
Course Announcements

• Office hours today will start at 11:40am

• Homework

• Revisions to HW4 are due on Monday 3/20

• Homework 5 will be released this Friday, and due next Friday 3/24

• Midterm tests will be graded and returned this weekend

• Project will be announced next week

Lecture 13:
Protecting Data in Use

Defining MPC (2022 U.S. Senate bill S.3952)

“Secure multi-party computation … enables different participating
entities in possession of private sets of data to link and aggregate their
data sets for the exclusive purpose of performing a finite number of pre-
approved computations without transferring or otherwise revealing any
private data to each other or anyone else.”

a b

f(a,b) f(a,b)

Objective of secure multi-party computation (MPC)

• Suppose m people have sensitive data x1, x2, …, xm

• Want to outsource this data to multiple compute parties P1, P2, …, Pn

• Parties engage in computing a publicly-known function f

• Want to ensure: nothing is revealed about the inputs beyond what can
be inferred from the output y (note: for some f, inference is bad!)

y = 𝑓 𝑥!, 𝑥", … , 𝑥#

Computing in the presence of an adversary

• Our concern is that up to t of the n parties are adversarial

• We will consider 3 kinds of security guarantees to enforce

• Semi-honest security: withstands an adversary who follows the protocol but is
trying to learn data (i.e., break confidentiality)

• Malicious security: withstands an adversary who also might deviate from the
protocol to learn data or alter the results of the computation (break integrity)

• Robustness: withstands an adversary who also might quit participation (break
availability), and will reach agreement on the result of the computation anyway

• (This is similar to “agreement” in the setting of asynchronous protocols)

13.1 An Example

Goal 3: Evaluating Success
Employers agree to … contribute
data to a report compiled by a third
party on the Compact’s success to
date. Employer-level data would
not be identified in the report.

Trust spectrum

Trust us Trust no oneTrust anyone

Workflow

How it works

$7

$9

How it works

4
$7

3

10
$9

11

=

=

+

+

How it works

4
3

10
11

8
6

– –

How it works

3

11

8

–

6

$7

$9

$2

–

13.2 Calculating
Linear Functions

Another viewpoint: 3 steps to MPC
Co

m
pu

tin
g

se
rv

er
s

Compute over
secret shares

y1 = b1 - a1

y2 = b2 – a2

Reconstruct the
final answer

y = y1 + y2
= b - a

ba

Split secrets from
data contributors

a1

a2

b1

b2

+ +

= =

Simpler notation

ba

[a] [b]

Ge
ne

ric
 s

er
ve

r

ComputeSecret share Reconstruct

open y[y] = [a] + [b]or

Adding secret + public value

a

[a] c

Ge
ne

ric
 s

er
ve

r

ComputeSecret share Reconstruct

open y[y] = [a] + cor

Adding secret + public value (in detail)
Co

m
pu

tin
g

se
rv

er
s

Compute

y1 = a1 + c

y2 = a2

Secret share

a1

a2

c

c

Reconstruct

y = y1 + y2
= a + c

a

Scalar multiplication

a

[a] c

Ge
ne

ric
 s

er
ve

r

ComputeSecret share Reconstruct

open y[y] = c * [a]or

Scalar multiplication (in detail)
Co

m
pu

tin
g

se
rv

er
s

Compute

y1 = c * a1

y2 = c * a2

Secret share

a1

a2

Reconstruct

y = y1 + y2
= c * a

a

c

c

Extending to several inputs
Ge

ne
ric

 s
er

ve
r Compute

[y] = e * [b] + [d]
- [a] - [c] - f

Secret share

[a] [b]

Reconstruct

open y from [y]

[c] [d]

e f

Upshot: can compute any linear function L!
Ge

ne
ric

 s
er

ve
r Compute

[y] = L([x])

Secret share Reconstruct

[x] open y from [y]

13.3 Secure multiplication

Can we multiply two secret variables?
Co

m
pu

tin
g

se
rv

er
s

Compute

y1 = ???

y2 = ???

Secret shares

w1

w2

x1

x2

Reconstruct

y = w * x

xw

P1

P2

= =

+ +

Can we multiply two secret variables?
Co

m
pu

tin
g

se
rv

er
s

Compute

y1 = ???

y2 = ???

Secret shares

w1

w2

x1

x2

Reconstruct

y = w * x
= w1 * x1

+ w1 * x2
+ w2 * x1
+ w2 * x2

xw

P1

P2

= =

+ +
P1

P2

Idea: add one more computing server
Co

m
pu

tin
g

se
rv

er
s

Compute

y1 = ???

y2 = ???

Secret shares

w1

w2

x1

x2

Reconstruct

y = w * x
= w1 x1 + w1 x2 + w1 x3
+ w2 x1 + w2 x2 + w2 x3
+ w3 x1 + w3 x2 + w3 x3

xw

P1

P2

= =

+ +

P3 w3 x3

+ +

y3 = ???

Idea: give each computing server two shares
Co

m
pu

tin
g

se
rv

er
s

Compute

y1 = ???

y2 = ???

Secret shares

w1 , w2 , x1 , x2

Reconstruct

y = w * x
= w1 x1 + w1 x2 + w1 x3
+ w2 x1 + w2 x2 + w2 x3
+ w3 x1 + w3 x2 + w3 x3

xw

P1

P2

P3 y3 = ???

w2 , w3 , x2 , x3

w3 , w1 , x3 , x1

Idea: give each computing server two shares
Co

m
pu

tin
g

se
rv

er
s

Compute

y1 = w1 x2 + w2 x1
+ w1 x1

y2 = w2 x3 + w3 x2
+ w2 x2

Secret shares

w1 , w2 , x1 , x2

Reconstruct

y = w * x
= w1 x1 + w1 x2 + w1 x3
+ w2 x1 + w2 x2 + w2 x3
+ w3 x1 + w3 x2 + w3 x3

xw

P1

P2

P3
y3 = w3 x1 + w1 x3

+ w3 x3

w2 , w3 , x2 , x3

w3 , w1 , x3 , x1

Idea: give each computing server two shares
Co

m
pu

tin
g

se
rv

er
s

Compute

y1 = w1 x2 + w2 x1
+ w1 x1

y2 = w2 x3 + w3 x2
+ w2 x2

Secret shares

w1 , w2 , x1 , x2

Reconstruct

y = w * x
= y1 + y2 + y3

xw

P1

P2

P3
y3 = w3 x1 + w1 x3

+ w3 x3

w2 , w3 , x2 , x3

w3 , w1 , x3 , x1

Idea: give each computing server two shares
Co

m
pu

tin
g

se
rv

er
s

Compute

y1 = w1 x2 + w2 x1
+ w1 x1

y2 = w2 x3 + w3 x2
+ w2 x2

Secret shares

w1 , w2 , x1 , x2

Reconstruct

xw

P1

P2

P3
y3 = w3 x1 + w1 x3

+ w3 x3

w2 , w3 , x2 , x3

w3 , w1 , x3 , x1

y = w * x
= y1 + y2 + y3

Analysis of multiplication

• This technique works to multiply two secrets, without learning them!

• Invariant: each party maintains 2 of the 3 additive shares of each secret

• Correctness when adding secrets: same as before

• Correctness when multiplying secrets: each party computes 3 terms of
the product y, as shown by the distributive property

• Security: any single party has no idea what the secret is since the final
share could be anything… but note that the threshold T = 1 (not 2!)

• Efficiency: parties can do addition on their own, must talk to multiply

Secure computation of everything

• So far we have seen secure computation of +, -, and ×

• + and × are Turing-complete, so we can securely compute any function!

• (This may not be the fastest way to compute f securely, however…)

• For instance: given the circuit above and [s], [t], [x], the three computing
parties can work together to calculate [w] and then [y], and only open y

+

×

s
t

x

w
y = (s + t) * x

13.4 Security against
Byzantine compute parties

Reminder: our security objectives

• Our concern is that up to t of the n parties are adversarial

• We will consider 3 kinds of security guarantees to enforce

• Semi-honest security: withstands an adversary who follows the protocol but is
trying to learn data (i.e., break confidentiality)

• Malicious security: withstands an adversary who also might deviate from the
protocol to learn data or alter the results of the computation (break integrity)

• Robustness: withstands an adversary who also might quit participation (break
availability), and will reach agreement on the result of the computation anyway

• (This is similar to “agreement” in the setting of asynchronous protocols)

The current protocol is only semi-honest!
Co

m
pu

tin
g

se
rv

er
s

Compute

y1 = w1 x2 + w2 x1
+ w1 x1

y2 = w2 x3 + w3 x2
+ w2 x2

Secret shares

w1 , w2 , x1 , x2

Reconstruct

xw

P1

P2

P3
y3 = w3 x1 + w1 x3

+ w3 x3

w2 , w3 , x2 , x3

w3 , w1 , x3 , x1

y = w * x
= y1 + y2 + y3

Undetectable attack by a malicious party
Co

m
pu

tin
g

se
rv

er
s

Compute

y1’ = y1 + Δ

y2 = w2 x3 + w3 x2
+ w2 x2

Secret shares

w1 , w2 , x1 , x2

Reconstruct

xw

P1

P2

P3
y3 = w3 x1 + w1 x3

+ w3 x3

w2 , w3 , x2 , x3

w3 , w1 , x3 , x1

y’ = y + Δ
= y1 + Δ + y2 + y3

Idea: add yet one more computing server
Co

m
pu

tin
g

se
rv

er
s

Compute

y1 = ???

y2 = ???

Secret shares

w1

w2

x1

x2

Reconstruct

xw

P1

P2

= =

+ +

P3 w3 x3

+ +
y3 = ???

P4 w4 x4

+ +
y4 = ???

y = w * x
= y1 + y2 + y3 + y4

Compute and send as before, now with redundancy!
Co

m
pu

tin
g

se
rv

er
s

ComputeSecret shares Reconstruct

xw

P1

P2

P3

P4

y = w * x
= y1 + y2 + y3 + y4

w1 , w2 , w3 , x1 , x2 , x3

w2 , w3 , w4 , x2 , x3 , x4

w3 , w4 , w1 , x3 , x4 , x1

w4 , w1 , w2 , x4 , x1 , x2

y2 , y3

y3 , y4

y4 , y1

y1 , y2

y2

y4

y1

y3

Redundancy → detect errors
Co

m
pu

tin
g

se
rv

er
s

ComputeSecret shares Reconstruct

xw

P1

P2

P3

P4

y = w * x
= y1 + y2 + y3 + y4

w1 , w2 , w3 , x1 , x2 , x3

w2 , w3 , w4 , x2 , x3 , x4

w3 , w4 , w1 , x3 , x4 , x1

w4 , w1 , w2 , x4 , x1 , x2

y2 , y3

y3’ , y4

y4 , y1

y1 , y2

y2

y4

y1

y3

Security analysis

• Bad news: this protocol has a worse threshold: T = 1 of N = 4 parties

• Good news: security holds even against malicious adversaries who don’t
obey the rules of the protocol

• Furthermore, we’ve narrowed down the adversary to one of two parties

• Achieve robustness by switching to a semi-honest secure protocol with N = 2

• Upper bounds on what’s possible, with more sophisticated crypto:

• Can achieve semi-honest or malicious security against T = N – 1 parties

• Can achieve robustness against T < N / 2 parties (intuition: just as with
Byzantine agreement, need an honest majority to vote on the correct answer)

Some deployments of MPC in practice

Unbound: Protect cryptographic keysGoogle: Federated machine learning

BU: Pay equity in BostonCybernetica: VAT tax audits Partisia: Rate credit of farmers

