
Pointer/Alias Analysis
Lecture 7: CPEN 400P

Karthik Pattabiraman, UBC

(Based on Stephen Chong’s lecture at Harvard Univ., CS252,
and Vikram Adve’s CS526 at the Univ. of Illinois)

Outline

What is pointer analysis ?

Types of pointer analysis

Anderson’s analysis

Steensgard analysis

What’s pointer analysis ?

Pointer analysis: What memory locations can a pointer expression refer to?

Alias analysis: When do two pointer expressions refer to the same location?

int x;

p = &x;

q = p;

What locations alias each other ?

*p and *q alias, as do x and *p, and x and *q

What causes Aliasing ?

Pointers, Pointer arithmetic etc.

- See previous slide

Call by reference

Array indexing, e.g., a[i], i = j; a[j] → a[i] and a[j] alias

Virtual functions in C++ (use of vtable)

Many other cases

What’s the use of pointer analysis ?

Useful in many analysis

- Live-out: Can lead to variables being killed

p = &x;

*p = a + b;

- Constant propagation: can lead to spurious constants

x = 3;

p = &x;

*p = 4;

Challenges of pointer analysis

1. Pointers to pointers, which can occur in many ways:
- Take address of pointer
- Pointer to structure containing pointer
- Pass a pointer to a procedure by reference

2. Aggregate objects: structures and arrays containing pointers

3. Recursive data structures (lists, trees, graphs, etc.)

closely related problem: anonymous heap locations

4. Control-flow: analyzing different data paths

5. Inter-procedural analysis is crucial

Outline

What is pointer analysis ?

Types of pointer analysis

Anderson’s analysis

Steensgard analysis

Flow-sensitivity

- Computes a distinct result for each program point

- Computes a single result for an entire procedure or an entire program

- Flow-sensitive is too expensive in practice and rarely used
- All the pointer analysis we’ll consider in this class are flow-insensitive
- SSA provides a limited form of flow-sensitivity within a procedure

Context Sensitivity

Context-sensitive interprocedural analysis computes results that may hold only for
realizable paths through a program - important for security and reliability

Need to consider many parameters

- Heap cloning vs. no cloning
- Bottom-up vs. top-down
- Handling of recursive functions

Modeling memory locations example

Should we distinguish between calls to goo() ?

foo() {

T* p = goo();

T* q = goo();

}

goo(int n) {

return new T(n);

}

What about calls to makeList() ?

T* makelist(int len) {

T* newObj = new T;

// Many distinct objects allocated here

newObj->next = (--len == 0)?

NULL : makelist(len);

return newObj;

}

How do we model memory locations ?

Global variables - Use a single node

Local variables - use a single node per context

Dynamically allocated memory - potentially unbounded locations at runtime

- One node for entire heap (too imprecise)
- One node for each type (requires type analysis)
- One node per calling site (can lead to conflation across calling context)
- One node per calling context, i.e., for each allocation statement

“May” versus “Must” Analysis

May analysis: Aliasing that may occur during execution

Must analysis: Aliasing that must occur during execution

Consider liveness analysis: *p = *q + 4;

What’s the VarKill set for the statement ? What about the UEVar set ?

- May analysis: if *q may alias y, then y is in the UEVar set
- Must analysis: if *p must alias x, then x is in the VarKill set

Problem Statement

Flow-insensitive, May analysis

Assume program consists of only statements of the forms

- p = &a;
- p = q;
- *p = q;
- p = *q;

Assume pointers, q and address-taken variables are disjoint

We want to compute the points-to pairs, i.e., which pointer points to which variable

Outline

What is pointer analysis ?

Types of pointer analysis

Anderson’s analysis

Steensgard analysis

Andersen-style pointer analysis

●View pointer assignments as subset constraints

●Use constraints to propagate points-to information

15

Constraint type Assignment Constraint Meaning

Base a = &b a ⊇ {b} loc(b) ∈ pts(a)

Simple a = b a ⊇ b pts(a) ⊇ pts(b)

Complex a = *b a ⊇ *b ∀v∈pts(b). pts(a) ⊇ pts(v)

Complex *a = b *a ⊇ b ∀v∈pts(a). pts(v) ⊇ pts(b)

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

Anderson’s Algorithm: Graph Representation

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

Anderson’s Algorithm: Graph Representation

p → a

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

Anderson’s Algorithm: Graph Representation

p → a

q → b

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

Anderson’s Algorithm: Graph Representation

a
p

b

q

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

Anderson’s Algorithm: Graph Representation

a
p

b

q

r

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

Anderson’s Algorithm: Graph Representation

a
p

b

q

r

c

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

Anderson’s Algorithm: Graph Representation

a
p

b

q

r

c

Points-to Set

p {a, b, c}

q {a, b, c}

r {p}

a {}

b { }

c { }

Class Activity: Anderson’s analysis

23

p = &a

q = &b

*p = q;

r = &c;

s = p;

t = *p;

*s = r;

p a
q b

r cs
t

p a
q b

r cs

p a
q b

r c

p a
q b

p a
q b

p a

p a
q b

r cs
t

Points-to Set

p {a}

q {b}

r {c}

s {a}

t {b, c}

a {b, c}

b { }

c { }

Andersen-style as graph closure
●One node for each pts(p), pts(a)

●Each node has an associated points-to set
●Compute transitive closure of graph, and add edges according

to complex constraints: O(N^3)

24

Assgmt. Constraint Meaning Edge
a = &b a ⊇ {b} b ∈ pts(a) no edge
a = b a ⊇ b pts(a) ⊇ pts(b) b → a
a = *b a ⊇ *b ∀v∈pts(b). pts(a) ⊇ pts(v) no edge
*a = b *a ⊇ b ∀v∈pts(a). pts(v) ⊇ pts(b) no edge

Outline

What is pointer analysis ?

Types of pointer analysis

Anderson’s analysis

Steensgard analysis

Steensgaard-style analysis

●Also a constraint-based analysis
●Uses equality constraints instead of subset constraints
●Less precise than Andersen-style, thus more scalable

○ Almost linear time as opposed to O(N^3)

26

Constraint type Assignment Constraint Meaning

Base a = &b a ⊇ {b} loc(b) ∈ pts(a)

Simple a = b a = b pts(a) = pts(b)

Complex a = *b a = *b ∀v∈pts(b). pts(a) = pts(v)

Complex *a = b *a = b ∀v∈pts(a). pts(v) = pts(b)

Implementing Steensgaard-style analysis

●Restrict every node to only one outgoing edge
If p → x and p → y , merge x and y (“Unify”)

All objects “pointed to” by p - same equivalence class

●Can be efficiently implemented using Union-Find algorithm
○Nearly linear time: O(n): Tarjan’s data-structure
○Each statement needs to be processed just once

27

Example: Steensgard’s algorithm

x z a

y v bw

x = *y

x z a

y v bw

x z a

y v bw

What’s the consequence of
this merging ?

Class Activity: Perform Steensgard-style Analysis here

p = &a

q = &b

*p = q;

r = &c;

s = p;

t = *p;

*s = r;

Activity Solution (Unification)

30

p = &a

q = &b

*p = q;

r = &c;

s = p;

t = *p;

*s = r;

p a
q b

r cs
t

p a
q b

r cs

p a
q b

r c

p a
q b

p a
q b

p a

p a
q b, cs

t

Points-to Set

p {a}

q {b, c}

r {b, c}

s {a}

t {b, c}

a {b, c}

b { }

c { }r

