
Model Checking
Lecture 13: CPEN 400P

Karthik Pattabiraman, UBC

(Slides based on Arie Gurfinkel’s slides at the
University of Waterloo in ECE 750T)

Outline

What is model checking ?

Kripke Structures

CTL (Computation Tree Logic)

Model Checking of Programs

Counter Example Guided Abstraction Refinement (CEGAR)

Model Checking

Definition: Method for checking whether a finite-state model of a
system meets a given specification (also known as correctness)

- Can be applied to both hardware and software systems

Largely automatic and fast

Better suited for debugging
• … rather than assurance

Model-checking Vs Testing
• Usually, model checking finds more problems by
 exploring all behaviours of a downscaled system
 than by
 testing some behaviours of the full system

(Temporal Logic) Model Checking

Automatic verification technique for finite state
concurrent systems.

• Developed independently by Clarke and
Emerson and by Queille and Sifakis in early
1980’s.

• ACM Turing Award 2007

Specifications are written in propositional
temporal logic. (Pnueli 77)

• Computation Tree Logic (CTL), Linear Temporal
Logic (LTL), …

Verification procedure is an intelligent exhaustive
search of the state space of the design

• State space explosion

1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998 Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

CBMC

SLAM,
MAGIC,
BLAST, …

Model Checking since 1981

Outline

What is model checking ?

Kripke Structures

CTL (Computation Tree Logic)

LTL (Linear Temporal Logic)

Model Checking of Programs

Counter Example Guided Abstraction Refinement (CEGAR)

7

Temporal Logic Model Checking

Yes/No +

Counter-exampl

e

SW/HW
Artifact

Correctness

properties

Temporal
logic

Finite
Model

Model

Extraction
Translation

Model
Checker

Correct?

Abstraction

Models: Kripke Structures

Conventional state machines
• K = (V, S, s0, I , R)
• V is a (finite) set of atomic
propositions
• S is a (finite) set of states
• s0 ∈ S is a start state
• I: S → 2V is a labelling function that maps

each state to the set of propositional
variables that hold in it
– That is, I(S) is a set of interpretations

specifying which propositions are true
in each state

• R ⊆ S × S is a transition relation

req req,

busy

busy

s
0

s
2

s
1

s
3

Propositional Variables

Fixed set of atomic propositions, e.g, {p, q, r}

Atomic descriptions of a system
“Printer is busy”

“There are currently no requested jobs for the printer”

“Conveyer belt is stopped”

Do not involve time!

Representing Models Symbolically

 A system state represents an interpretation (truth assignment) for a set
of propositional variables V
• Formulas represent sets of states that satisfy it
– False = ∅, True = S
– req – set of states in which req is
– true – {s0, s1}
– busy – set of states in which busy is
– true – {s1, s3}
– req ∨ busy = {s0, s1 , s3}

• State transitions are described by relations over two sets of variables: V
(source state) and V’ (destination state)
– Transition (s2, s3) is ¬req ∧ ¬ busy ∧ ¬req’ ∧ busy’
– Relation R is described by disjunction of formulas for individual transitions

10

req req,

busy

busy

s
0

s
2

s
1

s
3

Outline

What is model checking ?

Kripke Structures

CTL (Computation Tree Logic)

Model Checking of Programs

Counter Example Guided Abstraction Refinement (CEGAR)

Computation Tree Logic (CTL)

CTL: Branching-time propositional temporal logic
Model - a tree of computation paths

S1 S2

S3

S2

S1 S3

S1 S3S2

S2

S1

S1 S3 S1 S3

Tree of computationKripke Structure

CTL: Computation Tree Logic

Propositional temporal logic with quantification over possible futures

Syntax:
True and False are CTL formulas;
propositional variables are CTL formulas;
If ϕ and ψ are CTL formulae, then so are: ¬ ϕ , ϕ ∧ ψ , ϕ ∨ ψ

EX ϕ : ϕ holds in some next state

EF ϕ : along some path, ϕ holds in a future state

E[ϕ U ψ] : along some path, ϕ holds until ψ holds

EG ϕ : along some path, ϕ holds in every state

• Universal quantification: AX ϕ , AF ϕ , A[ϕ U ψ], AG ϕ

Examples: EX and AX

ϕ

EX ϕ (exists next)

ϕ

AX ϕ (all next)

ϕ

Examples: EG and AG

ϕ

ϕ

ϕ

ϕ

EG ϕ (exists global)

ϕ

ϕ

ϕ ϕϕ

ϕϕ ϕ ϕ ϕ

AG ϕ (all global)

ϕ

Examples: EF and AF

ϕ

EF ϕ (exists future)

ϕ

ϕ ϕ

AF ϕ (all future)

ϕ

Examples: EU and AU

ϕ

ϕ

ψ

E[ϕ U ψ] (exists until)

ϕ

ϕ

ϕ ψ

ψ

A[ϕ U ψ] (all until)

ψ

Examples of CTL

Let P mean “It’s cloudy outside”

Let Q mean “It’s going to rain”

Then,

AG(Q) - It’s going to rain everyday starting from
today, regardless of what happens

EG(P) - It’s possible that it’s going to be cloudy
forever in the future (at some point)

EF(Q) - It’s possible that it’s going to rain in the
future at least for one day

AF(Q) - It’s possible that at every point in the future,
we will have at least one day where it rains

AF EG (Q) - It’s always possible that in the future,
it’s going to rain for the rest of time (i.e., forever)

AG(P U Q)

From now on until it rains, it’s going to be cloudy
every single day in the future. Once it rains, then
it may not rain anymore after that. Also, it’s
guaranteed to rain eventually, even if only for a
single day, in the future.

EF(EX(P) U AG(Q))

It’s possible that there will eventually come a
time when it will rain forever (AG.Q), and that
before that time, there will always be some day
in the future, for which it’s going to be cloudy the
next day (EX.P)

Semantics of CTL

K,s ⊨ ϕ – means that formula ϕ is true in state s. K is often omitted since
we always talk about the same Kripke structure
• E.g., s ⊨ p ∧¬q

π = π0 π1 … is a path
π0 is the current state (root)
πi+1 is a successor state of πi. Then,

AX ϕ = ∀π ⋅ π1 ⊨ ϕ EX ϕ = ∃π ⋅ π1 ⊨ ϕ
AG ϕ = ∀π ⋅ ∀i ⋅ πi ⊨ ϕ EG ϕ = ∃π ⋅ ∀i ⋅ πi ⊨ ϕ
AF ϕ = ∀π ⋅ ∃i ⋅ πi ⊨ ϕ EF ϕ = ∃π ⋅ ∃i ⋅ πi ⊨ ϕ
A[ϕ U ψ] = ∀π ⋅ ∃i ⋅ πi ⊨ ψ ∧ ∀ j ⋅ 0 ≤ j < i ⇒ πj ⊨ ϕ
E[ϕ U ψ] = ∃π ⋅ ∃i ⋅ πi ⊨ ψ ∧ ∀ j ⋅ 0 ≤ j < i ⇒ πj ⊨ ϕ

CTL Examples

Properties that hold:
• (AX busy)(s0)
• (EG busy)(s3)
• A (req U busy) (s0)
• E (¬req U busy) (s1)
• AG (req ⇒ AF busy) (s0)

Properties that fail:
• (AX (req ∨ busy))(s3)

req req,

busy

busy

s
0

s
2

s
1

s
3

Safety and Liveness

Safety: Something “bad” will never happen
• AG ¬bad
• e.g., mutual exclusion: no two processes are in their critical section at once
• Safety = if false then there is a finite counterexample
• Safety = reachability

Liveness: Something “good” will always happen
• AG AF good
• e.g., every request is eventually serviced
• Liveness = if false then there is an infinite counterexample
• Liveness = termination

Every universal temporal logic formula can be decomposed into a
conjunction of safety and liveness

Class Activity: Write the CTL formula for these

An elevator can remain idle on the third floor with its doors closed
• EF (state=idle ∧ floor=3 ∧ doors=closed)

When a request occurs, it will eventually be acknowledged
• AG (request ⇒ AF acknowledge)

A process is enabled infinitely often on every computation path
• AG AF enabled

A process will eventually be permanently deadlocked
• AF AG deadlock

Action s precedes p after q
• A[¬q U (q ∧ A[¬p U s])]

• Note: hard to do correctly.

Class Activity: Solution

An elevator can remain idle on the third floor with its doors closed
• EF (state=idle ∧ floor=3 ∧ doors=closed)

When a request occurs, it will eventually be acknowledged
• AG (request ⇒ AF acknowledge)

A process is enabled infinitely often on every computation path
• AG AF enabled

A process will eventually be permanently deadlocked
• AF AG deadlock

Action s precedes p after q
• A[¬q U (q ∧ A[¬p U s])]

• Note: hard to do correctly.

Outline

What is model checking ?

Kripke Structures

CTL (Computation Tree Logic)

Model Checking of Programs

Counter Example Guided Abstraction Refinement (CEGAR)

25

Software Model Checking

Yes/No

Answer

Progra
m

(e.g., C)

Correctnes

s

property

Model of

the program

Model

Extraction

Model

Checker

1: int x = 2;
 int y = 2;
2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

EF (pc = 5)

26

Assumptions: In Our Programming Language…

All variables are global
Functions are in-lined
int is integer
• i.e., no overflow

Special statements:

skip do nothing
assume(e) if e then skip else abort
x,y=e1,e2 x, y are assigned e1,e2 in parallel

x=nondet() x gets an arbitrary value
goto L1,L2 non-deterministically go to L1 or L2

27

From Programs to Kripke Structures

1: int x = 2;
 int y = 2;
2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

Program

pc x y …

3 1 3 …

State

pc x y …

2 1 2 …

Step

Property: EF (pc = 5)

28

Programs as Control Flow Graphs

1: int x = 2;
 int y = 2;
2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

Program Labeled CFG

Semantics S

1:

2:

3:4:

5:

6:

x,y=2,2

y<=2
y>2

x==2

x!=2

y=y-1

Modeling in Software Model Checking

Software Model Checker works directly on the source code of a program
• Whole-program-analysis technique
• requires the user to provide the model of the environment with which the

program interacts
– e.g., physical sensors, operating system, external libraries, specifications

Programing languages already provide convenient primitives to describe
behavior
• Extended to modeling and specification languages by adding new features
– non-determinism: like random values, but without a probability distribution
– assumptions: constraints on “random” values
– assertions: an indication of a failure

From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
• assert(e) – aborts an execution when e is false, no-op otherwise

Non-determinism
• nondet_int() – returns a non-deterministic integer value

Assumptions
• assume(e) – “ignores” execution when e is false, no-op otherwise

void assert (bool b) { if (!b) error(); }

int nondet_int () { int x; return x; }

void assume (bool e) { while (!e) ; }

Non-determinism vs. Randomness

A deterministic function always returns the same result on the same
input
• e.g., F(5) = 10

A non-deterministic function may return different values on the same
input
• e.g., G(5) in [0, 10] “G(5) returns a non-deterministic value between 0 and 10”

A random function may choose a different value with a probability
distribution
• e.g., H(5) = (3 with prob. 0.3, 4 with prob. 0.2, and 5 with prob. 0.5)

Non-deterministic choice cannot be implemented !
• used to model the worst possible adversary/environment

Modeling with Non-determinism

int x, y;

void main (void)
{
 x = nondet_int ();

 assume (x > 10);
 assume (x <= 100);
 y = x + 1;

 assert (y > x);
 assert (y < 200);

}

What happens in this program ? Is
there an execution of the program for
which either assert is violated ?

Using nondet for modeling

Library spec:
• “foo is given via grab_foo(), and is busy until returned via return_foo()”

Model Checking stub:

int nondet_int ();

int is_foo_taken = 0;

int grab_foo () {

 if (!is_foo_taken)

 is_foo_taken = nondet_int ();

 return is_foo_taken; }

void return_foo ()

{ is_foo_taken = 0; }

Dangers of unrestricted assumptions

Assumptions can lead to vacuous correctness claims!!!

if (x > 0) {

 assume (x < 0);

 assert (0); }Is this program correct?

Assume must either be checked with assert or used as an idiom:

x = nondet_int ();

y = nondet_int ();

assume (x < y);

Software Model Checking Workflow

1. Identify module to be analyzed
– e.g., function, component, device driver, library, etc.

2. Instrument with property assertions
– e.g., buffer overflow, proper API usage, proper state change, etc.
– might require significant changes in the program to insert monitors

3. Model environment of the module under analysis
– provide stubs for functions that are called but are not analyzed

4. Write verification harness that exercises module under analysis
– similar to unit-test, but can use symbolic values
– tests many executions at a time

5. Run Model Checker

Outline

What is model checking ?

Kripke Structures

CTL (Computation Tree Logic)

LTL (Linear Temporal Logic)

Model Checking of Programs

Counter Example Guided Abstraction Refinement (CEGAR)

Model Checking Software by Abstraction

Programs are not finite state machines
• integer variables
• recursion
• unbounded data structures
• dynamic memory allocation
• dynamic thread creation
• pointers

37

Program

Model Checker

� Build a finite abstraction
� … small enough to analyze
� … rich enough to give conclusive

results

Abstractio
n

38

Software Model Checking and Abstraction

Program
P

Boolean
Program

BP

Kripke
Structure

K

Abstract
Kripke

K’

Semantics

Abstraction Abstract
Semantics

Soundness of Abstraction:

BP abstracts P implies that K’ approximates K

CounterExample Guided Abstraction Refinement
(CEGAR)

Software Model
Checking, SLAM Project,

Microsoft, Ball &
Rajamani

Counterexample-guide
d Abstraction

Refinement for
Symbolic Model

Checking, Clarke et al.,
CMU

Localization
Reduction, Kurshan,

Bell Labs
Predicate

Abstraction Model Checking

Predicate
Refinement

Counterexample
Valid?

Abstract
Model

Candidate
Counter-ex

ample

Better
Predicates

Program

Initial
Predicates

No

No

Yes

Yes

System
OK

Problem
Found

SMT Solver

40

The Running Example

1: int x = 2;
 int y = 2;
2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

EF (pc = 5)

Program Property
Expected
Answer

False

41

An Example Abstraction

1: int x = 2;
 int y = 2;
2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3: b = ch(b,f);
4: if (*)
5: error();
6:

Program Abstraction
(with y<=2)

42

BP Semantics: Overview

Over-Approximation
• treat “unknown” as non-deterministic
• good for establishing correctness of universal properties

Under-Approximation
• treat “unknown” as abort
• good for establishing failure of universal properties

Exact Approximation
• Treat “unknown” as a special unknown value
• good for verification and refutation
• good for universal, existential, and mixed properties

Summary: Program Abstraction

Abstract a program P by a Boolean program BP
Pick an abstract semantics for this BP:
• Over-approximating
• Under-approximating
• Belnap (Exact)

Yield relationship between K and K’:
• Over-approximation
• Under-approximation
• Belnap abstraction

43

Program
P

Boolean
Program

BP

Kripke
Structure

K

Abstract
Kripke

K’
Semantics

Abstraction Abstract
Semantics

CounterExample Guided Abstraction Refinement
(CEGAR)

Software Model
Checking, SLAM Project,

Microsoft, Ball &
Rajamani

Counterexample-guide
d Abstraction

Refinement for
Symbolic Model

Checking, Clarke et al.,
CMU

Localization
Reduction, Kurshan,

Bell Labs
Predicate

Abstraction Model Checking

Predicate
Refinement

Counterexample
Valid?

Abstract
Model

Candidate
Counter-ex

ample

Better
Predicates

Program

Initial
Predicates

No

No

Yes

Yes

System
OK

Problem
Found

SMT Solver

Outline

What is model checking ?

Kripke Structures

CTL (Computation Tree Logic)

Model Checking of Programs

Counter Example Guided Abstraction Refinement (CEGAR)

