
JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Lecture 2: JavaScript - Objects and Prototypes
CPEN400A - Building Modern Web Applications - Winter

2020-1

Karthik Pattabiraman

The University of British Columbia
Department of Electrical and Computer Engineering
Vancouver, Canada

Thursday September 21, 2017

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Javascript: History and Philosophy 2

1 Javascript: History and Philosophy

2 Object Creation in Javascript

3 Object Constructor and Methods

4 Prototypes and Inheritance

5 Type-Checking and Reflection

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Javascript: History 3

Invented in 10 days by Brendan Eich at Nescape in May 1995
as part of the Navigator 2.0 browser

Based on Self, but dressed up to look like Java
Standardized by committee in 2000 as ECMAScript

Brendan Eich (Inventor of
JavaScript):
JavaScript (JS) had to “look like
Java” only less so, be Java’s dumb
kid brother or boy-hostage sidekick.
Plus, I had to be done in ten days
or something worse than JS would
have happened

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Javascript: Philosophy 4

Everything is an object
Includes functions, non-primitive types etc.
Even the class of an object is an object !

Nothing has a type
Or its type is what you want it to be (duck typing)
No compile-time checking (unless in strict mode)
Runtime type errors can occur

Programmers make mistakes anyways
If an exception is thrown, do not terminate program (artifact
of browsers, rather than JS)

Code is no different from data
So we can use ‘eval’ to convert data to code

Function’s can be called with fewer or more arguments than
needed (variadic functions)

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

This lecture 5

We’ll learn about Objects and Classes the “old way” (without
ES6)
ES6 makes it much simpler to declare and use objects, but
it’s just syntactic sugar around the old way of doing things
Not understanding objects from the ground up can result in
nasty surprises
Things will make a lot more sense if we go from the old way

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Object Creation in Javascript 6

1 Javascript: History and Philosophy

2 Object Creation in Javascript

3 Object Constructor and Methods

4 Prototypes and Inheritance

5 Type-Checking and Reflection

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

What is an Object in JS ? 7

Container of properties, where each property has a name and
a value, and is mutable

Property names can be any string, including the empty string
Property values can be anything except undefined

What are not objects ?
Primitive types such as numbers, booleans, strings
null and undefined – these are special types

What about classes ?
There are no classes in JavaScript, as we understand them in
languages such as Java
“What ? How can we have objects without classes ?”

Objects use what are known as prototypes
An object can inherit the properties of another object using
prototype linkage (more later)

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Example of Object Creation 8

1 // Initializing an empty object
2 var empty_object = {} ;
3
4 // Object with two attributes
5 var name = {
6 f i r s tName : " Karthik " ,
7 lastName : " Pattabiraman " ;
8 } ;

NOTE
You don’t need a quote around firstName and lastName as they’re
valid JavaScript identifiers

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Retrieving an Object’s Property 9

1 name [" firstName "]
2 // Equivalent to:
3 name . f i r s tName
4
5 name [" lastName "]
6 // Equivalent to:
7 name . lastName

What if you write name["middleName"]?
Returns undefined. Later use of this value will result in an
“TypeError” exception being thrown

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Update of an Object’s Property 10

1 name [" firstName "] = " Different firstName " ;
2 name . lastName = " Different lastName " ;

What happens if the property is not present ?
It’ll get added to the object with the value

In short, objects behave like hash tables in JS

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Objects are passed by REFERENCE ! 11

In JavaScript, objects are passed by REFRENCE
No copies are ever made unless explicitly asked

i.e., JSON.parse(JSON.stringify(obj))
Changes made in one instance are instantly visible in all
instances as it is by reference

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Object Constructor and Methods 12

1 Javascript: History and Philosophy

2 Object Creation in Javascript

3 Object Constructor and Methods

4 Prototypes and Inheritance

5 Type-Checking and Reflection

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

How to create an object ? 13

Define the object type by writing a “Constructor function”
By convention, use a capital letter as first letter
Use “this” within function to initialize properties

Call constructor function with the new operator and pass it
the values to initialize

Forgetting the ‘new’ can have unexpected effects
‘new’ operator to create an object of instance ‘Object’, which
is a global, unique JavaScript object

Object Creation using New

1 var Person = f u n c t i o n (f i r s tName , lastName , gender)
{

2 t h i s . f i r s tName= f i r s tName ;
3 t h i s . lastName = lastName ;
4 t h i s . gender = gender ;
5 }
6 var p = new Person ("John" , " Smith " , "Male") ;

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

this keyword 14

It’s a reference to the current object, and is valid only inside
the object
Need to explicitly use this to reference the object’s fields and
methods

Forgetting this means you’ll create new local vars
Can be stored in ordinary local variables
Cannot be modified from within the object

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Constructors 15

Using the new operator as we’ve seen
this is set to the new object that was created

Automatically returned unless the constructor chooses to
return another object (non-primitive)

Bad things can happen if you forget the ‘new’ before the call
to the constructor (Later)

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Object Methods 16

Functions that are associated with an object
Like any other field of the object and invoked as
object.methodName()

Example: Polygon.draw(10, 100);
this is automatically defined inside the method
Must be explicitly added to the object

1 t h i s . d i s t = f u n c t i o n (p o i n t) {
2
3 r e t u r n Math . s q r t ((t h i s . x − po i n t . x)
4 ∗ (t h i s . x − po i n t . x)
5 + (t h i s . y − po i n t . y)
6 ∗ (t h i s . y − po i n t . y)) ;
7 }

NOTE
this is bound to the object on which it is invoked

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Calling a Method 17

Simply say object.methodName(parameters)
Example: p1.dist(p2);
this is bound to the object on which it is called. In the
example, this = p1. This binding occurs at invocation time
(late binding).

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Prototypes and Inheritance 18

1 Javascript: History and Philosophy

2 Object Creation in Javascript

3 Object Constructor and Methods

4 Prototypes and Inheritance

5 Type-Checking and Reflection

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Object Prototype 19

Every object has a field called Prototype
Prototype is a pointer to the object the object is created from
(i.e., the class object)
Changing the prototype object instantly changes all instances
of the object

The default prototype value for a given object is Object
Can be changed when using new or Object.create to construct
the object

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Object Prototype: Example 20

In the previous example, what is the prototype value of a
“Person” object ?

1 var p = new Person ("John" , " Smith " , "Male") ;
2 c on s o l e . l o g (Object . ge tPro to typeOf (p)) ;

What will happen if we do the following instead

1 c on s o l e . l o g (Object . ge tPro to typeOf (Person)) ;

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Prototype Field 21

Prototypes of objects created through {} (object literal
syntax) is

Object.prototype
Prototype of objects created using new Object

Object.prototype
Prototype of objects created using new and constructors
functions (e.g., Person)

Prototype field set according to the constructor function (if
object) (e.g., Person)
Object.prototype (otherwise)

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

What ’new’ really does? 22

Initializes a new native object
Sets the object’s “prototype” field to the constructor
function’s prototype field

In Chrome (V8 engine), the prototype of an object instance o
is accessible through the hidden property o.__proto__.

Direct usage should be avoided! Use instead
Object.getPrototypeOf(o)

If it’s not an Object, sets it to Object.prototype
i.e., Object.create(null)

Calls the constructor function, with the object as this
Any fields initialized by the function are added to this
Returns the object created if and only if the constructor
function returns a primitive type (i.e., number, boolean, etc.).
Ideally, the constructor function shouldn’t return anything!

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Prototype Modification 23

An object’s prototype object is just another object (typically).
So it can be modified too.
We can add properties to prototype objects – the property
becomes instantly visible in all instances of that prototype
(even if they were created before the property was added)

Reflects in all descendant objects as well (later)

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Prototype Modification: Example 24

1 var p1 = new Person ("John" , " Smith " , "Male") ;
2
3 Person . p r o t o t yp e . p r i n t = f u n c t i o n () {
4 c on s o l e . l o g (" Person : " + t h i s . f i r s tName
5 + t h i s . lastName + t h i s . gender + "\n") ;
6 }
7
8 var p2 = new Person (" Linda " , " James " , " Female ") ;
9 p1 . p r i n t () ;

10 p2 . p r i n t () ;

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Delegation with Prototypes 25

When you lookup an Object’s property, and the property is
not defined in the Object,

It checks if the Object’s prototype is a valid object
If so, it does the lookup on the prototype object
If it finds the property, it returns it
Otherwise, it recursively repeats the above process till it
encounters Object.prototype
If it doesn’t find the property even after all this, it returns
undefined

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Prototype Inheritance 26

Due to Delegation, Prototypes can be used for (simulating)
inheritance in JavaScript

Set the prototype field of the child object to that of the parent
object
Any access to child object’s properties will first check the child
object (so it can over-ride them)
If it can’t find the property in the child object, it looks up the
parent object specified in prototype
This process carries on recursively till the top of the prototype
chain is reached (Object.prototype)

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Prototype Inheritance: Example 27

1 var Employee = f u n c t i o n (f i r s tName , lastName , Gender , t i t l e)
{

2 Person . c a l l (t h i s , f i r s tName , lastName , Gender) ;
3 t h i s . t i t l e = t i t l e ;
4 }
5
6 Employee . p r o t o t yp e = new Person () ;
7 /* Why should you create a new person object ? */
8
9 Employee . p r o t o t yp e . c o n s t r u c t o r = Employee ;

10
11 var emp = new Employee ("ABC" , "XYZ" , "Male" , " Manager ") ;

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Object.create(proto) 28

Creates a new object with the specified prototype object and
properties
proto parameter must be null or an object

Throws TypeError otherwise

Object.create Argument
Can specify initialization parameters directly in Object.create
as an (optional) 2nd argument

var e = Object.create(Person, { Title: {value: “Manager” }})
We can specify other elements such as enumerable,
configurable etc. (more later)

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Prototype Inheritance with Object.create: Example 29

1 var Person = {
2 f i r s tName : "John" ;
3 lastName : " Smith " ;
4 gender : "Male" ;
5 p r i n t : f u n c t i o n () {
6 c on s o l e . l o g (" Person : " + t h i s . f i r s tName
7 + t h i s . lastName + t h i s . gender ;
8 }
9 } ;

10 var e = Object . c r e a t e (Person) ;
11 e . t i t l e = " Manager " ;

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Design Tips 30

Object.create might be cleaner in some situations, rather than
using new and .prototype (no need for artificial objects)
With new, you need to remember to use this and also NOT
return an object in the constructor

Otherwise, bad things can happen
Object.create allows you to create objects without running
their constructor functions

Need to run your constructor manually if you want
i.e., Person.call(p2, “Bob”)

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Class Activity 31

Construct a class hierarchy with the following properties using
both pseudo-class inheritance (through constructors) and
prototypal inheritance (thro’ Object.create). Add an area
method and a toString prototype function to all the objects.

Point { x, y } ⇒ Circle { x, y ,r } ⇒ Ellipse { x, y, r, r2 }

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Type-Checking and Reflection 32

1 Javascript: History and Philosophy

2 Object Creation in Javascript

3 Object Constructor and Methods

4 Prototypes and Inheritance

5 Type-Checking and Reflection

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Reflection and Type-Checking 33

In JS, you can query an object for its type, prototype, and
properties at runtime

To get the Prototype: getPrototypeOf()
To get the type of: typeof
To check if it’s of certain instance: instanceof
To check if it has a certain property: in
To check if it has a property, and the property was not
inherited through the prototype chain: hasOwnProperty()

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

typeof 34

Can be used for both primitive types and objects

1 t ypeo f (Person . f i r s tName) => S t r i n g
2 t ypeo f (Person . lastName) => S t r i n g
3 t ypeo f (Person . age) => Number
4 t ypeo f (Person . c o n s t r u c t o r) => f u n c t i o n (p r o t o t yp e)
5 t ypeo f (Person . t o S t r i n g) => f u n c t i o n (from Object)
6 t ypeo f (Person . middleName) => unde f i n ed

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

instanceof 35

Checks if an object has in its prototype chain the prototype
property of the constructor

1 o b j e c t i n s t a n c e o f c o n s t r u c t o r => Boolean
2
3 // Example :
4 var p = new Person (/* ... */) ;
5 var e = new Employee (/* ... */) ;
6
7 p i n s t a n c e o f Person ; // True
8 p i n s t a n c e o f Employee ; // False
9 e i n s t a n c e o f Person ; // True

10 e i n s t a n c e o f Employee ; // True
11 p i n s t a n c e o f Object ; // True
12 e i n s t a n c e o f Object ; // True

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

getPrototypeOf 36

Gets an object’s prototype (From the prototype field) –
Object.getPrototypeOf(Obj)

Equivalent of ‘super’ in languages like Java
Notice the differences between invoking getPrototypeOf on an
object constructed using the “associative array” syntax vs
through a constructor!

1 var p ro to = {} ;
2 var ob j = Object . c r e a t e (p ro to) ;
3 Object . ge tPro to typeOf (ob j) ; // proto
4 Object . ge tPro to typeOf (p ro to) ; // Object

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

in operator 37

Tests if an object o has property p
Checks both object and its prototype chain

1 var p = new Person (/* ... */) ;
2 var e = new Employee (/* ... */) ;
3
4 " firstName " i n p ; // True
5 " lastName " i n e ; // True
6 " Title " i n p ; // False

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

hasOwnProperty 38

Only checks the object’s properties itself
Does not follow the prototype chain
Useful to know if an object has overridden a property or
introduced a new one

1 var p = new Employee (/* ... */) ;
2 p . hasOwnProperty (" Title ") // True
3 p . hasOwnProperty (" FirstName ") // False

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Iterating over an Object’s fields 39

Go over the fields of an object and perform some action(s) on
them (e.g., print them)

Can use hasOwnProperty as a filter if needed

1 var name ;
2 f o r (name i n ob j) {
3 i f (t ypeo f (ob j [name]) != " function ") {
4 document . w r i t e l n (name + " : " + ob j [name]) ;
5 }
6 }

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Removing an Object’s Property 40

To remove a property from an object if it has one (not
removed from its prototype), use:

1 d e l e t e o b j e c t . p rope r t y−name

Properties inherited from the prototype cannot be deleted
unless the object had overriden them.

1 var e = new Employee (/* ... */) ;
2 d e l e t e e . T i t l e ; // Title is removed from e

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Object Property Types 41

Properties of an object can be configured to have the
following attributes (or not):

Enumerable: Show up during enumeration(for.. in)
Configurable: Can be removed using delete, and the attributes
can be changed after creation
Writeable: Can be modified after creation

By default, all properties of an object are enumerable,
configurable and writeable

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Specifying Object Property types 42

Can be done during Object creation with Object.create

1 var e = Object . c r e a t e (Person ,
2 { T i t l e : { v a l u e : " Manager " ,
3 enumerab le : t rue ,
4 c o n f i g u r a b l e : t rue ,
5 w r i t e a b l e : f a l s e
6 }) ;

Can be done after creation using Object.defineProperty

1 Object . d e f i n eP r o p e r t y (Employee , " Title " ,
2 { va l u e : " Manager " ,
3 enumerab le : t rue ,
4 c o n f i g u r a b l e : t rue ,
5 w r i t a b l e : f a l s e }) ;

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Design Guidelines 43

Use for. . . in loops to iterate over object’s properties to make
the code extensible

Avoid hardcoding property names if possible
Use instanceof rather than getPrototypeOf

Try to fix the attributes of a property at object creation time.
With very few exceptions, there is no need to change a
property’s attribute.

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Class Activity 44

Write a function to iterate over the properties of a given
object, and identify those properties that it inherited from its
prototype AND overrode it with its own values

Do not consider functions

JS: History and Philosophy Object Creation Constructor/Methods Prototypes/Inheritance Reflection

Table of Contents 45

1 Javascript: History and Philosophy

2 Object Creation in Javascript

3 Object Constructor and Methods

4 Prototypes and Inheritance

5 Type-Checking and Reflection

	Javascript: History and Philosophy
	Object Creation in Javascript
	Object Constructor and Methods
	Prototypes and Inheritance
	Type-Checking and Reflection

