
Fuzzing
Lecture 10: CPEN 400P

Karthik Pattabiraman, UBC

(Slides are based on Gary Tan’s CSE597: Topics in
Software Testing at Penn State)

Outline

What is fuzzing ?

Black box Fuzzing

Gray Box and White-box Fuzzing

2

Fuzz Testing

● Run program on many random, abnormal inputs and look
for bad behavior in the responses

○ Bad behaviors such as crashes or hangs

3

Fuzz Testing (Bart Miller, U. Of Wisconsin)

● A night in 1988 with thunderstorm and heavy rain

● Connected to his office Unix system via a dial up connection

● The heavy rain introduced noise on the line

● Crashed many UNIX utilities he had been using everyday

● He realized that there was something deeper

● Asked three groups in his grad-seminar course to implement this idea of
fuzz testing

○ Two groups failed to achieve any crash results!

○ The third group succeeded! Crashed 25-33% of the utility programs on the seven Unix
variants that they tested

4

Fuzz Testing

● Approach

○ Generate random inputs

○ Run lots of programs using random inputs

○ Identify crashes of these programs

○ Correlate random inputs with crashes

● Errors found: Not checking returns, Array indices out of bounds, not checking null

pointers, …

5

Example Found

6

format.c (line 276):
...
while (lastc != ’\n’) {

rdc();
}
...

input.c (line 27):
rdc()
{ do { readchar(); }
 while (lastc == ’ ’ || lastc == ’\t’);
 return (lastc);
}

When end of file,
readchar() sets lastc

 to be 0; then the program
hangs (infinite loop)

Fuzz Testing Types

● Black-box fuzzing

○ Treating the system as a blackbox during fuzzing; not knowing details of the implementation

● Grey-box fuzzing

● White-box fuzzing

○ Design fuzzing based on internals of the system

7

Outline

What is fuzzing ?

Black box Fuzzing

Gray Box and White-box Fuzzing

8

Black Box Fuzzing

● Like Miller – Feed the program random inputs and see if it crashes

● Pros: Easy to configure

● Cons: May not search efficiently

○ May re-run the same path over again (low coverage)

○ May be very hard to generate inputs for certain paths (checksums, hashes, restrictive

conditions)

○ May cause the program to terminate for logical reasons – fail format checks and stop

9

Black Box Fuzzing

● Example that would be hard for black box
fuzzing to find the error

function(char *name, char *passwd, char *buf)

{

if (authenticate_user(name, passwd)) {

if (check_format(buf)) {

update(buf); // crash here

}

}

}

10

Mutation-Based Fuzzing

● User supplies a well-formed input

● Fuzzing: Generate random changes to that input

● No assumptions about input

○ Only assumes that variants of well-formed input may be problematic

● Example: zzuf

○ https://github.com/samhocevar/zzuf

○ Reading: The Fuzzing Project Tutorial

11

https://github.com/samhocevar/zzuf

Mutation-Based Fuzzing

● Easy to set up, and not dependent on program details

● But may be strongly biased by the initial input

● Still prone to some problems

○ May re-run the same path over again (same test)

○ May be very hard to generate inputs for certain paths (checksums, hashes, restrictive

conditions)

12

Mutation Heuristics

● Binary input
○ Bit flips, byte flips
○ Change random bytes
○ Insert random byte chunks
○ Delete random byte chunks
○ Set randomly chosen byte chunks to

interesting values e.g. INT_MAX, INT_MIN,
● Text input

○ Insert random symbols from a dictionary
13

Generation-Based Fuzzing

● Generate inputs “from scratch” rather than using an initial input and

mutating

● However, require the user to specify a format or protocol spec to start

○ Equivalently, write a generator for generating well-formatted input

● Examples include

○ SPIKE, PeachFuzz

14

Generation-Based Fuzzing

● Can be more accurate, but at a cost
● Pros: More complete search

○ Values more specific to the program operation
○ Can account for dependencies between inputs

● Cons: More work
○ Get the specification
○ Write the generator – ad hoc
○ Need to specify a format for each program

15

PeachFuzzer: Generation-based Fuzzer

16

Coverage-Based Fuzzing

● AKA grey-box fuzzing

● Rather than treating the program as a black box, instrument the
program to track coverage

○ E.g., the edges covered

● Maintain a pool of high-quality tests

1) Start with some initial ones specified by users

2) Mutate tests in the pool to generate new tests

3) Run new tests

4) If a new test leads to new coverage (e.g., edges), save the new test to the pool;
otherwise, discard the new test

17

AFL

● Example of coverage-based fuzzing

○ American Fuzzy Lop (AFL)

○ The original version is no longer maintained; afl++ is the newer version

18

AFL Build

● Provides compiler wrappers for gcc to instrument target program to track test

coverage

● Replace the gcc compiler in your build process with afl-gcc

● Then build your target program with afl-gcc

○ Generates a binary instrumented for AFL fuzzing

1919

Toy Example of Using AFL

int main(int argc, char* argv[]) {
 …
 FILE *fp = fopen(argv[1],"r"); …
 size_t len;
 char *line=NULL;
 if (getline(&line,&len,fp) < 0) {
 printf("Fail to read the file; exiting...\n");
 exit(-1);
 }

 long pos = strtol(line,NULL,10); …

 if (pos > 100) {if (pos < 150) { abort(); } }
 fclose(fp); free(line);
 return 0;
}

20

* Omitted some error-checking code in “…”

Test Cases are Important for Speed

● For the toy example,

○ If the only test case is 55, it typically takes 3 to 15 mins to get a crashing input

○ If the test cases are 55 and 100, it typically takes only 1 min

■ Since crashing tests are in (100,150), the test is close to it syntactically; that’s why the

fuzzing speed is faster

21

AFL Display

● Key information are

○ “total paths” – number of different execution paths tried

○ “unique crashes” – number of unique crash locations

22

AFL Output

● Shows the results of the fuzzer

○ E.g., provides inputs that will cause the crash

● File “fuzzer_stats” provides summary of stats – UI

● File “plot_data” shows the progress of fuzzer

● Directory “queue” shows inputs that led to paths

● Directory “crashes” contains input that caused crash

● Directory “hangs” contains input that caused hang

23

AFL Operation

● How does AFL work?

○ http://lcamtuf.coredump.cx/afl/technical_details.txt

● Mutation strategies

○ Highly deterministic at first – bit flips, add/sub integer values, and choose interesting integer values

○ Then, non-deterministic choices – insertions, deletions, and combinations of test cases

● Works out of the box. No knobs to tune or things to configure…

2424

http://lcamtuf.coredump.cx/afl/technical_details.txt

Outline

What is fuzzing ?

Black box Fuzzing

Gray Box and White-box Fuzzing

25

Grey Box Fuzzing

● Finds flaws, but still does not understand the
program

● Pros: Much better than black box testing
○ Essentially no configuration
○ Lots of crashes have been identified

● Cons: Still a bit of a stab in the dark
○ May not be able to execute some paths
○ Searches for inputs independently from the program

● Need to improve the effectiveness further

2626

White Box Fuzzing

● Combines test generation with fuzzing

○ Test generation based on static analysis and/or symbolic execution – more later

○ Rather than generating new inputs and hoping that they enable a new path to be executed,

compute inputs that will execute a desired path

■ And use them as fuzzing inputs

● Goal: Given a sequential program with a set of input parameters, generate a set

of inputs that maximizes code coverage

27

One user’s experience ….

Source: http://msdn.microsoft.com/en-us/library/cc162782.aspx

28

Fuzzing: open challenges

Selecting seeds to efficiently achieve high coverage

- Balance between coverage and efficiency
- Duplicate seeds cause redundancy and must be removed
- Small seeds preferred as they’re faster for program to process

Branches that are difficult to get past

Solution: Transform into code that produces granular feedback on each byte

Source: Suman Jana’s lecture notes at Columbia University

29

void test (int n) {
if (n == 0x12345678) crash(); // Need 2^32 attempts to get past

}

Outline

What is fuzzing ?

Black box Fuzzing

Gray Box and White-box Fuzzing

30

