
Test Generation
Lecture 9: CPEN 400P

Karthik Pattabiraman, UBC

(Slides are based on Gary Tan’s CSE597: Topics in Software Testing at Penn State)

Outline

Goals and principles

Black-box testing

White-box testing

Dynamic Analysis

● Analyze the program when it is running with a specific input

● Many techniques

○ Testing (this class)

○ Fuzzing (next class after midterm exam)

3

Program Testing

● Testing: the process of running a program on a set of test cases and

comparing the actual results with expected results

○ For the implementation of a factorial function, test cases could be {0, 1, 5, 10}

● Testing cannot guarantee program correctness

○ What’s the simplest program that can fool the test cases above?

○ However, testing can catch many bugs

4

Testing Process

5

oracle

prog
compare

test data

expected
output

real
output

test
results

Selecting Test Data
● Testing is w.r.t. a finite test set

○ Exhaustive testing is usually not possible

○ E.g, a function takes 3 integer inputs, each ranging over 1 to 1000

■ Suppose each test takes 1 second

■ Exhaustive testing would take ~31 years

● Question: How do you design the test set?

○ Black-box testing

○ White-box testing (or, glass-box)

6

Outline

Goals and principles

Black-box testing

White-box testing

Black-Box Testing
● Generating test cases based on specification alone

○ Without considering the implementation (internals)

● Advantage

○ Test cases are not biased toward an implementation

■ E.g., boundary conditions

8

Generating Black-Box Test Cases
● Example

static float sqrt (float x, float epsilon)
// Requires: x >= 0 && .00001 < epsilon < .001
// Effects: Returns sq such that x-epsilon <= sq*sq <= x+ epsilon

● The precondition can be satisfied

○ Either “x=0 and .00001 < epsilon < .001”,

○ Or “x>0 and .00001 < epsilon < .001”

● Any test data should cover these two cases

● Also test the case when x is negative and epsilon is outside the expected range 9

More Examples

○ Test cases: cover both true and false cases; also test numbers 0, 1, 2, and 3

static int search (int[] a, int x)

// Effects: If a is null throws NullPointerException else if x is in a, returns i such that
a[i]=x, else throws NotFoundException

○ Test cases?

10

More Examples

○ Test cases: cover both true and false cases; also test numbers 0, 1, 2, and 3

static int search (int[] a, int x)
// Effects: If a is null throws NullPointerException else if x is in a, returns i such that

a[i]=x, else throws NotFoundException

○ Test cases?

■ a=null

■ A case where a[i]=x for some i

■ A case where x is not in the array a
11

Boundary Conditions
● Common programming mistakes: not handling boundary cases

○ Input is zero

○ Input is negative

○ Input is null

○ …

● Test data should include these boundary cases

12

Class Activity: Generate blackbox tests

static void appendVector (Vector v1, Vector v2)
// Effects: If v1 or v2 is null throws NullPointerException else

removes all elements of v2 and appends them in reverse
order to the end of v1

⚫ Test cases?

⚫
⚫
⚫
⚫
⚫
⚫

13

Class Activity: Solution

static void appendVector (Vector v1, Vector v2)
// Effects: If v1 or v2 is null throws NullPointerException else

removes all elements of v2 and appends them in reverse
order to the end of v1

⚫ Test cases?

⚫ v1=null;

⚫ v2=null

⚫ v1 is the empty vector

⚫ v2 is the empty vector

⚫ Both are empty vectors

⚫ Another one: v1 and v2 refer to the same vector

⚫ Aliases

14

Outline

Goals and principles

Black-box testing

White-box testing

White-Box Testing
● Looking into the internals of the program to figure out a set of test cases

static int maxOfThree (int x, int y, int z) {
// Effects: Return the maximum value of x, y and z

if (x>y)
 if (x>z) return x; else return z;

else
 if (y>z) return y; else return z;

}

○ The implementation is divided into four cases, so we need to cover them all

■ x>y and x>z

■ x>y and x<=z

■ x<=y, and y>z

■ x<=y, and y<=z

16

Test Coverage
● Idea: code that has not been covered by tests are likely to contain bugs

○ Divide a program into a set of elements

■ The definition of elements leads to different kinds of test coverage

○ Define the coverage of a test suite to be:

of elements executed by the test suite

of elements in total

17

Test Coverage
● Test quality is determined by the coverage of the program by the test set

● Benefits

○ Can be used as a stopping rule: stop testing if 100% of elements have been tested

○ Comparison: a test set that has a test coverage of 80% is better than one that covers 70%

○ Test case generation: look for a test which exercises some statements not covered by the

tests so far
18

Different Coverage Criteria
● Usually based on control flow graphs (CFG)

○ Can have automated tool support

● Different types of coverage

○ Statement coverage

○ Edge coverage

■ Edges in CFGs

○ Path coverage

19

A Running Example

20

Statement Coverage

● Test data: table={3,4,5}; n=3; element=3

○ Does it cover all statements?

■ Yes

○ But does it cover all edges?

○ No, missing the edge from 3a to 10 and 5 to 7

21

1: found = false;
2: counter = 0;
3: while ((counter < n) && (!found))
4: {
5: if (table[counter] == element)
6: found = true;
7:
8: counter++;
9: }
10:

Statement Coverage in Practice
● 100% is hard

○ Usually about 85% coverage

● Microsoft reports 80-90% statement coverage

● Safety-critical application usually requires 100% statement coverage

○ Boeing requires 100% statement coverage

○ Other metrics: Modified Condition Decision Coverage (MCDC) for safety-critical applns.
22

Edge Coverage

23

1: found = false;
2: counter = 0;
3: while ((counter < n) && (!found))
4: {
5: if (table[counter] == element)
6: found = true;
7:
8: counter++;
9: }

Edge Coverage

● Test data to cover all edges

○ table={3,4,5}; n=3; element=3

○ table={3,4,5}; n=3; element=4

○ table={3,4,5}; n=3; element=6

24

1: found = false;
2: counter = 0;
3: while ((counter < n) && (!found))
4: {
5: if (table[counter] == element)
6: found = true;
7:
8: counter++;
9: }

Path Coverage
● Path-complete test data

○ Covering every possible control flow path

● For example:
static int maxOfThree (int x, int y, int z) {

if (x>y)
 if (x>z) return x; else return z;
else

if (y>z) return y; else return z;
}

○ Test data is complete as long as the following four case are covered

■ x>y and x>z

■ x>y and x<=z

■ x<=y, and y>z

■ x<=y, and y<=z

25

Covering All Paths
● NOTE: A program having path-complete test data doesn’t mean it’s correct

static int maxOfThree (int x, int y, int z) {

 return x;

}

○ “x=5, y=4, z=3” would pass the test and be path complete

● Same goes for the case of all-statement coverage, or all-edge coverage

26

Possibly Infinite Paths
● If there is a loop in the program, then there are possibly infinite # of paths

○ In general, impossible to cover all of them

● One Heuristic

○ Include test data that cover zero, one, and two iterations of a loop

○ Why two iterations?

■ A common programming mistake is failing to reinitialize data in the second iteration

○ This offers no guarantee, but can catch many errors
27

Path Coverage

28

1: found = false;
2: counter = 0;
3: while ((counter < n) && (!found))
4: {
5: if (table[counter] == element)
6: found = true;
7:
8: counter++;
9: }

Path Coverage

○ Zero iteration: table={ }; n=0; element=3

○ One iteration: table={3,4,5}; n=3; element=3

○ Two iterations: table={3,4,5}; n=2; element=4

29

1: found = false;
2: counter = 0;
3: while ((counter < n) && (!found))
4: {
5: if (table[counter] == element)
6: found = true;
7:
8: counter++;
9: }

Combining Them All
● A good set of test data combines various testing strategies

○ Black-box testing

■ Generating test cases by specifications

■ Boundary conditions

○ White-box testing

■ Test coverage (e.g., being edge complete)

30

Class Activity
Generate black box and white box test cases (path coverage) for the following

// Effects: If s is null throws NullPointerException, else returns true iff s is a palindrome
boolean palindrome (String s) throws NullPointerException {
 int low=0;
 int high = s.length() -1;
 while (high>low) {
 if (s.charAt(low) != s.charAt(high))
 return false;
 low++;
 high--;
 }
 return true;
}

Class Activity: Solution
• Based on spec.

– s=null

– s=“deed” (palindrome)

– s=“abc” (not a palindrome)

– s=“” (boundary condition)

– s=“a” (boundary condition)

• Based on the program

– Null pointer exception

– Not executing the loop at all

– Returning false in the first iteration

– Returning true after the first iteration

– Returning false in the second iteration

– Returning true after the second iteration

