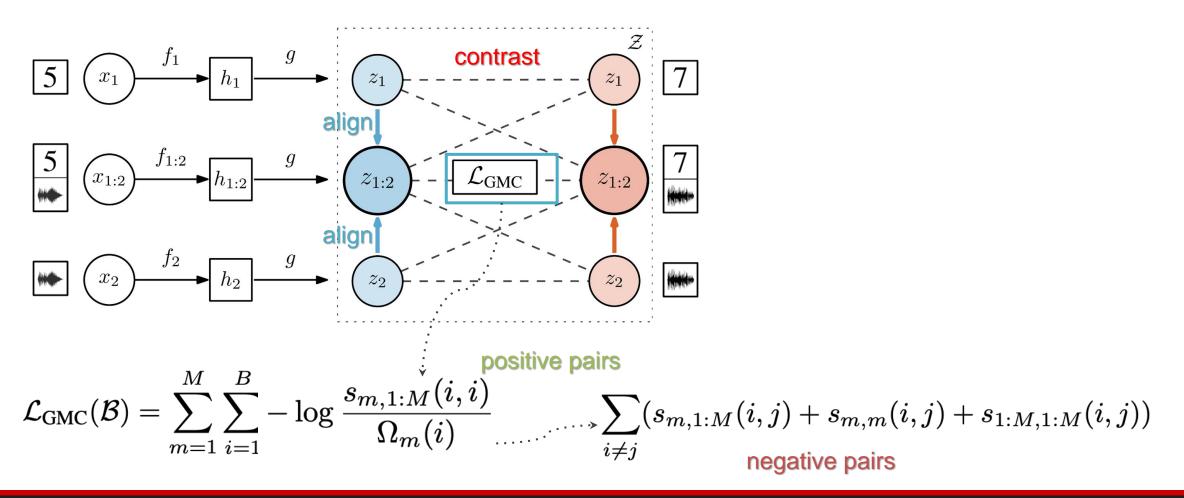
Geometric Multimodal Contrastive Representation Learning



勜

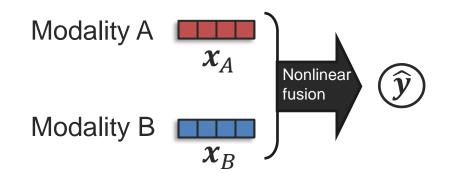
Geometric Multimodal Contrastive Representation Learning

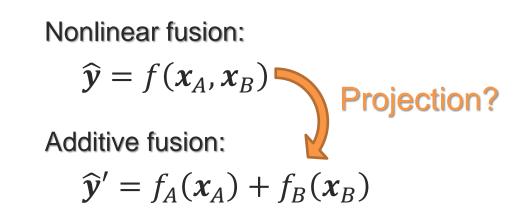
Geometric Multimodal Contrastive (GMC) learning:



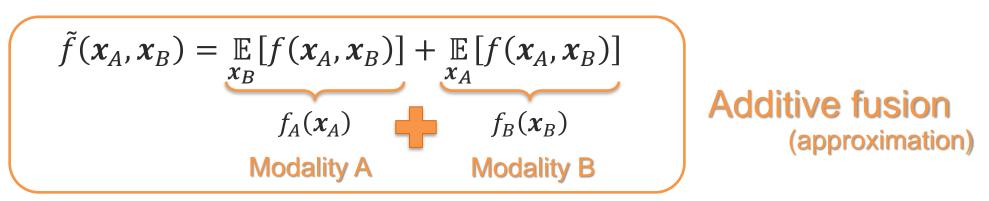
Representation Fusion

Measuring Non-Additive Interactions



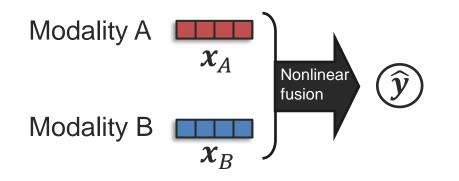


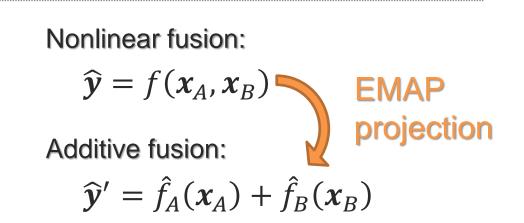
Projection from nonlinear to additive (using EMAP):



Hessel and Lee, Does my multimodal model learn cross-modal interactions? It's harder to tell than you might think!, EMNLP 2020 -> introduced the EMAP method

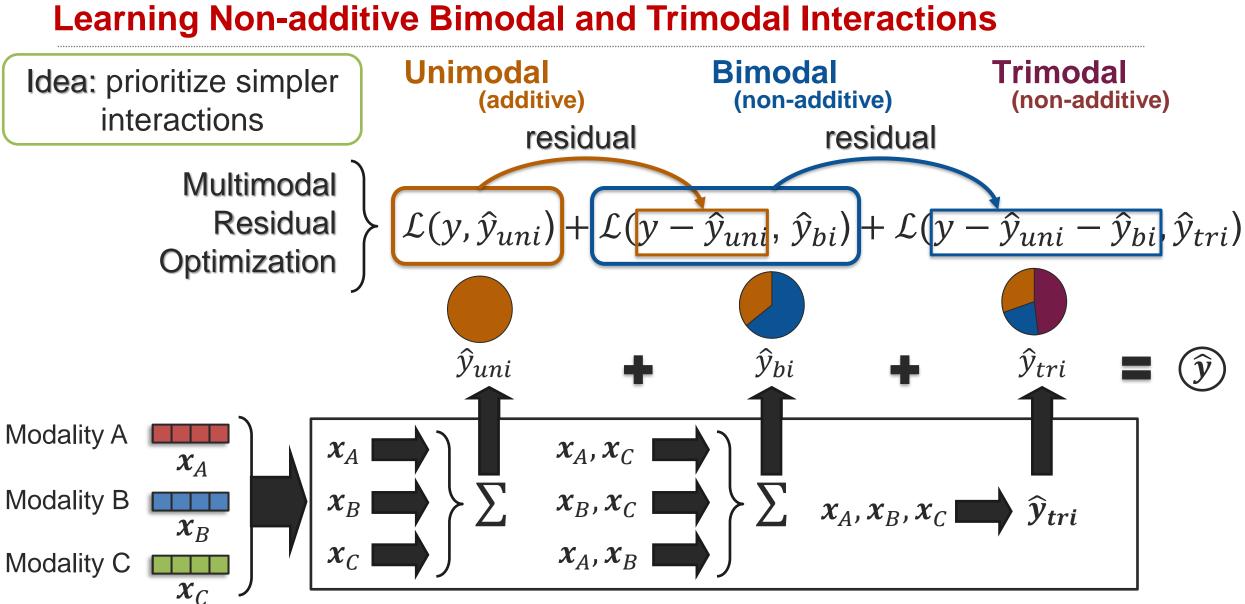
Measuring Non-Additive Interactions





	I-INT	I-SEM	I-CTX	T-VIS	R-POP	T-ST1	T-ST2	
Nonlinear 🦛 Neural Network	90.4	69.2	78.5	51.1	63.5	71.1	79.9	
Polynomial 🦛 Polykernel SVM	,91.3	,74.4	,81.5	50.8	_	72.1	,80.9	
Nonlinear 🦛 FT LXMERT	83.0	68.5	76.3	53.0	63.0	66.4	78.6	
Nonlinear 🦛 🕁 + Linear Logits	89.9	73.0	80.7	53.4	64.1	75.5	80.3	Always a
Additive 🖛 Linear Model	90.4	72.8	80.9	51.3	63.7	75.6	76.1	good baseli
Best Model	91.3 [×]	74.4	81.5 [×]	53.4 ^v	64.2 [×]	75.5 ^v	80.9	Differences
Additive 🖛 🗸 + EMAP	* 91.1	*74.2	* 81.3	* 51.0	* 64.1	*75.9	*80.7 🖌	are small!!!

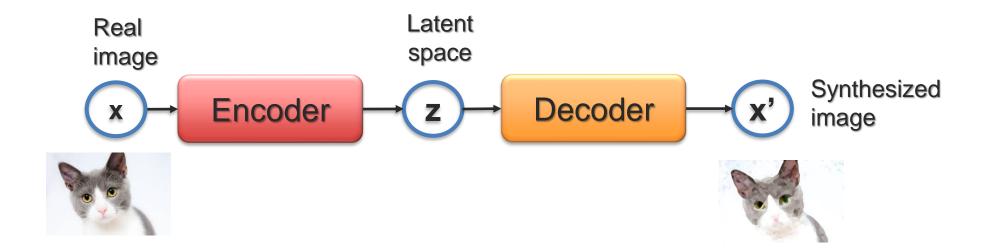
Hessel and Lee, Does my multimodal model learn cross-modal interactions? It's harder to tell than you might think!, EMNLP 2020 → introduced the EMAP method



Wortwein et al., Beyond Additive Fusion: Learning Non-Additive Multimodal Interactions, Findings-EMNLP 2022

Representation Fusion, Transference and Generation

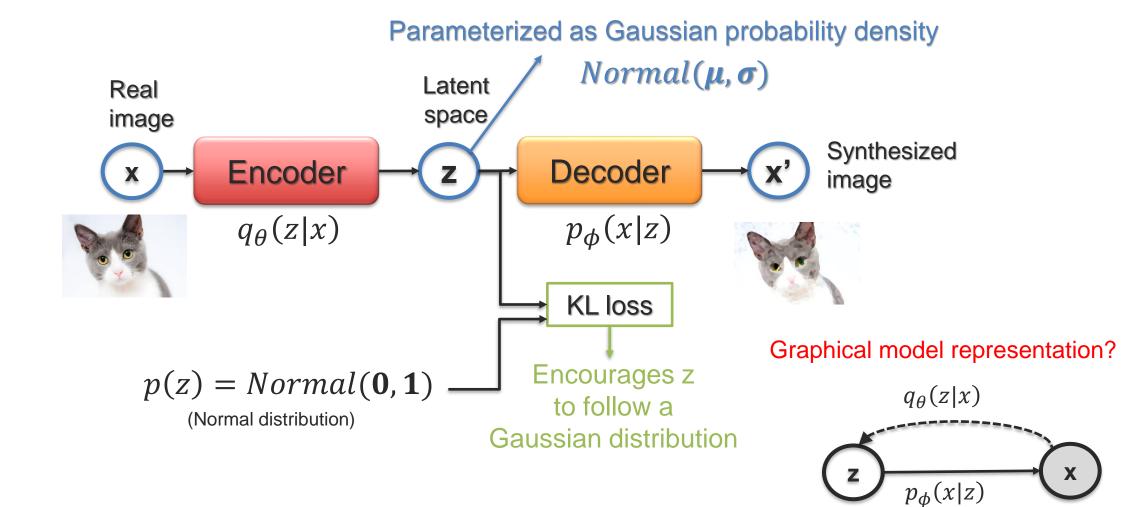
Auto-encoder



After learning this autoencoder, can I input any z vector in the decoder?

Carnegie Mellon University

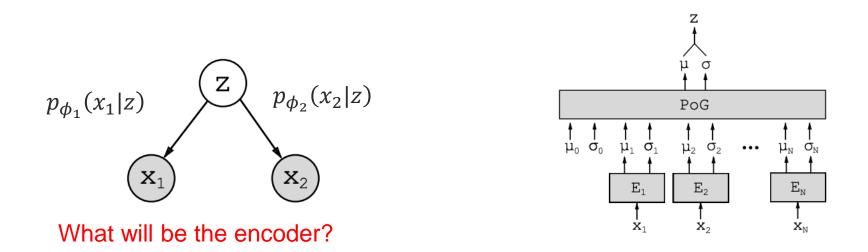
Variational Autoencoder



Carnegie Mellon Universit

勜

Multimodal VAE (MVAE)

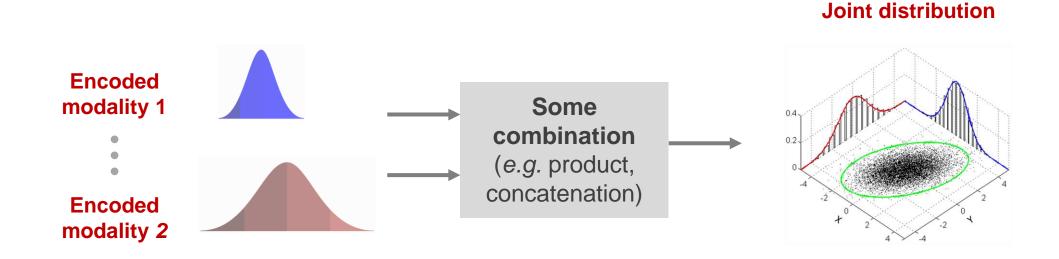


Product of expert (PoG) to combine the variational parameters from the unimodal encoders

[Wu, Mike, and Noah Goodman. "Multimodal Generative Models for Scalable Weakly-Supervised Learning.", NIPS 2018]

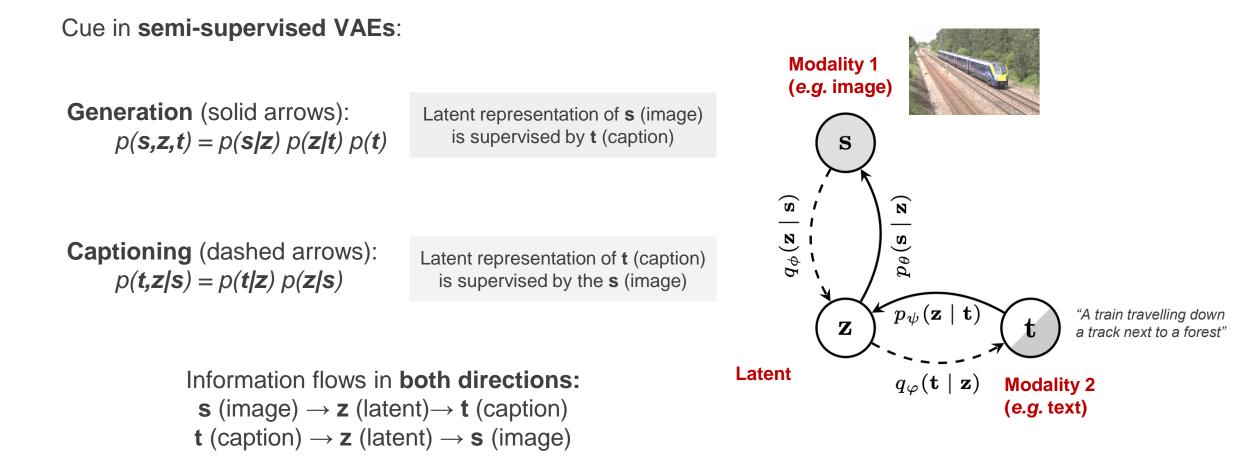
Carnegie Mellon University

Learning Multimodal VAEs



But what if one of the modalities is only **partially observed** at train/test time? What if we allow **each modality to help model the other(s)**?

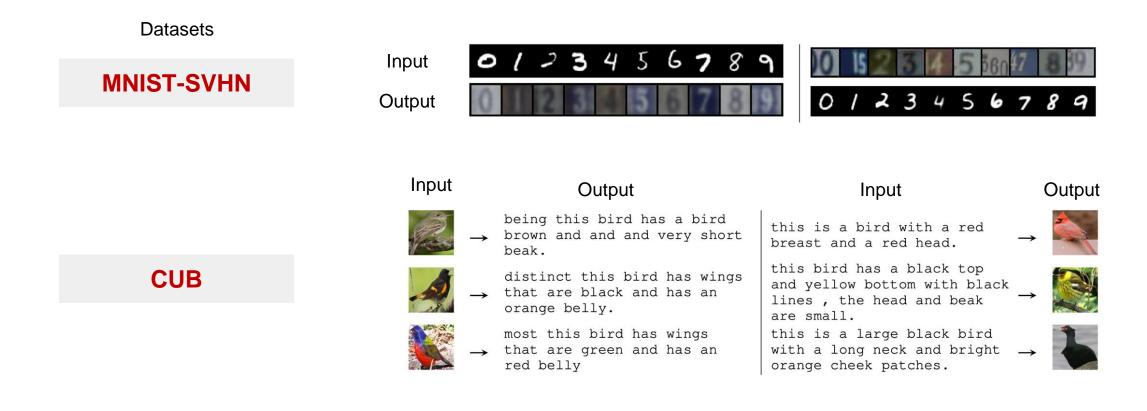
Learning Multimodal VAEs Through Mutual Supervision



Joy et al., "Learning Multimodal VAEs Through Mutual Supervision", ICLR 2022

Learning Multimodal VAEs Through Mutual Supervision

Cross-modal generation results

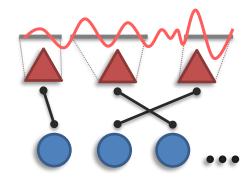


Joy et al., "Learning Multimodal VAEs Through Mutual Supervision", ICLR 2022

勜

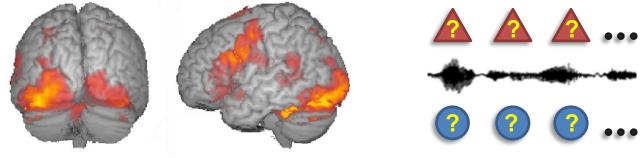
Representation Coordination

Discretization (aka Segmentation)



Common assumptions: (1) Segmented elements

Examples:



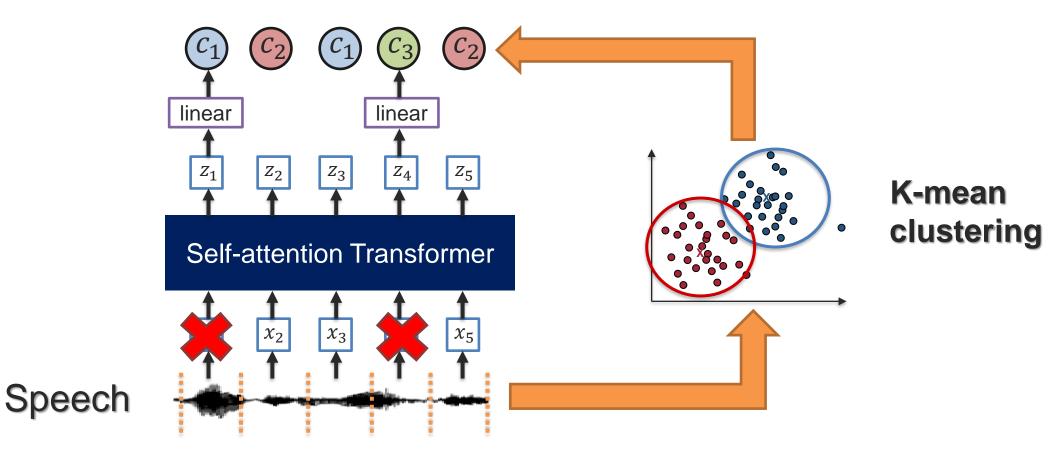
Medical imaging

Signals

Images

Discretization and Representation – Cluster-based Approaches

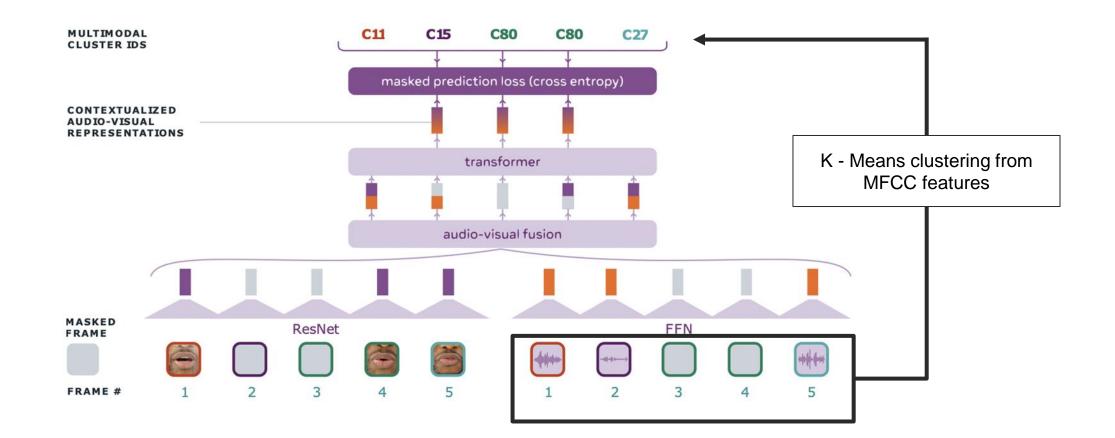
HUBERT: Hidden-Unit BERT



Hsu et al., HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units, arxiv 2021

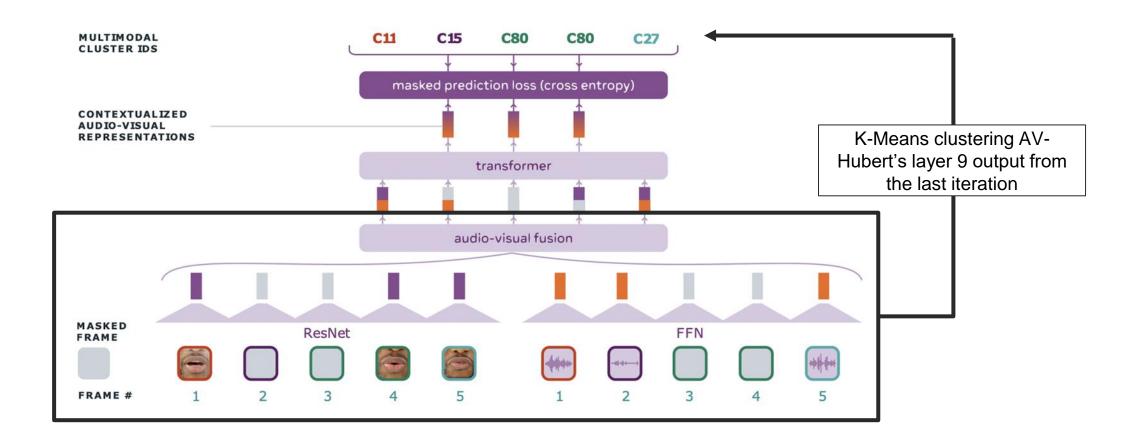
LEARNING AUDIO-VISUAL SPEECH REPRESENTATION BY MASKED MULTIMODAL CLUSTER PREDICTION

How do we get target cluster IDs ? (Iteration 1)

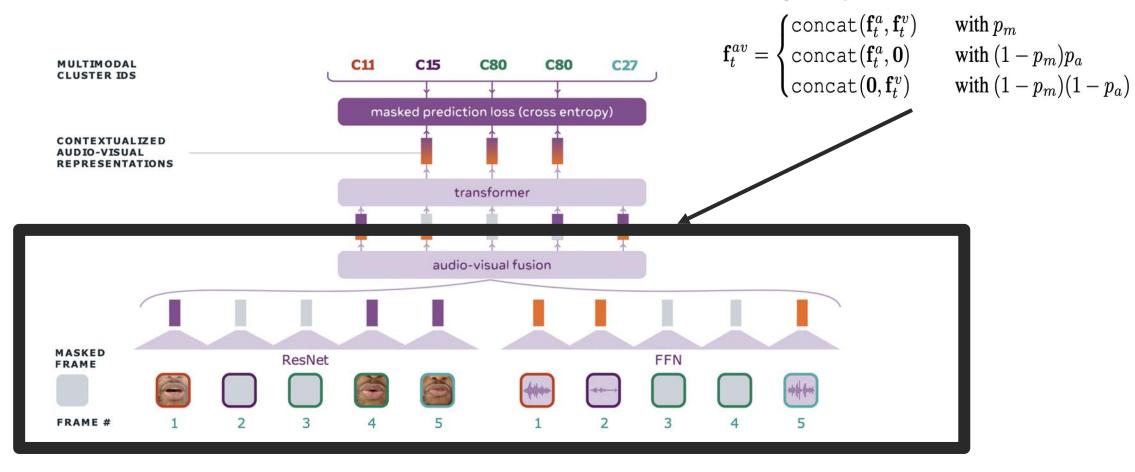


LEARNING AUDIO-VISUAL SPEECH REPRESENTATION BY MASKED MULTIMODAL CLUSTER PREDICTION

How do we target cluster IDs in a Multimodal way? (Iteration 2)



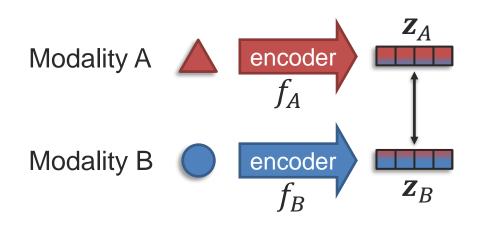
LEARNING AUDIO-VISUAL SPEECH REPRESENTATION BY MASKED MULTIMODAL CLUSTER PREDICTION



Modality dropout:

Representation Coordination

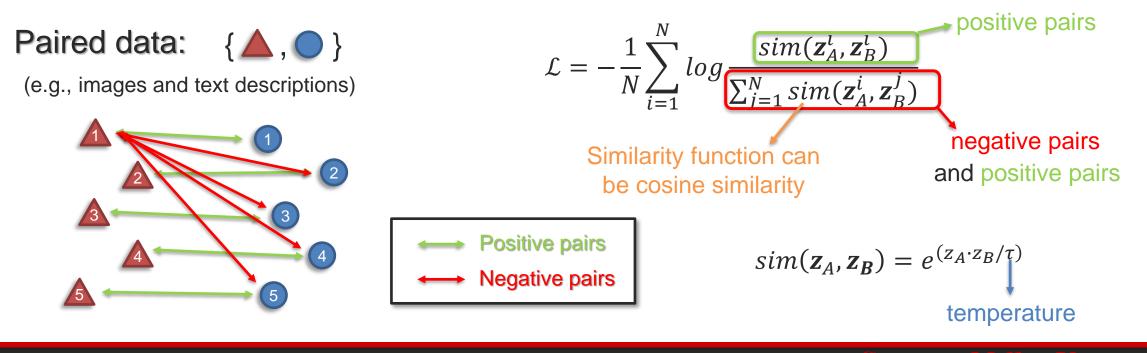
Coordination with Contrastive Learning



Contrastive loss:

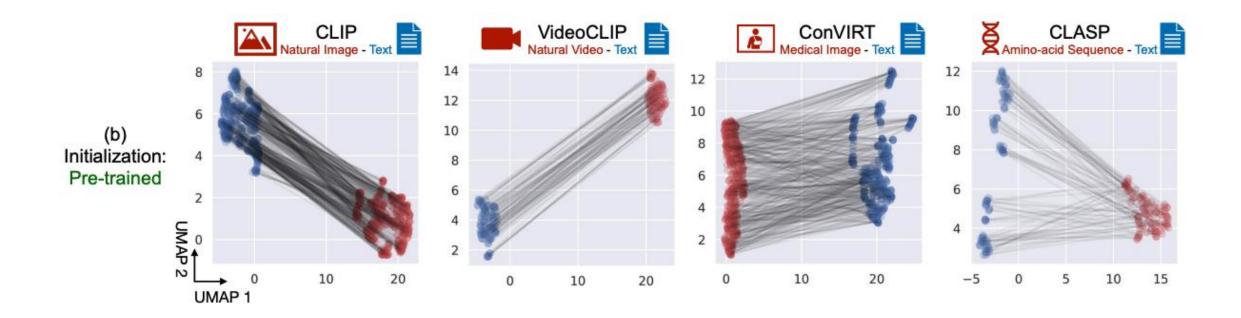
brings positive pairs closer and pushes negative pairs apart

Popular contrastive loss: InfoNCE

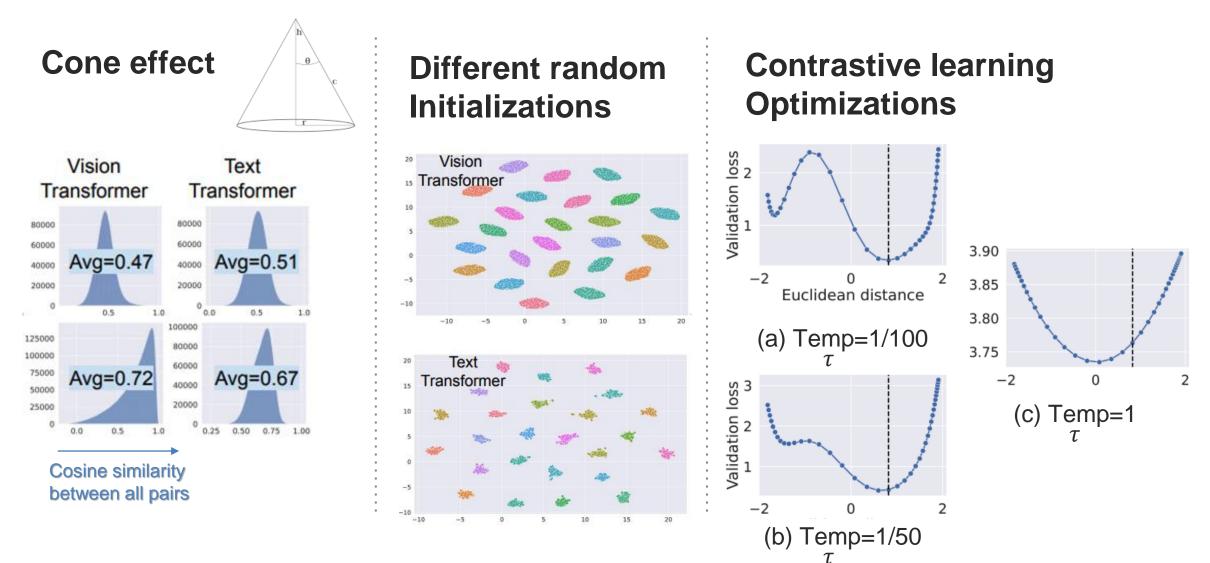


Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning

Modality Gap embeddings of different modalities are projected to completely separate regions of the embedding space



Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning



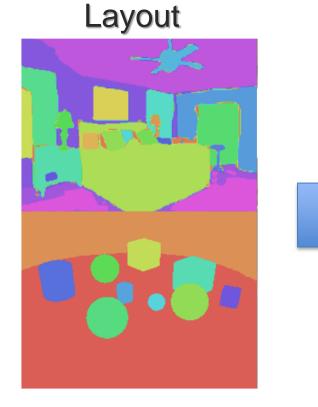
Language Technologies Institute

勜

Carnegie Mellon University

Generation

Controllability during Generation



Generation

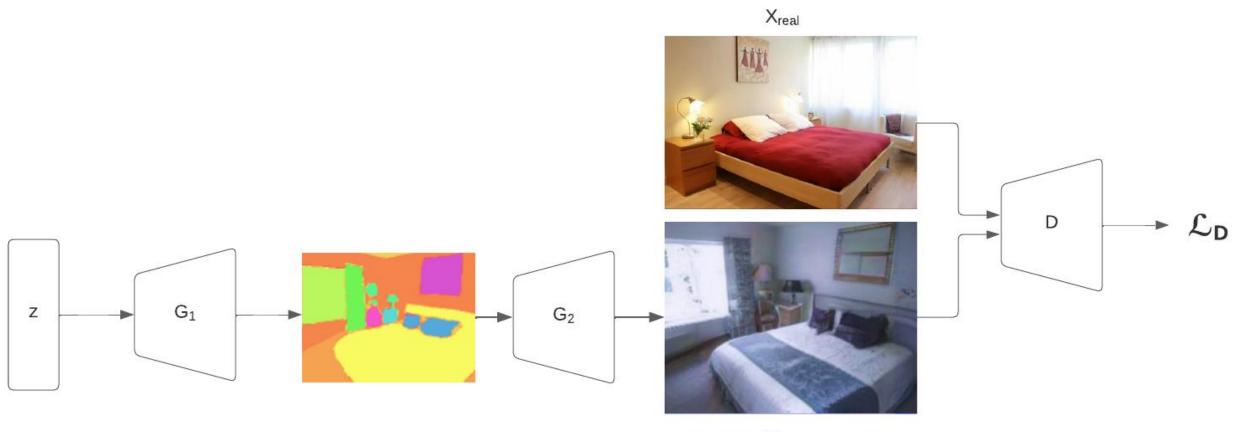
Different styles

Hudson & Zitnick, "Compositional Transformers for Scene Generation". Neurips, 2022

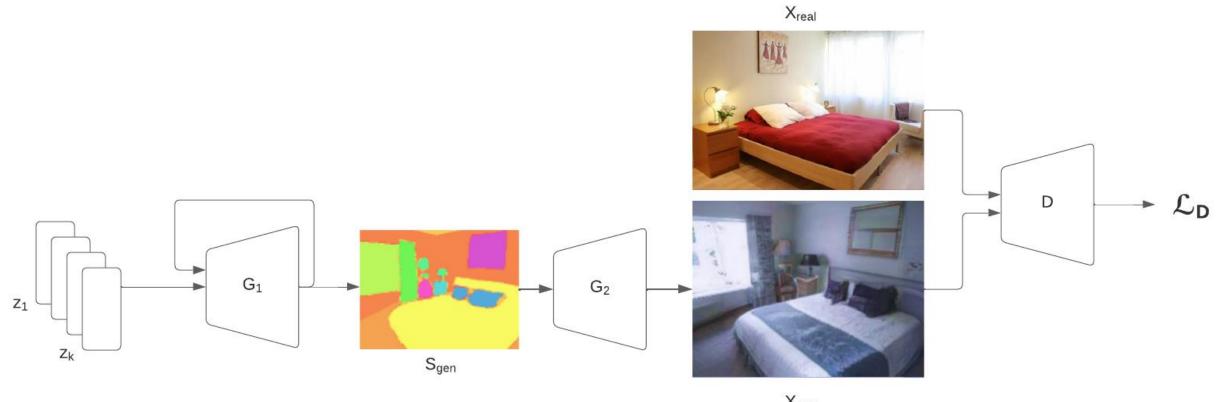
Carnegie Mellon Universit

Hudson & Zitnick, "Compositional Transformers for Scene Generation". Neurips, 2022

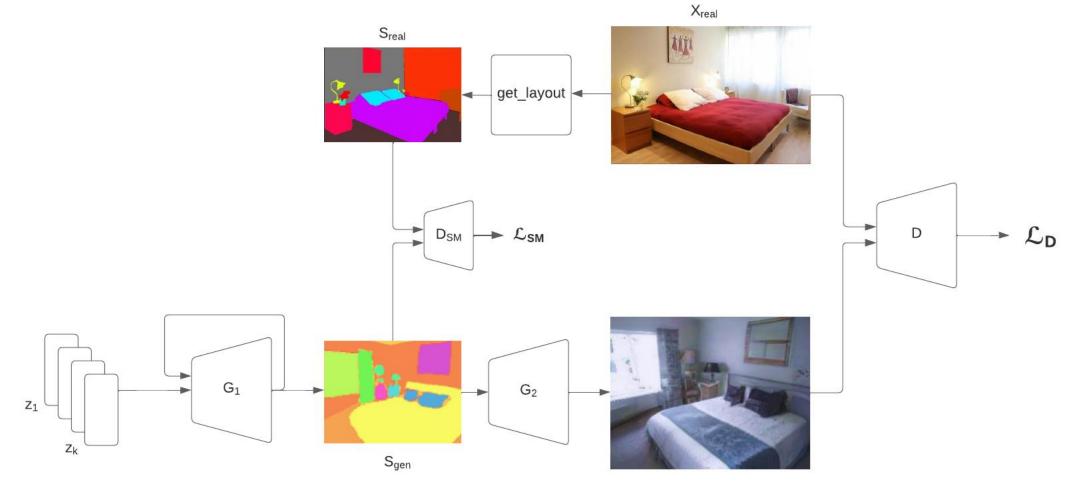
Carnegie Mellon University



 $\mathsf{X}_{\mathsf{gen}}$

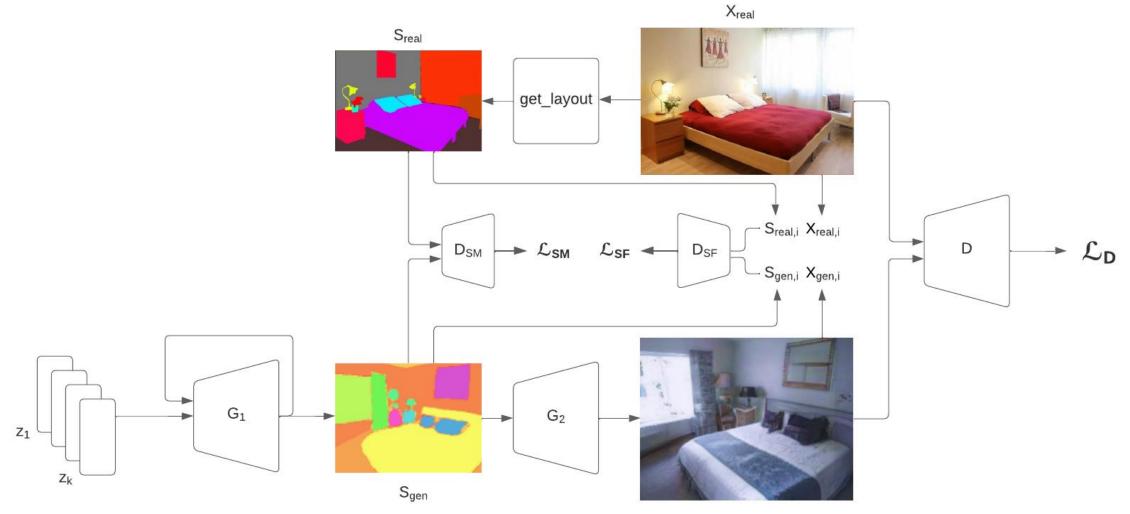


 $\mathsf{X}_{\mathsf{gen}}$



 $\mathsf{X}_{\mathsf{gen}}$

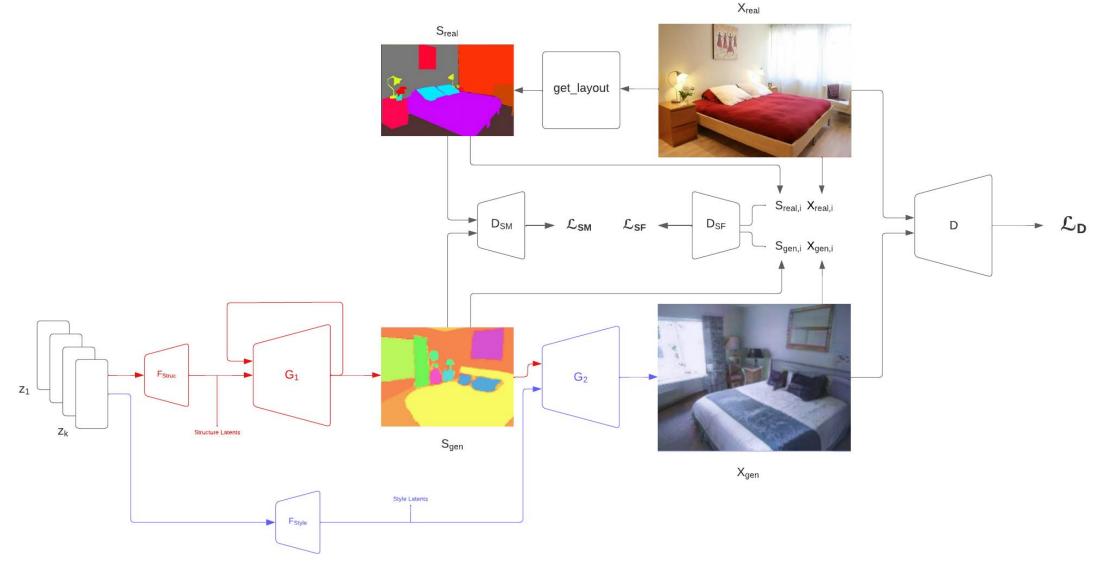
Carnegie Mellon University



 $\mathsf{X}_{\mathsf{gen}}$

Carnegie Mellon University

GANFormer 2.0



Hudson & Zitnick, "Compositional Transformers for Scene Generation". Neurips, 2022

Controllability during Generation

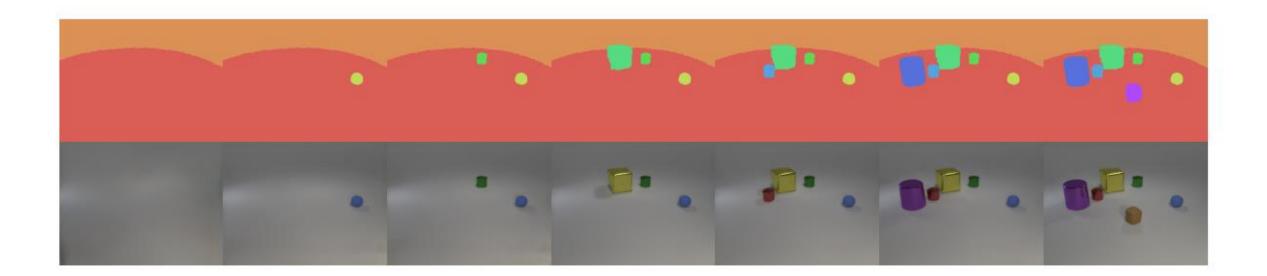


Generation

Different styles

Hudson & Zitnick, "Compositional Transformers for Scene Generation". Neurips, 2022

Transparency and Interpretability



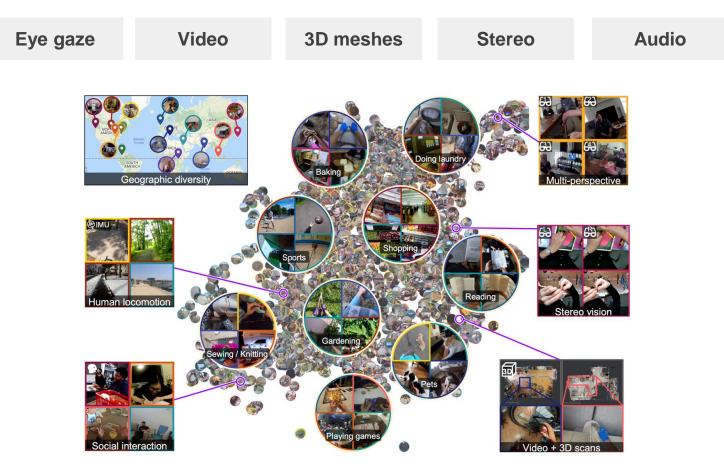
Hudson & Zitnick, "Compositional Transformers for Scene Generation". Neurips, 2022

Carnegie Mellon Universit

Multimodal Benchmarks

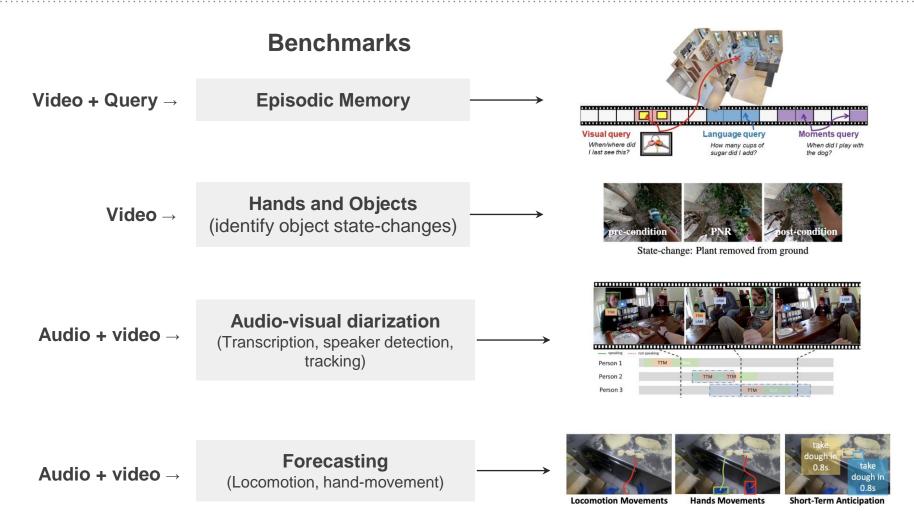
Ego4D: Around the World in 3,000 Hours of Egocentric Video

Ego4D: New in-the-wild benchmark-suite with 3,670 hours of egocentric video



Grauman *et al.*, "Ego4D: Around the World in 3,000 Hours of Egocentric Video", CVPR 2022

Ego4D: Around the World in 3,000 Hours of Egocentric Video



Grauman et al., "Ego4D: Around the World in 3,000 Hours of Egocentric Video", CVPR 2022

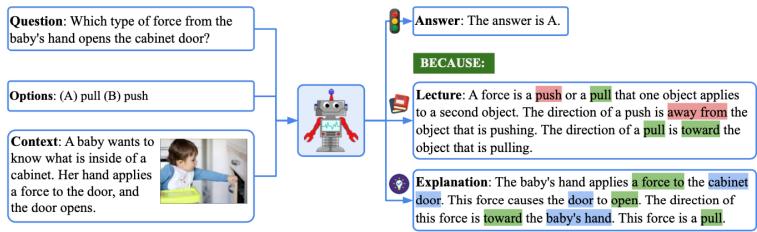
Multimodal Benchmarks

QA process

Human: utilize the information available across different modalities to synthesize a consistent and complete *chain of thought* (CoT) DL models: black box like large-scale language models

ScienceQA

A new benchmark



Pan Lu et al., "Learning to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering" NeurIPS 2022

Language Models with Chain of Thought

A *chain of thought* refers to coherent flow of sentences that reveals the premises and conclusion of a reasoning problem.

```
Question: question : I_i^{ques}

Options: (A) option : I_{i1}^{opt} (B) option : I_{i2}^{opt} (C) option : I_{i3}^{opt}

Context: context : I_i^{cont}

Answer: The answer is answer : I_i^a. BECAUSE: lecture : I_i^{lect} explanation : I_i^{exp}

Question: question : I_t^{ques}

Options: (A) option : I_{t1}^{opt} (B) option : I_{t2}^{opt} (C) option : I_{t3}^{opt} (D) option : I_{t4}^{opt}

Context: context : I_i^{cont}

Answer:
```

Pan Lu et al., "Learning to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering" NeurIPS 2022

Predicted Answer along with the Chain-of-Thought from GPT-3

Question: What do these two changes have in common?\n

bleaching clothes \n

a piece of apple turning brown n

Options: (A) Both are only physical changes. (B) Both are caused by cooling. (C) Both are chemical changes. (D) Both are caused by heating. n

Answer: The answer is C. BECAUSE: A physical change is a change to a substance that does not change what the substance is. A physical change only changes the substance's physical properties, such as its size, shape, or color. \n

A **chemical change** is a change to a substance that changes what the substance is. A **chemical change** changes the substance's chemical properties, such as its chemical structure. \n

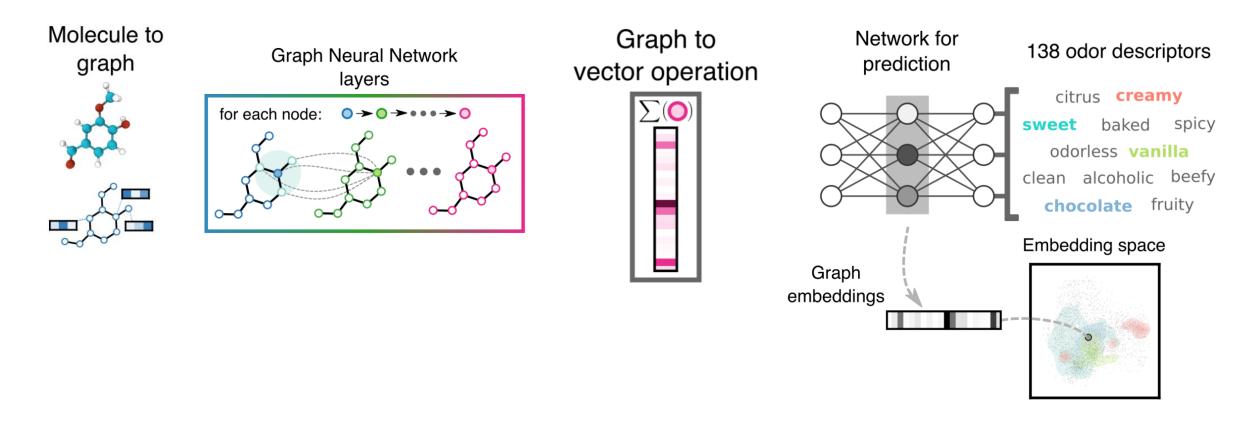
The changes that you listed are both chemical changes. \n

When you **bleach clothes**, the chemical structure of the fabric changes. This change makes the fabric less likely to hold color. \n When **a piece of fruit turns brown**, the chemical structure of the fruit changes. This change makes the fruit taste different.

Pan Lu et al., "Learning to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering" NeurIPS 2022

Digitizing Smell The Principle Odor Map

Learning an Embedding Space for Scent

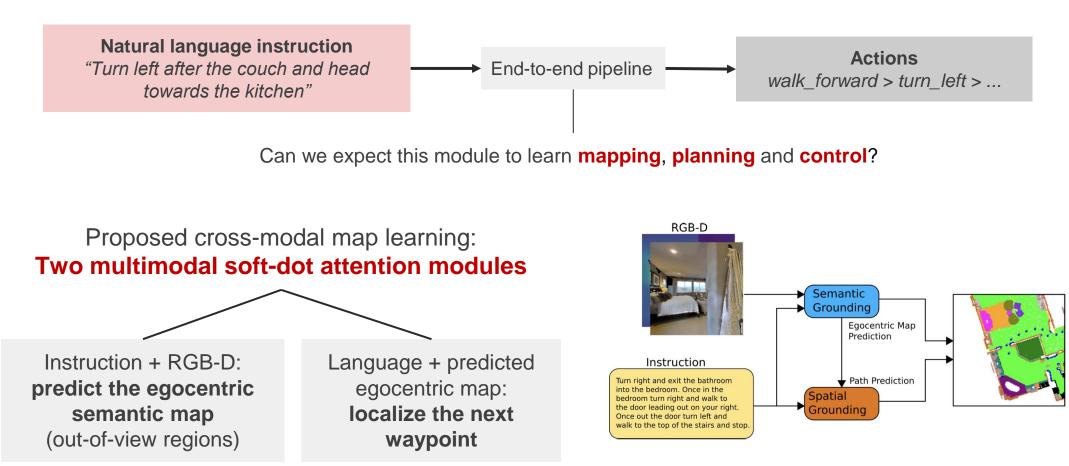


Sanchez-Lengeling, Benjamin, et al. "Machine learning for scent: Learning generalizable perceptual representations of small molecules." arXiv 2019

Reasoning

Cross-modal Map Learning for Vision and Language Navigation

Common SOTA approach for Vision and Language navigation:



Georgakis et al., "Cross-modal Map Learning for Vision and Language Navigation", CVPR 2022