Fuzzing

Lecture 10: CPEN 400P
Karthik Pattabiraman, UBC

(Slides are based on Gary Tan’s CSES97: Topics in
Software Testing at Penn State)

Outline

What is fuzzing ?
Black box Fuzzing

Gray Box and White-box Fuzzing

Fuzz Testing

® Run program on many random, abnormal inputs and look

for bad behavior in the responses

O Bad behaviors such as crashes or hangs

Fuzz Testing (Bart Miller, U. Of Wisconsin)

A night in 1988 with thunderstorm and heavy rain
Connected to his office Unix system via a dial up connection
The heavy rain introduced noise on the line

Crashed many UNIX utilities he had been using everyday

He realized that there was something deeper

Asked three groups in his grad-seminar course to implement this idea of
fuzz testing

O Two groups failed to achieve any crash results!

O The third group succeeded! Crashed 25-33% of the utility programs on the seven Unix
variants that they tested

Fuzz Testing

® Approach

O Generate random inputs
O Run lots of programs using random inputs
O Identify crashes of these programs

O Correlate random inputs with crashes

@® Errors found: Not checking returns, Array indices out of bounds, not checking null

pointers, ...

Example Found

format.c (line 276) :

while (lastc != '\n’) {
rdc () ; _ ™\
} When end of file,

readchar() sets lastc
to be 0; then the program
hangs (infinite loop)

input.c (line 27):

rdc () J
{ do { readchar () ;
while (lastc == ' ' || lastc == ’\t’);

return (lastc) ;

Fuzz Testing Types

® Black-box fuzzing

O Treating the system as a blackbox during fuzzing; not knowing details of the implementation

® Grey-box fuzzing

® \White-box fuzzing

O Design fuzzing based on internals of the system

Outline

What is fuzzing ?
Black box Fuzzing

Gray Box and White-box Fuzzing

Black Box Fuzzing

@® Like Miller — Feed the program random inputs and see if it crashes
® Pros: Easy to configure

® Cons: May not search efficiently

O May re-run the same path over again (low coverage)

O May be very hard to generate inputs for certain paths (checksums, hashes, restrictive

conditions)

O May cause the program to terminate for logical reasons — fail format checks and stop

Black Box Fuzzing

e Example that would be hard for black box
fuzzing to find the error

function(char *name, char *passwd, char *buf)

{

if (authenticate user(name, passwd)) {
if (check format (buf)) {
update(buf); // crash here

10

Mutation-Based Fuzzing

® User supplies a well-formed input
® Fuzzing: Generate random changes to that input

® No assumptions about input

O Only assumes that variants of well-formed input may be problematic

® Example: zzuf

O https://github.com/samhocevar/zzuf

O Reading: The Fuzzing Project Tutorial

11

https://github.com/samhocevar/zzuf

Mutation-Based Fuzzing

® Easy to set up, and not dependent on program details
® But may be strongly biased by the initial input

@® Still prone to some problems

O May re-run the same path over again (same test)

O May be very hard to generate inputs for certain paths (checksums, hashes, restrictive

conditions)

12

Mutation Heuristics

e Binary input

o Bit flips, byte flips

o Change random bytes

O Insert random byte chunks

0 Delete random byte chunks

o Set randomly chosen byte chunks to
interesting values e.g. INT_MAX, INT_MIN,
e Text input

O Insert random symbols from a dictionary

13

Generation-Based Fuzzing

® Generate inputs “from scratch” rather than using an initial input and

mutating
® However, require the user to specify a format or protocol spec to start
O Equivalently, write a generator for generating well-formatted input
® Examples include

O SPIKE, PeachFuzz

14

Generation-Based Fuzzing

e Can be more accurate, but at a cost
e Pros: More complete search

o Values more specific to the program operation
o Can account for dependencies between inputs
e Cons: More work

o Get the specification
o Write the generator — ad hoc
o Need to specify a format for each program

15

PeachFuzzer: Generation-based Fuzzer

'Header">

ame="Header" />

C: \p(:\: h>peach -1 debug HTITP.xml

......] Peach 2.3.8 Runtime
1 Copyright <{(c)> Michael Eddington

[%] Performing single iteration

[*] Optmizing DataModel for cracking:
[#] Optmizing DataModel for cracking:
[%] Star

ing run “DefaultRun"
e REan Y "HttpGetRequestTest"” (HITP Request GET
ame="Method"/> 21 Element: N/A
lues" " susew"char"/> Mutator: N/A

name="RequestUri"/>

BtateEngine.run: Statel

StateEngine. runState: Initial

/>

Named_38
bhytes

name="HttpVersion"/> tateEngine._runfiction:

ctiong output sending 165
DI2222000005555>
cp.Tep.send():

515 1%] 47 45 54

alue="\r\n"/>

78

<Block me="HeaderHost" ref="Header">
<String name="Header" ue="Host" isStatice="true"/>

our iteration range, exiting
tpGetRequestTest" completed
ttpOptionsRequestTest"” (HITP Request

am"HeaderContentlenagth”" rafs"Headar™s 71 Element: N/A
HeaderContentlength" ref Header"> Mutator: N/
name="Header" lue="Content-Length" sStatic="true"/>
HEVRE ; ‘tateEngine.run: State2
Ame="Valiue" > ‘tateEngine._runState: Initial
ion type="size" of="Body"/> tateEngine._runfAction: Named_40
</String> ctiong output sending 68 hytes
= g DO2225505055555)
</Block> cp.Tep.sendO):
515 1%] 4F 58 54 49 4F 4E 53 20 2A 208 48 54 54 59
£ 31 @D BA 48 6F 73 74 3A 20 @D BA 43 6F
<String value="\r\n"/> » 6E 74 2D 4C 65 6E 67 74 68 3A 20 31 38
3 BA 54 65 73 74 28 46 75 7A 7A 7A 69 6E
67 67 20
<Bloh ame="Body" = scurs="0" n mRLwL>

Conmpleted
[-]1 Test

our iteration range.
“HttpOptionsRequestTest"
“"DefaultRun" completed

exiting
completed

’HttpRequest’

’HttpRequest’

Test)

GET htto://

H
.1..Host: htto:/
Ve

.Coﬁtcni*ﬂchgthi
18....Test Fuzz
zingygggy

OPTIONS Test)

OPTIONS = HTTP/1
.1..Host: ..Cont
ent—-Length: 18..
..Test Fuzzzingg
999

16

Coverage-Based Fuzzing

® AKA grey-box fuzzing

@ Rather than treating the program as a black box, instrument the
program to track coverage

O E.g., the edges covered
® Maintain a pool of high-quality tests
1) Start with some initial ones specified by users
2) Mutate tests in the pool to generate new tests
3) Run new tests

4) If a new test leads to new coverage (e.g., edges), save the new test to the pool;
otherwise, discard the new test

17

AFL

® Example of coverage-based fuzzing

O American Fuzzy Lop (AFL)

O The original version is no longer maintained; afl++ is the newer version

Sy,
]

Priority

Seed

Queue of
Seeds

\:"‘/

Seed mutation

program

Add the input to the seed list if it
covers a new part of the program

Instrumented

Execution log

Coverage

Checker

Summary
of code

>

New coverage
or not?

coverage

18

AFL Build

® Provides compiler wrappers for gcc to instrument target program to track test

coverage

® Replace the gcc compiler in your build process with afl-gcc

® Then build your target program with afl-gcc

O Generates a binary instrumented for AFL fuzzing

Toy Example of Using AFL

int main(int argc, char* argv[]) {

FILE *fp = fopen(argv[1],"r");

size tlen;

char *line=NULL;

if (getline(&line,&len,fp) < 0) {
printf("Fail to read the file; exiting...\n");
exit(-1);

}

long pos = strtol(line,NULL,10); ...

if (pos > 100) {if (pos < 150) { abort(); } }
fclose(fp); free(line);
return O;

)

* Omitted some error-checking code in “...’
(e

20

Test Cases are Important for Speed

® For the toy example,

O Ifthe only test case is 55, it typically takes 3 to 15 mins to get a crashing input

O If the test cases are 55 and 100, it typically takes only 1 min

B Since crashing tests are in (100,150), the test is close to it syntactically; that's why the
fuzzing speed is faster

21

AFL Display

2.51b (cmpsc497-pl)

— process timing overall results
run time : @ days, 2 hrs, 16 min, 32 sec cycles done : ©
last new path : @0 days, © hrs, 13 min, 31 sec total paths : 41
last uniq crash : 0 days, © hrs, 43 min, 58 sec uniq crashes : 11
last uniqg hang : none seen yet uniq hangs : 0
— cycle progress map coverage
now processing : 3 (7.32%) map density : 0.11% / 0.40%
paths timed out : 0 (0.00%) count coverage : 1.62 bits/tuple
— stage progress findings in depth
now trying : arith 8/8 favored paths : 6 (14.63%)
stage execs : 12.3k/41.9k (29.31%) new edges on : 7 (17.07%)
total execs : 243k total crashes : 2479 (11 unique)
exec speed : 30.98/sec (slow!) total tmouts : 10 (5 unique)
— fuzzing strategy yields path geometry
bit flips : 7/15.4k, 32/15.4k, ©/15.4k levels : 3
byte flips : ©/1929, ©/1926, 0/1920 pending : 39
arithmetics : 8/71.7k, 4/5434, ©/0 pend fav : 5
known ints : ©/6938, ©/35.5k, ©/56.3k own finds : 40
dictionary : /0, ©/0, ©/1270 imported : n/a
havoc : /178, ©/0 stability : 17.69%
trim : ©0.00%/930, 0.00%

[cpuBBB: 19%]

® Key information are
O “otal paths” — number of different execution paths tried

O “‘unique crashes” — number of unique crash locations

————————————————————_—L—_,GBb_B_L_B_=_=_—_—_—
22

AFL Output

® Shows the results of the fuzzer

O E.g., provides inputs that will cause the crash

® File “fuzzer_stats” provides summary of stats — Ul
® File “plot_data” shows the progress of fuzzer

® Directory “queue” shows inputs that led to paths

® Directory “crashes” contains input that caused crash

® Directory “hangs” contains input that caused hang

23

AFL Operation

® How does AFL work?

O http://Icamtuf.coredump.cx/afl/technical details.txt

® Mutation strategies

O Highly deterministic at first — bit flips, add/sub integer values, and choose interesting integer values

O Then, non-deterministic choices — insertions, deletions, and combinations of test cases

e Works out of the box. No knobs to tune or things to configure...

http://lcamtuf.coredump.cx/afl/technical_details.txt

Outline

What is fuzzing ?
Black box Fuzzing

Gray Box and White-box Fuzzing

25

Grey Box Fuzzing

e Finds flaws, but still does not understand the
program
e Pros: Much better than black box testing

o Essentially no configuration
o Lots of crashes have been identified

e Cons: Still a bit of a stab in the dark

o May not be able to execute some paths
o Searches for inputs independently from the program

e Need to improve the effectiveness further

P

White Box Fuzzing

@® Combines test generation with fuzzing
O Test generation based on static analysis and/or symbolic execution — more later

O Rather than generating new inputs and hoping that they enable a new path to be executed,

compute inputs that will execute a desired path

B And use them as fuzzing inputs

® Goal: Given a sequential program with a set of input parameters, generate a set

of inputs that maximizes code coverage

27

One user’s experience

Source: http://msdn.microsoft.com/en-us/library/cc162782.aspx

Teniqieefort | Codecorage bt Found

black box + mutation 10 min 50% 25%
black box + generation 30 min 80% 50%
white box + mutation 2 hours 80% 50%
white box + generation 2.5 hours 99% 100%

28

Fuzzing: open challenges

Selecting seeds to efficiently achieve high coverage

- Balance between coverage and efficiency
- Duplicate seeds cause redundancy and must be removed
- Small seeds preferred as they’re faster for program to process

Branches that are difficult to get past

void test (int n) {
if (n == 0x12345678) crash(); // Need 2"32 attempts to get past
}

Solution: Transform into code that produces granular feedback on each byte

Source: Suman Jana’s lecture notes at Columbia University

29

Outline

What is fuzzing ?
Black box Fuzzing

Gray Box and White-box Fuzzing

30

