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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 12.2: New Research Directions

* Co-lecturer: Paul Liang. Original course co-developed 

with Tadas Baltrusaitis. Spring 2021 and 2022 editions 

taught by Yonatan Bisk. 
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Administrative Stuff
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Classes Tuesday Lectures Thursday Lectures
Week 1
8/30 & 9/1

Course introduction 
● Multimodal core challenges
● Course syllabus 

Multimodal applications and datasets
● Research tasks and datasets
● Team projects

Week 2 
9/6 & 9/8
Read due: 9/9

Basic concepts: neural networks
● Loss functions and neural networks
● Gradient and optimization

Unimodal representations
● Dimensions of heterogeneity 
● Visual representations

Week 3 
9/13 & 9/15
Read due: 9/16
Proj. Due: 9/14

Unimodal representations
● Language representations
● Signals, graphs and other modalities

Multimodal representations
● Cross-modal interactions
● Multimodal fusion

Week 4
9/20 & 9/22
Proj. due: 9/25

Multimodal representations
● Coordinated representations
● Multimodal fission

Multimodal alignment
● Explicit alignment
● Multimodal grounding

Week 5 
9/27 & 9/29
Read due: 9/30

Project hours (Research ideas) Aligned representations
● Self-attention transformer models
● Masking and self-supervised learning

Week 6 
10/4 & 10/6
Proj. due: 10/9

Multimodal aligned representations
● Multimodal transformers
● Video and graph representations

Multimodal Reasoning
● Structured and hierarchical models
● Memory models

Lecture Schedule
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Classes Tuesday Lectures Thursday Lectures
Week 7
10/11 & 10/13
Read due: 10/14

Multimodal Reasoning
● Reinforcement learning
● Discrete structure learning

Multimodal Reasoning 
● Logical and causal inference
● External knowledge

Week 8 
10/18 & 10/20

Fall Break – No lectures

Week 9 
10/25 & 10/27
Proj. due: 10/30

Generation 
● Translation, summarization, creation
● Generative models: VAEs

Generation 
● GANs and diffusion models
● Model evaluation and ethics

Week 10 
11/1 & 11/3

Project presentations (midterm) Project presentations (midterm)

Week 11 
11/8 & 11/10
Read due: 11/12

Transference
● Multi-task
● Modality transfer

Transference
● Multimodal co-learning
● Co-training

Week 12
11/15 & 11/17
Read due: 11/21

Quantification
● Heterogeneity and interactions
● Biases and fairness

New research directions 
● Recent approaches in multimodal ML

Lecture Schedule
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Classes Tuesday Lectures Thursday Lectures
Week 13
11/22 & 11/24

Thanksgiving Week – No Class –

Week 14 
11/30 & 12/2

Language, Vision, and Actions
● Robots, navigation and embodied AI
● Guest lecturer: Yonatan Bisk

Multimodal Language Grounding
● Grounded semantics and pragmatics
● Guest lecturer: Daniel Fried

Week 15 
12/6 & 12/8
Proj. due: 12/11

Project presentations (final) Project presentations (final)

Lecture Schedule

Final assignment due 

on Sunday 12/11
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Final Project Report (Due Sunday 12/11 at 8pm)

Main goals:

1. Produce a research paper which will motivate your research problem, 

describe the prior work, present your research contributions, explain the 

details of your experiments, and discuss your results.

2. Novel research ideas (N-1 new ideas for N students)

▪ Novel algorithm

▪ Novel application

3. Incorporate feedback from previous milestones

4. Compare to multimodal baselines from midterm report

1. Did the proposed ideas solve the errors highlighted in error analysis?

2. Broader implications of proposed ideas.
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Final Project Presentations (Tuesday 12/6 and Thursday 12/8)

Main objective: 
▪ Present your research ideas to the broad community

▪ Focus on only one (or few) of your new research ideas

▪ All students should present and answer questions

▪ All presentations are in person (no remote presentations)

▪ Non-presenting students will be asked to give feedback

Presentation length:

▪ 30-seconds elevator pitch

▪ 4-minute full presentation – all students should present

▪ Best poster award each day! (1 extra day for final report)
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Last Reading Assignment

▪ Four main steps for the reading assignments

▪ Monday 8pm: Official start of the assignment

▪ Wednesday 8pm: Select your paper

▪ Friday 8pm: Post your summary

▪ Monday 8pm: Post your extra comments
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Advanced Topics in Multimodal ML (11-877)

https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/

https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/
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▪ Seminar-style course (reading discussions)

▪ Fridays 3pm

▪ Two versions:

▪ 6-credit version: reading discussions only

▪ 12-credit version: + independent study (team course project)

▪ Open to all students (but only registered students)

▪ More details in the coming weeks…

New Course: Artificial Social Intelligence (11-866)
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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 12.2: New Research Directions

* Co-lecturer: Paul Liang. Original course co-developed 

with Tadas Baltrusaitis. Spring 2021 and 2022 editions 

taught by Yonatan Bisk. 



Representation Fusion



13

13

Balanced Multimodal Learning via On-the-fly Gradient Modulation

Modality dominance Under-optimized unimodal representations

(even when multimodal model performs better)

Modality A

(dominant)

Modality B

(weak)

Prediction

𝑓𝐴

𝑓𝐵
AddFusion
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Balanced Multimodal Learning via On-the-fly Gradient Modulation

Modality dominance Under-optimized unimodal representations

(even when multimodal model performs better)

Modality A

(dominant)

Modality B

(weak)

𝑓𝐴

𝑓𝐵
Add Prediction

ෝ𝒚 = 𝑓 𝑥𝐴, 𝑥𝐵 = 𝒘𝐴 ∙ 𝑓𝐴(𝒙𝐴) + 𝒘𝑩 ∙ 𝑓𝐵(𝒙𝐵) + 𝑏

×
𝑾𝑨

𝑾𝑩

Problem: The dominant modality (with largest weights 𝑾𝑨 or 𝑾𝑩) 

gets most of the gradient updates
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Balanced Multimodal Learning via On-the-fly Gradient Modulation

The gradient for each modality is 

weighted by the joint discriminative 

loss

Problem: The dominant modality (with largest weights 𝑾𝑨 or 𝑾𝑩) 

gets most of the gradient updates

𝑊𝐴
𝑡+1 = 𝑊𝐴

𝑡 − 𝜂 ∙ ∇𝑊𝐴𝐿

= 𝑊𝐴
𝑡 − 𝜂 ∙

1

𝑁
෍

𝑖=1

𝑁
𝜕𝐿

𝜕𝑓(𝒙𝐴
𝑖 , 𝒙𝐵

𝑖 )

𝜕𝑓(𝒙𝐴
𝑖 , 𝒙𝐵

𝑖 )

𝑊𝐴

= 𝑊𝐴
𝑡 − 𝜂 ∙

1

𝑁
෍

𝑖=1

𝑁
𝜕𝐿

𝜕𝑓 𝒙𝐴
𝑖 , 𝒙𝐵

𝑖
𝑓𝐴(𝒙𝐴)

ෝ𝒚 = 𝑓 𝑥𝐴, 𝑥𝐵 = 𝒘𝐴 ∙ 𝑓𝐴(𝒙𝐴) + 𝒘𝑩 ∙ 𝑓𝐵(𝒙𝐵) + 𝑏

This joint discriminative loss is 

dependent on the weights 𝑾𝑨 or 𝑾𝑩
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Balanced Multimodal Learning via On-the-fly Gradient Modulation

Problem: The dominant modality (with largest weights 𝑾𝑨 or 𝑾𝑩) 

gets most of the gradient updates

Solution: Weight the gradient based on its contribution to the 

learning objective

𝑊𝐴
𝑡+1 = 𝑊𝐴

𝑡 − 𝜂 ∙ 𝑘𝑡
𝐴 ∙ ∇𝑊𝐴𝐿

On-the-fly Gradient Modulation (OGM)

monitor discrepancy of each modality’s 

contribution to the objective
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Balanced Multimodal Learning via On-the-fly Gradient Modulation

Solution: Weight the gradient based on its contribution to the 

learning objective

𝑊𝐴
𝑡+1 = 𝑊𝐴

𝑡 − 𝜂 ∙ 𝑘𝑡
𝐴 ∙ ∇𝑊𝐴𝐿

contribution from v

contribution from a

𝑓𝐴

𝑓𝐵

Ratio computed 

over a batch 𝐵𝑡

for modality u,
Hyper-parameter
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Balanced Multimodal Learning via On-the-fly Gradient Modulation

Achieve considerable improvement 

over common fusion methods on 

different multimodal tasks

O
G

M
-G

E

Generalization 

Enhancement (GE)

introduce extra dynamic 

Gaussian noise to avoid 

generalization drop

Extra contribution:



Representation Fusion
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Geometric Multimodal Contrastive Representation Learning

Modality A

Modality B

encoder

encoder

𝑓𝐴

𝑓𝐵

𝒛
Fusion

𝒛𝑨

𝒛𝑩

Challenge: To help with robustness, we would like the unimodal 

representations (𝒛𝐴 and 𝒛𝐵) to be close to the 

multimodal representation 𝒛

ෝ𝒚Prediction

But in practice, they end up not being aligned!

(related to the “heterogeneity” gap)
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Geometric Multimodal Contrastive Representation Learning

MVAE MFM

Geometrically misaligned

Complete Visual

Modality A

Modality B

encoder

encoder

𝑓𝐴

𝑓𝐵

𝒛
Fusion

𝒛𝑨

𝒛𝑩

ෝ𝒚Prediction

𝒛𝑨
𝒛

GMC

Proposed approach

Aligned

Solution: Align the unimodal and 

multimodal representations 

through contrastive learning
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Geometric Multimodal Contrastive Representation Learning

Geometric Multimodal Contrastive (GMC) learning:

positive pairs

negative pairs

contrast

align

align



Representation Fusion
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Measuring Non-Additive Interactions

Modality A

Modality B

Nonlinear

fusion

𝒙𝐴

𝒙𝐵

ෝ𝒚

ෝ𝒚′ = 𝑓𝐴 𝒙𝐴 + 𝑓𝐵 𝒙𝐵

Additive fusion:

Projection?

Projection from nonlinear to additive (using EMAP):

ሚ𝑓 𝒙𝐴, 𝒙𝐵 = 𝔼
𝒙𝐵

𝑓 𝒙𝐴, 𝒙𝐵 + 𝔼
𝒙𝐴

𝑓 𝒙𝐴, 𝒙𝐵

Nonlinear fusion:

ෝ𝒚 = 𝑓 𝒙𝐴, 𝒙𝐵

𝑓𝐴 𝒙𝐴 𝑓𝐵 𝒙𝐵

Hessel and Lee, Does my multimodal model learn cross-modal interactions? It’s harder to tell than you might think!, EMNLP 2020 → introduced the EMAP method

Modality A Modality B

Additive fusion
(approximation)
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Measuring Non-Additive Interactions

Modality A

Modality B

Nonlinear

fusion

𝒙𝐴

𝒙𝐵

ෝ𝒚

ෝ𝒚′ = መ𝑓𝐴 𝒙𝐴 + መ𝑓𝐵 𝒙𝐵

Additive fusion:

EMAP

projection

Nonlinear fusion:

ෝ𝒚 = 𝑓 𝒙𝐴, 𝒙𝐵

Hessel and Lee, Does my multimodal model learn cross-modal interactions? It’s harder to tell than you might think!, EMNLP 2020 → introduced the EMAP method

Nonlinear

Polynomial

Nonlinear

Nonlinear

Additive

Best Model
Additive

Always a 

good baseline!

Differences 

are small!!!
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ෝ𝒚

ො𝑦𝑢𝑛𝑖 ො𝑦𝑏𝑖 ො𝑦𝑡𝑟𝑖 ෝ𝒚

Learning Non-additive Bimodal and Trimodal Interactions

Modality A

Modality B

𝒙𝐴

𝒙𝐵
Modality C

𝒙𝐶

𝒙𝐴

𝒙𝐵

𝒙𝐶

∑
𝒙𝐴, 𝒙𝐶

𝒙𝐵 , 𝒙𝐶

𝒙𝐴, 𝒙𝐵

∑ 𝒙𝐴, 𝒙𝐵 , 𝒙𝐶 ෝ𝒚𝒕𝒓𝒊

Unimodal Bimodal Trimodal

ℒ(𝑦, ො𝑦𝑢𝑛𝑖)+ ℒ(𝑦 − ො𝑦𝑢𝑛𝑖, ො𝑦𝑏𝑖)+ ℒ(𝑦 − ො𝑦𝑢𝑛𝑖 − ො𝑦𝑏𝑖 , ො𝑦𝑡𝑟𝑖)
Multimodal 

Residual 

Optimization

residual residual 

(additive) (non-additive) (non-additive)

Wortwein et al., Beyond Additive Fusion: Learning Non-Additive Multimodal Interactions, Findings-EMNLP 2022

Idea: prioritize simpler 

interactions



Representation Fusion,

Transference and Generation



Auto-encoder

z Decoder x’

Latent

space
Real

image

x Encoder

After learning this autoencoder, 

can I input any z vector in the decoder?

Synthesized

image



Variational Autoencoder

z Decoder x’

Latent

space
Real

image

x Encoder

KL loss

𝑝 𝑧 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, 𝟏)
(Normal distribution)

Encourages z 

to follow a 

Gaussian distribution

𝑞𝜃 𝑧|𝑥 𝑝𝜙 𝑥|𝑧

Parameterized as Gaussian probability density 

Synthesized

image

𝑁𝑜𝑟𝑚𝑎𝑙(𝝁, 𝝈)

z x

Graphical model representation?

𝑝𝜙 𝑥|𝑧

𝑞𝜃 𝑧|𝑥
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Multimodal VAE (MVAE)

[Wu, Mike, and Noah Goodman. “Multimodal Generative Models for Scalable Weakly-Supervised Learning.”,

NIPS 2018]

𝑝𝜙2
𝑥2|𝑧𝑝𝜙1

𝑥1|𝑧

Product of expert (PoG) to combine the variational parameters from 

the unimodal encoders

What will be the encoder?
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Learning Multimodal VAEs

Encoded

modality 1

Encoded

modality 2

Some 

combination

(e.g. product, 

concatenation)

Joint distribution

But what if one of the modalities is only partially observed at train/test time ?

What if we allow each modality to help model the other(s) ?
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Learning Multimodal VAEs Through Mutual Supervision

Joy et al., “Learning Multimodal VAEs Through Mutual Supervision”, ICLR 2022 

Cue in semi-supervised VAEs:

Modality 1 

(e.g. image)

Modality 2

(e.g. text)

Generation (solid arrows):

p(s,z,t) = p(s|z) p(z|t) p(t)

Latent representation of s (image)

is supervised by t (caption)

Latent representation of t (caption)

is supervised by the s (image)

Information flows in both directions:

s (image) → z (latent)→ t (caption)

t (caption) → z (latent) → s (image)

“A train travelling down 

a track next to a forest”

Latent

Captioning (dashed arrows):

p(t,z|s) = p(t|z) p(z|s)
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Learning Multimodal VAEs Through Mutual Supervision

Joy et al., “Learning Multimodal VAEs Through Mutual Supervision”, ICLR 2022 

MNIST-SVHN
Input

Output

Input Output OutputInput

Cross-modal generation results

CUB

Datasets



Representation 

Coordination
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Discretization (aka Segmentation)

objects

Common assumptions: Segmented elements1

Images

? ? ?

???

SignalsMedical imaging

Examples:
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Discretization and Representation – Cluster-based Approaches

Self-attention Transformer

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

K-mean

clustering

𝑐1 𝑐2 𝑐1 𝑐3 𝑐2

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

linearlinear

HUBERT: Hidden-Unit BERT

Hsu et al., HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units, arxiv 2021

Speech
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K - Means clustering from 

MFCC features 

How do we get target cluster IDs ? (Iteration 1)

LEARNING AUDIO-VISUAL SPEECH REPRESENTATION BY MASKED MULTIMODAL CLUSTER PREDICTION
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How do we target cluster IDs in a Multimodal way? (Iteration 2)

K-Means clustering AV-

Hubert’s layer 9 output from 

the last iteration 

LEARNING AUDIO-VISUAL SPEECH REPRESENTATION BY MASKED MULTIMODAL CLUSTER PREDICTION
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LEARNING AUDIO-VISUAL SPEECH REPRESENTATION BY MASKED MULTIMODAL CLUSTER PREDICTION

Modality dropout:



Representation 

Coordination
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Coordination with Contrastive Learning

Modality A

Modality B

encoder

encoder

𝑓𝐴

𝑓𝐵 𝒛𝐵

𝒛𝐴

Paired data: {     ,     }
(e.g., images and text descriptions)

1

2

1

2

3

4

5

3

4

5

Positive pairs

Negative pairs

Contrastive loss:

brings positive pairs closer and 

pushes negative pairs apart

Popular contrastive loss: InfoNCE

ℒ = −
1

𝑁
෍

𝑖=1

𝑁

𝑙𝑜𝑔
𝑠𝑖𝑚(𝒛𝐴

𝑖 , 𝒛𝐵
𝑖 )

∑𝑗=1
𝑁 𝑠𝑖𝑚(𝒛𝐴

𝑖 , 𝒛𝐵
𝑗
)

positive pairs

and positive pairs

negative pairs
Similarity function can 

be cosine similarity

𝑠𝑖𝑚 𝒛𝐴, 𝒛𝑩 = 𝑒 𝑧𝐴∙𝑧𝐵/𝜏

temperature
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Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive 

Representation Learning

Modality Gap  embeddings of different modalities are projected to 

completely separate regions of the embedding space
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Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive 

Representation Learning

Cone effect

(a) Temp=1/100

(b) Temp=1/50

(c) Temp=1

Different random

Initializations

Contrastive learning

Optimizations

𝜏

𝜏

𝜏

Cosine similarity 

between all pairs



Generation
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Controllability during Generation

Hudson & Zitnick, “Compositional Transformers for Scene Generation”. Neurips, 2022

Layout Generation Different styles
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Image Generation

Hudson & Zitnick, “Compositional Transformers for Scene Generation”. Neurips, 2022
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Image Generation
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Image Generation
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Image Generation
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Image Generation
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GANFormer 2.0

Hudson & Zitnick, “Compositional Transformers for Scene Generation”. Neurips, 2022
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Controllability during Generation

Hudson & Zitnick, “Compositional Transformers for Scene Generation”. Neurips, 2022

Layout Generation Different styles
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Transparency and Interpretability

Hudson & Zitnick, “Compositional Transformers for Scene Generation”. Neurips, 2022



Multimodal Benchmarks
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Ego4D: Around the World in 3,000 Hours of Egocentric Video

Grauman et al., “Ego4D: Around the World in 3,000 Hours of Egocentric Video”, CVPR 2022 

Ego4D: New in-the-wild benchmark-suite with 3,670 hours of egocentric video

Eye gaze Video 3D meshes Stereo Audio
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Ego4D: Around the World in 3,000 Hours of Egocentric Video

Grauman et al., “Ego4D: Around the World in 3,000 Hours of Egocentric Video”, CVPR 2022 

Benchmarks

Episodic MemoryVideo + Query →

Hands and Objects 

(identify object state-changes)
Video →

Audio-visual diarization
(Transcription, speaker detection, 

tracking)

Audio + video →

Forecasting
(Locomotion, hand-movement)Audio + video →



Multimodal Benchmarks
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Learning to Explain:

Multimodal Reasoning via Thought Chain for Science Question Answering

Pan Lu et al., “Learning to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering” NeurIPS 2022

QA process

Human: utilize the information available across different modalities to 

synthesize a consistent and complete chain of thought (CoT)

DL models: black box like large-scale language models 

ScienceQA

A new benchmark
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Learning to Explain:

Multimodal Reasoning via Thought Chain for Science Question Answering

Pan Lu et al., “Learning to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering” NeurIPS 2022

Language Models with Chain of Thought

A chain of thought refers to coherent flow of sentences that reveals the 

premises and conclusion of a reasoning problem.
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Learning to Explain:

Multimodal Reasoning via Thought Chain for Science Question Answering

Pan Lu et al., “Learning to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering” NeurIPS 2022

Predicted Answer along with the Chain-of-Thought from GPT-3



Digitizing Smell
The Principle Odor Map
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Learning an Embedding Space for Scent

Sanchez-Lengeling, Benjamin, et al. "Machine learning for scent: Learning generalizable perceptual representations of small molecules." arXiv 2019



Reasoning
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Cross-modal Map Learning for Vision and Language Navigation

Georgakis et al., “Cross-modal Map Learning for Vision and Language Navigation”, CVPR 2022 

Natural language instruction

“Turn left after the couch and head 

towards the kitchen” 

End-to-end pipeline
Actions

walk_forward > turn_left > ...

Common SOTA approach for Vision and Language navigation:

Can we expect this module to learn mapping, planning and control?

Proposed cross-modal map learning:

Two multimodal soft-dot attention modules

Instruction + RGB-D:

predict the egocentric 

semantic map

(out-of-view regions)

Language + predicted 

egocentric map:

localize the next 

waypoint


