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Learning Objectives

• Define safety and safety critical (SC) systems

• Perform hazard analysis on SC systems

• Understand the processes for safety assurance in 
SC systems

• Construct a safety case for an SC system
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Safety

• Safety is a property of a system that reflects the system’s 
ability to operate, normally or abnormally, without danger of 
causing human injury or death and without damage to the 
system’s environment.

• It is important to consider software safety as most devices 
whose failure is critical now incorporate software-based 
control systems. 
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Safety critical systems

• Systems where it is essential that system’s 
operation is always safe i.e. the system should 
never cause damage to people or environment

• Examples
– Control and monitoring systems in aircraft

– Process control systems in chemical manufacturing

– Automobile control systems such as braking and 
engine management systems
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Hazards

• Situations or events that can lead to an 
accident
– Stuck valve in reactor control system
– Incorrect computation by software in navigation 

system
– Failure to detect possible allergy in medication 

prescribing system

• Hazards do not inevitably result in accidents – 
accident prevention actions can be taken.
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Safety achievement

• Hazard avoidance
– The system is designed so that some classes of hazard simply cannot 

arise.   

• Hazard detection and removal
– The system is designed so that hazards are detected and removed 

before they result in an accident.

• Damage limitation
– The system includes protection features that minimise the damage 

that may result from an accident.
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Learning Objectives

• Define safety and safety critical (SC) systems

• Perform hazard analysis on SC systems

• Understand the processes for safety assurance in 
SC systems

• Construct a safety case for an SC system
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Hazard-driven analysis

• Hazard identification

• Hazard assessment

• Hazard analysis

• Safety requirements specification
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Hazard identification

• Identify the hazards that may threaten the 
system

• Hazard identification may be based on 
different types of hazard:
– Physical hazards
– Electrical hazards
– Biological hazards
– Service failure hazards
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Insulin pump risks

• Insulin overdose (service failure).
• Insulin underdose (service failure).
• Power failure due to exhausted battery (electrical).
• Electrical interference with other medical equipment 

(electrical).
• Poor sensor and actuator contact (physical).
• Parts of machine break off in body (physical).
• Infection caused by introduction of machine (biological).
• Allergic reaction to materials or insulin (biological).
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Hazard assessment

• Understanding the likelihood that a risk will 
arise and the potential consequences if an 
accident or incident should occur.

• Risks may be categorised as:
– Intolerable. Must never arise or result in an accident
– As low as reasonably practical(ALARP). Must minimise the possibility of 

risk given cost and schedule constraints
– Acceptable. The consequences of the risk are acceptable and no extra 

costs should be incurred to reduce hazard probability
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The risk triangle 
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Risk classification for the insulin pump 

Identified hazard Hazard probability Accident severity Estimated risk Acceptability

1.Insulin overdose 
computation

Medium High High Intolerable

2. Insulin underdose 
computation

Medium Low Low Acceptable

3. Failure of 
hardware monitoring 
system

Medium Medium Low ALARP

4. Power failure High Low Low Acceptable

5. Machine 
incorrectly fitted

High High High Intolerable

6. Machine breaks in 
patient

Low High Medium ALARP

7. Machine causes 
infection

Medium Medium Medium ALARP

8. Electrical 
interference

Low High Medium ALARP

9. Allergic reaction Low Low Low Acceptable
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Fault-tree analysis

• A deductive top-down technique.

• Put the risk or hazard at the root of the tree 
and identify the system states that could lead 
to that hazard.

• Where appropriate, link these with ‘and’ or 
‘or’ conditions.

• A goal should be to minimise the number of 
single causes of system failure.
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An example of a software fault tree 
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Insulin pump - Mitigating risks

• Arithmetic error
– A computation causes the value of a variable to 

overflow or underflow;

– Maybe include an exception handler for each type 
of arithmetic error.

• Algorithmic error
– Compare dose to be delivered with previous dose 

or safe maximum doses. Reduce dose if too high.
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Examples of safety requirements 
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SR1: The system shall not deliver a single dose of insulin that is greater than a 
specified maximum dose for a system user.

SR2: The system shall not deliver a daily cumulative dose of insulin that is greater 
than a specified maximum daily dose for a system user.

SR3: The system shall include a hardware diagnostic facility that shall be 
executed at least four times per hour.

SR4: The system shall include an exception handler for all of the exceptions that 
are identified in Table 3.

SR5: The audible alarm shall be sounded when any hardware or software 
anomaly is discovered and a diagnostic message, as defined in Table 4, shall be 
displayed.

SR6: In the event of an alarm, insulin delivery shall be suspended until the user 
has reset the system and cleared the alarm.



Learning Objectives

• Define safety and safety critical (SC) systems

• Perform hazard analysis on SC systems

• Understand the processes for safety assurance in 
SC systems

• Construct a safety case for an SC system
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Processes for safety assurance

• Process assurance is important for safety-critical systems 
development:
– Accidents are rare events so testing may not find all problems;

– Safety requirements are sometimes ‘shall not’ requirements so cannot 
be demonstrated through testing.

• Record the analyses that have been carried out and the 
people responsible for these.
– Personal responsibility is important as system failures may lead to 

subsequent legal actions.
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Formal verification

• Formal methods can be used when a mathematical 
specification of the system is produced.

• Ultimate static verification technique that may be used 
at different stages in the development process:
– A formal specification may be developed and 

mathematically analyzed for consistency. This helps 
discover specification errors and omissions.

– Formal arguments that a program conforms to its 
mathematical specification may be developed. This is 
effective in discovering programming and design errors.
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Static Analysis Checks

Fault class Static analysis check

Data faults Variables used before initialization
Variables declared but never used
Variables assigned twice but never used between assignments
Possible array bound violations 
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening assignment

Interface faults Parameter-type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage management faults Unassigned pointers
Pointer arithmetic
Memory leaks
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Learning Objectives

• Define safety and safety critical (SC) systems

• Perform hazard analysis on SC systems

• Understand the processes for safety assurance 
in SC systems

• Construct a safety case for an SC system
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The system safety case

• A safety case is:
– Documented body of evidence that provides convincing and valid 

argument that the system is adequately safe for a given application in 
a given environment

• Arguments can be based on formal proof, design rationale, 
safety proofs, etc. Process factors may also be included.

• A software safety case is usually part of a 
wider system safety case that takes hardware 
and operational issues also into account.
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Structured arguments

• Safety cases should be based around 
structured arguments that present evidence to 
justify the assertions made in these 
arguments.

• The argument justifies why a claim about 
system safety and security is justified by the 
available evidence.
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Insulin pump safety argument

• Claim: The maximum single dose of insulin to 
be delivered (CurrentDose) is MaxDose.
– Evidence: Safety argument for insulin pump (later)

– Evidence: Test data for insulin pump. The value of 
CurrentDose was correctly computed in 400 tests

– Evidence: Static analysis for insulin pump software 
no anomalies that affect the value of CurrentDose

– Argument: The evidence demonstrates that the 
maximum dose of insulin is equal to MaxDose.
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Structured safety arguments

• Structured arguments that demonstrate that a 
system meets its safety obligations.

• It is not necessary to demonstrate that the 
program works as intended; the aim is simply 
to demonstrate safety.

• Generally based on a claim hierarchy. 
– You start at the leaves of the hierarchy and 

demonstrate safety. This implies the higher-level 
claims are true.
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Safety claim hierarchy: Insulin Pump 
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Construction of a safety argument

• Establish the safe exit conditions for a component or a 
program.

• Starting from the END of the code, work backwards until you 
have identified all paths that lead to the exit of the code.

• Assume that the exit condition is false.

• Show that, for each path leading to the exit that the 
assignments made in that path contradict the assumption of 
an unsafe exit from the component.
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Class Activity: Insulin dose 
computation with safety checks 
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-- The insulin dose to be delivered is a function of blood sugar level, 
-- the previous dose delivered and the time of delivery of the previous dose

currentDose = computeInsulin () ;

// Safety check—adjust currentDose if necessary. 
// if statement 1
if (previousDose == 0)
{

if (currentDose > maxDose/2)
currentDose = maxDose/2 ;

}
else

if (currentDose > (previousDose * 2) )
currentDose = previousDose * 2 ;

// if statement 2
if ( currentDose < minimumDose )

currentDose = 0 ;
else if ( currentDose > maxDose )

currentDose = maxDose ;
administerInsulin (currentDose) ;



Solution: Program paths

• Neither branch of if-statement 2 is executed
– Can only happen if CurrentDose is >= minimumDose and <= maxDose.

• then branch of if-statement 2 is executed
– currentDose = 0.

• else branch of if-statement 2 is executed
– currentDose = maxDose.

• In all cases, the post conditions contradict the unsafe 
condition that the dose administered is greater than 
maxDose.
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