
Course Announcements

• Office hours today will start at 11:40am

• Homework

• Revisions to HW4 are due on Monday 3/20

• Homework 5 will be released this Friday, and due next Friday 3/24

• Midterm tests will be graded and returned this weekend

• Project will be announced next week



Lecture 13:
Protecting Data in Use



Defining MPC (2022 U.S. Senate bill S.3952)

“Secure multi-party computation … enables different participating 
entities in possession of private sets of data to link and aggregate their 
data sets for the exclusive purpose of performing a finite number of pre-
approved computations without transferring or otherwise revealing any 
private data to each other or anyone else.”
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Objective of secure multi-party computation (MPC)

• Suppose m people have sensitive data x1, x2, …, xm

• Want to outsource this data to multiple compute parties P1, P2, …, Pn

• Parties engage in computing a publicly-known function f

• Want to ensure: nothing is revealed about the inputs beyond what can 
be inferred from the output y (note: for some f, inference is bad!)

y = 𝑓 𝑥!, 𝑥", … , 𝑥#



Computing in the presence of an adversary

• Our concern is that up to t of the n parties are adversarial

• We will consider 3 kinds of security guarantees to enforce

• Semi-honest security: withstands an adversary who follows the protocol but is 
trying to learn data (i.e., break confidentiality)

• Malicious security: withstands an adversary who also might deviate from the 
protocol to learn data or alter the results of the computation (break integrity)

• Robustness: withstands an adversary who also might quit participation (break 
availability), and will reach agreement on the result of the computation anyway

• (This is similar to “agreement” in the setting of asynchronous protocols)



13.1 An Example



Goal 3: Evaluating Success
Employers agree to … contribute 
data to a report compiled by a third 
party on the Compact’s success to 
date. Employer-level data would 
not be identified in the report.







Trust spectrum

Trust us Trust no oneTrust anyone



Workflow
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13.2 Calculating
Linear Functions



Another viewpoint: 3 steps to MPC
Co

m
pu

tin
g 

se
rv

er
s

Compute over
secret shares

y1 = b1 - a1

y2 = b2 – a2

Reconstruct the
final answer

y = y1 + y2
= b - a

ba

Split secrets from
data contributors

a1

a2

b1

b2

+ +

= =



Simpler notation
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Adding secret + public value
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Adding secret + public value (in detail)
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Scalar multiplication
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Scalar multiplication (in detail)
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Extending to several inputs
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Upshot: can compute any linear function L!
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13.3 Secure multiplication



Can we multiply two secret variables?
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Idea: add one more computing server
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Idea: give each computing server two shares
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Idea: give each computing server two shares
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Analysis of multiplication

• This technique works to multiply two secrets, without learning them!

• Invariant: each party maintains 2 of the 3 additive shares of each secret

• Correctness when adding secrets: same as before

• Correctness when multiplying secrets: each party computes 3 terms of 
the product y, as shown by the distributive property

• Security: any single party has no idea what the secret is since the final 
share could be anything… but note that the threshold T = 1 (not 2!)

• Efficiency: parties can do addition on their own, must talk to multiply



Secure computation of everything

• So far we have seen secure computation of +, -, and ×

• + and × are Turing-complete, so we can securely compute any function!

• (This may not be the fastest way to compute f securely, however…)

• For instance: given the circuit above and [s], [t], [x], the three computing 
parties can work together to calculate [w] and then [y], and only open y
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y = (s + t) * x



13.4 Security against
Byzantine compute parties



Reminder: our security objectives

• Our concern is that up to t of the n parties are adversarial

• We will consider 3 kinds of security guarantees to enforce

• Semi-honest security: withstands an adversary who follows the protocol but is 
trying to learn data (i.e., break confidentiality)

• Malicious security: withstands an adversary who also might deviate from the 
protocol to learn data or alter the results of the computation (break integrity)

• Robustness: withstands an adversary who also might quit participation (break 
availability), and will reach agreement on the result of the computation anyway

• (This is similar to “agreement” in the setting of asynchronous protocols)



The current protocol is only semi-honest!
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Undetectable attack by a malicious party
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Idea: add yet one more computing server
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Compute and send as before, now with redundancy!
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Redundancy → detect errors
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Security analysis

• Bad news: this protocol has a worse threshold: T = 1 of N = 4 parties

• Good news: security holds even against malicious adversaries who don’t 
obey the rules of the protocol

• Furthermore, we’ve narrowed down the adversary to one of two parties

• Achieve robustness by switching to a semi-honest secure protocol with N = 2

• Upper bounds on what’s possible, with more sophisticated crypto:

• Can achieve semi-honest or malicious security against T = N – 1 parties

• Can achieve robustness against T < N / 2 parties (intuition: just as with 
Byzantine agreement, need an honest majority to vote on the correct answer)



Some deployments of MPC in practice

Unbound: Protect cryptographic keysGoogle: Federated machine learning

BU: Pay equity in BostonCybernetica: VAT tax audits Partisia: Rate credit of farmers


