WCET Analysis

CPEN 400P

Arpan Gujarati
University of British Columbia

Who am 1?

* Arpan Gujarati
> Research Associate in CS
> https://arpangujarati.github.io/

ECHNOLOg
S e €
S % n "
$ 5
S A a
-~ o=l
\“ ::\‘ | .. | ‘—z— “ I n I
....
e /4

Pilani | Dubai | Goa | Hyderabad

e Education

» BE from BITS Pilani, India
> PhD from MPI-SWS, Germany

- Saarland University

& MAXPLANCK INSTITUTE
- = FOR SOFTWARE SYSTEMS |

O
I m [ECHNISCHE UNIVERSITAT
m KAISERSLAUTERN

UNIVERSITAT
DES
SAARLANDES

- TU Kaiserslautern

e Research Interests

> Real-time systems, distributed systems, fault tolerance, reliability analysis, and scheduling
> Domains: Cyber-physical systems, datacenter systems

https://arpangujarati.github.io/

In this lecture, you will learn ...

* Introduction to Cyber-Physical Systems (CPS)
* Real-time systems (RTS) and the problem of timing analysis

 Program analysis for estimating the Worst-case Execution Time (WCET)

Edward Ashford Lee and

® R efe re n C e Sanjit Arunkumar Seshia
. INTRODUCTION TO 16
> Ch. 16, Introduction to Embedded Systems, 2nd Ed. EMBEDDED SYSTEMS Cuantitative Ansivei

APPROACH

> Available online at LeeSeshia.org

 Acknowledgements for slides
> Max Planck Institute for Software Systems (© MPI-SWS)
> Real-time System Design (© CPEN 432)

http://LeeSeshia.org

Cyber-Physical Systems

Cyber-Physical Systems

Tight and seamless integration

> Computation
> Networking

» Actuation and control
» Sensing of the physical world

Feedback
control loops

ACt“ate Physical
‘ world

()

Network

@
Compute K_

Sense

Automatic © hacksterio
Watering System
for My Plants

When the soil is dry, Arduino will command
the water pump to run. Our plant is
absolutely cheerful anytime!

<) Beginner & Showecase (no instructions)
© 28,303

Example CPS (1/3):
Automotive Systems 2 Elrontc Brave Systom MKGOE

3 Sensor Cluster

4 Gateway Data Transmitter

5 Force Feedback
Accelerator Pedal

6 Door Control Unit /7,

e distributed sensors and actuators 7 Sunroof

Control Unit

e many driver assistance systems:
anti-lock breaking system (ABS),
electronic stability control (ESC),
adaptive cruise control, adaptive light
control, lane departure warning, X-by-
wire ... =@ complex interactions

8 Reversible Seatbelt
Pretensioner

9 Seat Control Unit

10 Brakes

11 Closing Velocity Sensor

12 Side Satellites

13 Upfront Sensor

14 Airbag Control Unit

e Safety determined by physics!

© MPI-SWS 2014 8

Example CPS (2/3):
Power Grid

e constantly changing demand and supply
e |imited power line capacity

e supply must be controlled and adjusted
e inherently distributed and time-critical

e possibility of cascading failures
(— 2003 US & Canada power outage)

e The physics of power transmission
determine and limit safe operation.

© MPI-SWS 2014

Extra High Voltage
265 to 275 kV
(mostly AC, some HVDC)

Medium Sized
Power Plant

-
Factory
T & 5 = Sesbwmond
eees| A
S =150 MW h]
sddd e
City Network su])zta':'i\gns =2 MW ‘ Industrial
eadd © el
Sm—
XXX
i i i
% | é $@ © Sotar Farm
Rural Network
Farm = 400 kW
‘@ 0 /hx T 11
@

source: Wikimedia Commons

Wind Farm

Example CPS (3/3): Precision Agriculture

e current agricultural practices waste large amounts of water, seed,
fertilizer, and toxins

e large negative economic and environmental impact

e precision agriculture: use GPS, drones, and autonomous vehicles
to cut down on waste

e distributed sensing, mapping, decision making, and control

© MPI-SWS 2014 13

Cyber-Physical Systems — Challenges (1/3)

e physical processes are continuous (typically modeled as
differential equations), whereas software and computers are
discrete (typically modeled as automata)

e nature is concurrent — concurrency is inherent in CPSs
e nature doesn't stop or slow down — timeliness is critical

e communication and computation takes time — implementation
performance matters and cannot be "abstracted away"

© MPI-SWS 2014 30

Cyber-Physical Systems — Challenges (2/3)

e stuff happens — must deal with noise, delays, breakdowns, ...
e the digital components are often distributed — partial failures
e |imited energy, size, weight, cost budgets — resource constraints

e CPS are often part of a larger system — open systems interfacing
with other, independent systems

o attackers might target critical infrastructure — security concerns

© MPI-SWS 2014 31

10

Cyber-Physical Systems — Challenges (3/3)

e often too large and too important for trial and error — cannot
build a copy of the power grid, cannot afford autonomous vehicle
‘ failures

e by definition CPSs, interact with and control the real world —
many CPSs are thus safety-critical

e certification requirements — must meet stringent correctness
and documentation criteria

| © MPI-SWS 2014 32

11

Real-Time Systems and
Timing Analysis

CPS vs. General-Purpose Computing

"When studying CPS, certain key problems emerge that are rare in
so-called general-purpose computing. For example, in general-
purpose software, the time it takes to perform a task is an issue of
performance, not correctness. It is not incorrect to take longer to
perform a task. It is merely less convenient and therefore less
valuable. In CPS, the time it takes to perform a task may be critical
to [the] correct functioning of the system."P¢?

— Patrica Derler et al., 2011 (emphasis added)

berll P, Derler et al. (2011). Modeling Cyber-Physical Systems.

© MPI-SWS 2014 27

13

What are Real-Time Systems? [1/3]

1 ° 1 INTRODUCTION Real-Time Systems Series

Real-time systems are computing systems that must react within precise time con-
straints to events 1n the environment. As a consequence, the correct behavior of these
systems depends not only on the value of the computation but also on the time at Giorgio C. Buttazzo

which the results are produced [SR88]. A reaction that occurs too late could be use-]

less or even dangerous. Today, real-time computing plays a crucial role in our society, H d rd Rea I‘Tl me
since an increasing number of complex systems rely, in part or completely, on com- Com pUtl ng
puter control. Examples of applications that require real-time computing include the

following:

Systems

Predictable Scheduling Algorithms
and Applications

m Chemical and nuclear plant control,

m control of complex production processes,

m railway switching systems,
@ Springer

m automotive applications,

14

What are Real-Time Systems? [2/3]

 The time it takes to perform a task is
> not just an issue of performance
> but critical to the correct functioning of the system

 Examples
> Airbag deployment in cars, processing of sensor data in drones, etc.

e Challenges
1. Can we engineer the system such that it always satisfies “timing constraints”?
2. Can we prove in advance that the system will always satisfy “timing constraints”?

15

What are Real-Time Systems? [3/3]

Model the system and the workload
> # instructions in the blinking code?

» |s there an OS? # instructions -
between calls to the blinking code?

> Processor speed? Time to executea S
single instruction? Caching effects? ~ f

> |gnore unnecessary details ...
- Can we ignore the GPU?
- Disable interrupts and ignore?

v

For the given model

> Prove that the specified timing —&ms "~ Bms Bms °©
constraint is always satisfied 1ms 1ms 1ms

SRR TRETRATE;

Timing constraint: The status LED blinks every
sms, and continues blinking for precisely 1ms

16

Timing Analysis

« WCET analysis

> Given a hardware platform and the implementation of a task, for at most how long will
a single job execute (in isolation)?

 Schedulability analysis

> Given multiple tasks and the WCET for each task, is it possible to host them on the
same hardware platform??

 Ambiguous terminology
> “Timing Analysis” can refer to either or both types of analyses

WCET Analysis

Execution Time Histogram""°®

o worst-case performance
&
= worst-case quarantee
@
S The actual WCET
= Minimal must be found or Maximal
_8 LIOV.VGF observed upper bounded observed L.Jpper
= | timing BCET 6 f WCET timing
%| bound execution execution bound
O time time
A.-I| III I IIIIIIIIIIII NIRRT LTS, | |
0 < measured execution times > time
< possible execution times >
- timing predictability >

Wil08 R Wilhelm et al. (2008). The Worst-Case Execution Time Problem — Overview of Methods and Survey of Tools.

© 2014 B. Brandenburg (MPI-SWS)

Terminology

WCET = maximum ever observed (on target platform)
BCET = minimum ever observed

ACET = average, dependent on input, BCET < ACET < WCET

It’s important to distinguish between bounds (or estimates) and the
actual WCET/BCET.

— Safety: bound > actual.

— Tightness: bound close to actual value.

© 2014 B. Brandenburg (MPI-SWS)

WCET Analysis Challenges

Two issues must be considered:
— software behavior (control flow)
— hardware timing (basic block bounds).

Processor caches, out-of-order processor pipelines, speculative execution
— move the ACET closer to the BCET (and may even reduce the BCET)

— typically make the WCET worse

— increase the span between ACET and WCET.

Caches and speculation make the precise timing more dependent on the
execution history, which is difficult to predict precisely.

© 2014 B. Brandenburg (MPI-SWS)

Typical Software Restrictions

® NO recursion

e no unbounded loops

e no function pointers / virtual method dispatch
e no/restricted pointer aliasing

e no dynamic linking

e no dynamic memory management

© 2014 B. Brandenburg (MPI-SWS)

Programs as Graphs

O o0 N9 N O B WO N =

[o—
-

11
12
13
14
15
16
17
18
19

#define EXP_BITS 32
typedef unsigned int UI;

UI modexp (UI base,

int 1i;
UI result = 1;
1 = EXP_BITS;

while (1 > 0) {
if ((exponent & 1)
result
}
exponent >>= 1;
base = (base x base)
1——y

}

return result;

Ul exponent,

== 1) {

(result x base) %

If e is even: b€ = (b?)2
e—1

If e is odd: ¢ = b X (b?) > |

B

UI mod) {

Q

mod;

O

% mod;

Control-Flow
Graph

3

0

(exponent & 1)

4

1

result = 1;
1 = EXP BITS;

2
—{ o
(L > 0)7?
1

result =

Each node is a

1

(result * base)

exponent >>= 1;

base
1--;

6

(base * base)

return result;

== 1)?

basic block

$ mod;

mod;

Optimization Formulation [1/3]

» Let G = (V, E) denote the CFG o rol-Flow

> n:‘V‘ andmzlE‘ 1 = EXP BITS;

|
e LetX = (x{,X,,...,X,) be a vector of | 1
variables recording execution counts 2 _1(exponent & 1) == 1)°

A 1
result = (result * base) % mod;
5

Each nodeis a
basic block

> X; = no. of times basic block 1 is executed

 Xis valid if its elements correspond to a

exponent >>= 1;

feasible execution of the program base = (base * base) % mod;
> E.g., inthe CFG on the right, for a valid X 6
- X = Xg = 1, Xy = X3 + 1, Xy = Xg return result;

R R R OO o2

Optimization Formulation [2/3]

e Flow constraints Control-Flow -
i Graph - 1;
» Unit flow at source: x; = 1 and X, = 1 P ieiuéip_BiTs;
. Each node is a
Conservation of flow: x;: = E d.: = E d.
> ! Jt ik basic block

2
1

- d; ;=no. of times the edge from node i to j is executed

3
L Temih =g —{(exonent & 1 = 112
(exponent & 1) == 1)7
. 1

 E.g., Inthe CFG on the right

> x1=1andx6=1
5

> Xl = d12 and Xz — d12 ~+ d52 = d23 ~+ d26

exponent >>= 1;

> .X3 — d23 — d34 + d35 and .X4 — d34 — d45 = (base * base) % mod;

1--;

> X5 = ds5 + dys = dsy and X = dg

6

return result;

e One valid solution: X = (1, 2, 3,0, 1, 1)

R O OO I~

» Let w; be an upper bound on the execution
time of basic block 1

n
WCET = maximum possible Z w.x; over all valid X
i=1

>

e Linear programming (LP) formulation

n
Find X that gives max) wx,
" x;, 1<i<n “
=1
Subjecttox; =x, = 1 and x; = Z d;; = Z d;

JEP, kES;

e Drawbacks?

Optimization Formulation [3/3]

Control-Flow

Graph result = 1;
i = EXP BITS;
Each node is a
0 = basic block
1
3
0

(exponent & 1) == 1)7

A 1
result = (result * base) % mod;
5

exponent >>= 1;

= (base * base) % mod;

i-=7

6

return result;

R R R OO o2

Logical Flow Constraints [1/2]

O o0 N9 N O B WO N =

[o—
-

11
12
13
14
15
16
17
18
19

#define EXP BITS 32

typedef unsigned int UI;

If e is even: b¢ = (b?)?
If e is odd: b¢ = b X (b?)

e—1
2

|

N

UI modexp (UI base, UI mod)

int 1i;

Ul exponent,

{

UI result = 1; How many times

around the while loop?

k‘

1 = EXP_BITS;
while (i > 0) { \x3§32J
if ((exponent & 1) == 1) { ————
result = (result *x base) % mod;

}
exponent >>= 1;
base =
1-—;

}

return result;

O

(base x base) % mod;

Control-Flow

Graph result = 1;
i = EXP BITS;

Each node is a

0 2 basic block
1
3
0
(exponent & 1) == 1)7
A 1
result = (result * base) % mod;

exponent >>= 1;

(base * base) mod;

base =
i-=7

6

return result;

R I _Zorerm™

Logical Flow Constraints [2/2]

L #define CLIMB_MAX 1.0]

3 wvoid altitude_control_task (void) {
4
5 err = estimator z - desired_altitude;
6 desired _climb
7 = pre_climb + altitude_pgain * err;
8 if (desired _climb < -CLIMB_ MAX) {
9 desired_climb = —-CLIMB_MAX;
10 }
11 if (desired climb > CLIMB MAX) {
12 desired_climb = CLIMB_MAX;
13 }
14 return; = 1
15 }
L | Are there any 75 = 1
infeasible paths? 1 = diz+dis
T p— To = di2 =d23
r3 = di13+ doz =d3s+ d3s
Ty = d34 = dys
T5 = d35+dys

A solution for the above system of equations is

T1 =Ty =23 =1Tq4=2T5 =1,

e

err = estimator z - desired altitude;
desired climb

= pre climb + altitude pgain * err;
(desired climb < -CLIMB MAX) ?

2

desired climb -CLIMB MAX;
3
(desired climb > CLIMB MAX) ?
4

desired climb CLIMB MAX

1
1
5

Logical Flow Constraints [2/2]

L #define CLIMB_MAX 1.0]

3 wvoid altitude_control_task (void) {
4
5 err = estimator z - desired_altitude;
6 desired _climb
7 = pre_climb + altitude_pgalin * err;
8 if (desired _climb < -CLIMB_ MAX) {
9 desired_climb = —-CLIMB_MAX;
10 }
11 if (desired climb > CLIMB MAX) {
12 desired_climb = CLIMB_MAX;
13 }
14 return; I 2 = 1
15 }
L | Are there any 75 = 1
infeasible paths? 1 = diz+dis
T Te— ra = di2=d3
r3 = di13+ doz =d3s+ d3s
\d12+d34§1] R
I e T5 = d35+dys

A solution for the above system of equations is

T1 =Ty =23 =1Tq4=2T5 =1,

T ——

err = estimator z - desired altitude;
desired climb

= pre climb + altitude pgain * err;
(desired climb < -CLIMB MAX) ?

2

desired climb -CLIMB MAX;
3
(desired climb > CLIMB MAX) ?
4

desired climb CLIMB MAX

1
1
5

Bounds for Basic Blocks

« How to estimate upper bound w; on the execution time of basic block 17?

 Challenges
> Requires detailed micro-architectural modelling

> (Cache miss versus a hit can change latency by a factor of 100

- If the analysis does not differentiate between cache hits and misses, the computed bound may be a
hundred times larger than the actual execution time

Examples

1 wvold testFn (int *x,
2 while (flag != 1)
3 flag = 1;

4 *xxXx = flagy;

5 }

6 if (xx > 0)

7 *xX += 2

8}

int flag)
{

{

Assuming x is not NULL

> Draw the Control Flow Graph for this program.

» |s there a bound on the number of iterations of
the while loop? Justify your answer?

> How many total paths does this program have?
How many of them are feasible, and why?

> Write down the system of flow constraints,
including any logical flow constraints, for the
control-flow graph of this program?

Contact
« Name: Arpan B. Gujarati
« Email: arpanbg@cs.ubc.ca
« Web: https://arpangujarati.github.io/ |

Summary

* Introduction to Cyber-Physical Systems (CPS)
* Real-time systems (RTS) and the problem of timing analysis

 Program analysis for estimating the Worst-case Execution Time (WCET)

Edward Ashford Lee and

® Sanjit Arunkumar Seshia
Reference INTRODUCTION TO 16

> Ch. 16, Introduction to Embedded Systems, 2nd Ed. EMBEDDED SYSTEMS Suanatve Anaii

 Acknowledgements for slides

> Max Planck Institute for Software Systems (© MPI-SWS)
> Real-time System Design (© CPEN 432)

31

http://LeeSeshia.org
mailto:arpanbg@cs.ubc.ca
https://arpangujarati.github.io/

