
COURSE ANNOUNCEMENTS

• Homework 5 has been posted, due Friday 3/24 on Gradescope

• Homework 6 will be posted this week, and due Friday 3/31



Lecture 15: Protected Database Search



REVIEW: MPC

“Secure multi-party computation … enables different participating 
entities in possession of private sets of data to link and aggregate their 
data sets for the exclusive purpose of performing a finite number of pre-
approved computations without transferring or otherwise revealing any 
private data to each other or anyone else.”

a b

f(a,b) f(a,b)



MPC DEPLOYMENTS

Unbound: Protect cryptographic keysGoogle: Federated machine learning

BU: Pay equity in BostonCybernetica: VAT tax audits Partisia: Rate credit of farmers



15.1 From Data to Databases



LET’S PROTECT A DATABASE

Analyst
Backend storage

Database server

possible 
threats?

Data owner



ENCRYPTION IN TRANSIT

Backend storage
Database server

possible 
threats?

Data owner

Analyst



ENCRYPTION AT REST

Backend storage
Database server

possible 
threats?

Data owner

Analyst



ENCRYPTION IN USE

Backend storage
Database server

possible 
threats?

Data owner

Analyst



ENCRYPTION IN USE

Backend storage
Database server

possible 
threats?

Data owner

Analyst



OBJECTIVE: CRYPTOGRAPHICALLY PROTECTED DATABASE SEARCH

Utility of stored data
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Return whole dataset encrypted

No server protections 
(encrypt data at rest)

Multi-party computation

Symmetric searchable encryption

Property preserving encryption



INTEREST BY GOVERNMENT STATISTICAL AGENCIES

bea.gov/evidence unstats.un.org/bigdata/
task-teams/privacy



15.2 Designing MPC for Databases



(BU Medical & Hariri Institute for Computing)
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MOTIVATING USE CASE: DIGITAL HEALTH ANALYTICS

Medical 
ResearcherPatients

System X

https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/

What would be the right System X for this use case?

https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/


SECURE COLLABORATIVE ANALYTICS
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Medical      
Studies

Privacy-preserving 
advertising

End-usersHealthcare providers

Market         
Analyses

Credit score agencies



Requirements:


- No information leakage 
to untrusted entities


- No reliance on trusted 
resources


- Relational analytics


- Practical performance

SECURE COLLABORATIVE ANALYTICS
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Privacy-preserving 
advertising

End-usersHealthcare providers

Market         
Analyses

Credit score agencies

Medical      
Studies



GOAL: END-TO-END DATA PROTECTION

1

Data “at rest” Data “in use”

Advanced Encryption  
Standard (AES)

Data “in transit”

Transport Layers       
Security (TLS)

Why should we protect 
data in use?



CHALLENGE: HOW TO REDUCE THE MPC COST?

1 N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and A. Bestavros. Conclave: secure multi-party computation on big data. EuroSys, 2019.
2 J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and J. Rogers. SMCQL: secure querying for federated databases. PVLDB, 10(6):673–684, 2017.
3 H. Corrigan-Gibbs and D. Boneh. Prio: Private, Robust, and Scalable Computation of Aggregate Statistics, NSDI, 2017.

“The primary source of the slowdown arises from 
their join operators that have hundreds of 

input tuples…”

“Running the query entirely under MPC […] fails 
to scale beyond 3,000 total records…”

“Computing a function f on millions of client inputs 
[…] could potentially take an astronomical 

amount of time in a full MPC.”

Aggregation Join

12
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TO MAKE MPC PRACTICAL WE NEED TO RETHINK THE SYSTEM STACK

Hardware

Communication

Query Engine

Secure Protocols

User Interfaces

System Runtime
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The Secrecy Framework

No information 
leakage

No trusted 
resources

Complex data 
analytics
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Input1Cl
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Query planner

Black-box  
MPC library 

e.g. EMP1

Input2

: data operator

1 X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit: Efficient MultiParty 
computation toolkit, 2016. https://github.com/emp-toolkit

O
pt

im
iz

ed
 M

PC
 

Input1 Input2

End-to-end 
secure MPC 
query engine

Secrecy

Supported optimizations:


- Logical  (e.g. operator 
reordering)


- Physical (e.g. message 
batching, operator fusion)


- Protocol-specific                        
(e.g. dual sharing)

OPENING THE MPC BLACK BOXES

https://github.com/emp-toolkit
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SECRECY AS A SERVICE

Data ownersData analysts

Secrecy
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SECRECY AS A SERVICE

Data ownersData analysts

1 Submit query
Secrecy
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SECRECY AS A SERVICE

Data ownersData analysts

Secrecy 
computing party

Secrecy 
computing party

Secrecy 
computing party

2 Provision parties

Supported Cloud providers:

Secrecy
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SECRECY AS A SERVICE

Data ownersData analysts 3 Send secret 
shares to parties

Secrecy 
computing party

Secrecy 
computing party

Secrecy 
computing party

Secrecy
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SECRECY AS A SERVICE

Data ownersData analysts

Wide area network 4
Secure 

computation

Secrecy 
computing party

Secrecy 
computing party

Secrecy 
computing party

Secrecy
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SECRECY AS A SERVICE

Data ownersData analysts 5 Send result 
shares 

Secrecy 
computing party

Secrecy 
computing party

Secrecy 
computing party

Secrecy



THREAT MODEL AND GUARANTEES
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Semi-honest model

- Computing parties do not deviate from the protocol (“honest but curious”)

- Adversary can monitor the network and can also compromise one computing 

party (but cannot alter its execution)


Security guarantees

- Untrusted parties do not learn anything about: 


- The original data, intermediate or output result sizes

- The data access patterns during query execution 

* Adding support for maliciously secure primitives in progress



Data Owner A
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EXAMPLE: SECURE ADDITION IN SECRECY
Arithmetic sharing:     (mod )x = x1 + x2 + x3 264

Party 1

Party 2Party 3

-3 12-54 =

Data Owner B
t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +



Data Owner B

Data Owner A
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Arithmetic sharing:     (mod )x = x1 + x2 + x3 264
Party 1

Party 2Party 3

-3 12-54 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

1 -7 -3 -5

11-7 12-5-3 121 11

s1 s2 t1 t2

s2 s3 t2 t3s1 s3 t1 t3

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

EXAMPLE: SECURE ADDITION IN SECRECY



Party 1

Party 2Party 3
Data Owner B

Data Owner A
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Arithmetic sharing:     (mod )x = x1 + x2 + x3 264

Public 
Query

-3 12-5

Public 
Query

Public 
Query

4 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

1 -7 -3 -5

11-7 12-5-3 121 11

s1 s2 t1 t2

s2 s3 t2 t3s1 s3 t1 t3

Query:  s + t

s + t = (s1 + t1) + (s2 + t2) + (s3 + t3)

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

+ +

+ + + +

EXAMPLE: SECURE ADDITION IN SECRECY



Party 1

Party 2Party 3
Data Owner B

Data Owner A
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Arithmetic sharing:     (mod )x = x1 + x2 + x3 264

Public 
Query

-3 12-5

Public 
Query

Public 
Query

4 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

s1 + t1 s2 + t2

s1 + t1 s3 + t3 s2 + t2 s3 + t3

s + t = (s1 + t1) + (s2 + t2) + (s3 + t3)

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

EXAMPLE: SECURE ADDITION IN SECRECY

-2

-2 -1223 23

-12

Query:  s + t



Party 1

Party 2Party 3
Data Owner B

Data Owner A
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Arithmetic sharing:     (mod )x = x1 + x2 + x3 264

Public 
Query

-3 12-5

Public 
Query

Public 
Query

4 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

s1 + t1 s2 + t2

s1 + t1 s3 + t3 s2 + t2 s3 + t3

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

EXAMPLE: SECURE ADDITION IN SECRECY

-2

-2 -1223 23

-12

-2

23
-12

-2 -12 +23 = 9  

Data Analyst



Party 1

Party 2Party 3
Data Owner B

Data Owner A
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EXAMPLE: SECURE MULTIPLICATION IN SECRECY
Arithmetic sharing:     (mod )x = x1 + x2 + x3 264

Public 
Query

-3 12-5

Public 
Query

Public 
Query

4 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

1 -7 -3 -5

11-7 12-5-3 121 11

s1 s2 t1 t2

s2 s3 t2 t3s1 s3 t1 t3

s × t = (s1 + s2 + s3) ⋅ (t1 + t2 + t3)

Query:  s × t

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +



Party 1

Party 2Party 3
Data Owner B

Data Owner A
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Arithmetic sharing:     (mod )x = x1 + x2 + x3 264

Public 
Query

-3 12-5

Public 
Query

Public 
Query

4 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

1 -7 -3 -5

11-7 12-5-3 121 11

s1 s2 t1 t2

s2 s3 t2 t3s1 s3 t1 t3

m1 = (s1 ⋅ t1) + (s1 ⋅ t2) + (s2 ⋅ t1)

m2 = (s2 ⋅ t2) + (s2 ⋅ t3) + (s3 ⋅ t2)m3 = (s3 ⋅ t3) + (s3 ⋅ t1) + (s1 ⋅ t3)

s × t = (s1 + s2 + s3) ⋅ (t1 + t2 + t3) = ⋯ = m1 + m2 + m3

Query:  s × t

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

EXAMPLE: SECURE MULTIPLICATION IN SECRECY



Party 1

Party 2Party 3
Data Owner B

Data Owner A
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Arithmetic sharing:     (mod )x = x1 + x2 + x3 264

Public 
Query

-3 12-5

Public 
Query

Public 
Query

4 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

m1

m1 = (s1 ⋅ t1) + (s1 ⋅ t2) + (s2 ⋅ t1)

m2 = (s2 ⋅ t2) + (s2 ⋅ t3) + (s3 ⋅ t2)m3 = (s3 ⋅ t3) + (s3 ⋅ t1) + (s1 ⋅ t3)

m3

Query:  s × t

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

s × t = m1 + m2 + m3 = 20

One round of 
communication

m1 = 13

m3 = 111

m2 = − 104

EXAMPLE: SECURE MULTIPLICATION IN SECRECY

13

m2

-104111

m2

-104

m1

13

m3

111
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Arithmetic sharing:     (mod )s = s1 + s2 + s3 264

FROM SECURE ADD & MUL TO RELATIONAL ANALYTICS

Boolean sharing:    s = s1 ⊕ s2 ⊕ s3

ADD ( )+ MUL ( )× XOR ( )⊕ AND ( )∧

SELECT DISTINCT GROUP-BY JOIN

SEMI-JOIN ORDER-BY COMPOSE …

EQUALITY INEQUALITY CONVERSION CMP-SWAP …
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OBLIVIOUS COMPUTATION
To prevent information leakage, the computing parties perform an identical computation 
that is data-independent


- Data access patterns do not depend on the actual shares

- No conditionals (if-then-else)

- No data reduction

Cleartext

If ( ) {…}a > b “Number  is greater than  if the first bit they differ 
as we go from left to right is 1 for  and 0 for “

a b
a b

a : a2a1a0 b : b2b1b0For 3-bit numbers:

* Both  and  are secret-shareda b



To prevent information leakage, the computing parties perform an identical computation 
that is data-independent


- Data access patterns do not depend on the actual shares

- No conditionals (if-then-else)

- No data reduction
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OBLIVIOUS COMPUTATION

Cleartext

If ( ) {…}a > b

a : a2a1a0 b : b2b1b0For 3-bit numbers:

ϕ = a
?
> b = (a2 ⊕ b2) ∧ a2

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1) ∧ a1⊕

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1 ⊕ 1) ∧ ((b0 ⊕ 1) ∧ a0)⊕

Oblivious

* Both  and  are secret-shareda b



a : a2a1a0 b : b2b1b0For 3-bit numbers:

ϕ = a
?
> b = (a2 ⊕ b2) ∧ a2

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1) ∧ a1⊕

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1 ⊕ 1) ∧ ((b0 ⊕ 1) ∧ a0)⊕

Oblivious

36

OBLIVIOUS COMPUTATION

“If the most significant bits are not the same, 
then  is greater than  when  is set”a b a2

Cleartext

If ( ) {…}a > b

* Both  and  are secret-shareda b

To prevent information leakage, the computing parties perform an identical computation 
that is data-independent


- Data access patterns do not depend on the actual shares

- No conditionals (if-then-else)

- No data reduction



a : a2a1a0 b : b2b1b0For 3-bit numbers:

ϕ = a
?
> b = (a2 ⊕ b2) ∧ a2

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1) ∧ a1⊕

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1 ⊕ 1) ∧ ((b0 ⊕ 1) ∧ a0)⊕

ObliviousCleartext

If ( ) {…}a > b

37

OBLIVIOUS COMPUTATION

“Else,  is greater than  when the second most 
significant bits are not the same and  is set”

a b
a1

* Both  and  are secret-shareda b

To prevent information leakage, the computing parties perform an identical computation 
that is data-independent


- Data access patterns do not depend on the actual shares

- No conditionals (if-then-else)

- No data reduction



38

OBLIVIOUS COMPUTATION

“Else,  is greater than  when 
 is set and  is not set”

a b
a0 b0

a : a2a1a0 b : b2b1b0For 3-bit numbers:

ϕ = a
?
> b = (a2 ⊕ b2) ∧ a2

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1) ∧ a1⊕

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1 ⊕ 1) ∧ ((b0 ⊕ 1) ∧ a0)⊕

ObliviousCleartext

If ( ) {…}a > b

* Both  and  are secret-shareda b

To prevent information leakage, the computing parties perform an identical computation 
that is data-independent


- Data access patterns do not depend on the actual shares

- No conditionals (if-then-else)

- No data reduction



39

OBLIVIOUS COMPUTATION

Employee Salary
Kim 2000
Jane 1500
Alex 4500

R

* All attributes are secret-shared

σ(Salary > 3000) Employee Salary
Kim 2000 0
Jane 1500 0
Alex 4500 1

R′￼

ϕ

To prevent information leakage, the computing parties perform an identical computation 
that is data-independent


- Data access patterns do not depend on the actual shares

- No conditionals (if-then-else)

- No data reduction
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SECRECY’s CORE CONTRIBUTIONS
1. Redesigned MPC primitives that work directly on relations instead of individual records


- Amortize network I/O

- Make secret-sharing competitive in high-latency (WAN) environments 


2. Exposing relational query costs in terms of secure computation and communication primitives


1. Operation cost (number of MPC operations)

2. Synchronization cost (number of rounds)

3. Composition cost (extra cost of composing relational operators)


3. Volcano-style query processor for vectorized MPC execution

- Novel logical optimizations (e.g., operator reordering, decomposition)

- Physical optimizations (e.g., operator fusion)

- Protocol-specific optimizations (e.g., dual sharing)
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EXAMPLE: MESSAGE BATCHING

Hardware

User Interfaces

System Runtime

Query Engine

Communication

Secure Protocols



a′￼

?
≥ b ⟺

EXAMPLE: MESSAGE BATCHING
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b′￼3b′￼2b′￼1b′￼0a′￼3a′￼2a′￼1a′￼0

a′￼ b′￼

⋈

R

S

A B

R . A ≥ S . B

a

a′￼

. . .

. . .

. . .

. . .

b
b′￼

(a3 ⊕ b3) ∧ a3

((a3 ⊕ b3) ⊕ 1) ∧ (a2 ⊕ b2) ∧ a2⊕

((a3 ⊕ b3) ⊕ 1) ∧ ((a2 ⊕ b2) ⊕ 1) ∧ (a1 ⊕ b1) ∧ a1⊕

((a3 ⊕ b3) ⊕ 1) ∧ ((a2 ⊕ b2) ⊕ 1) ∧ ((a1 ⊕ b1) ⊕ 1) ∧ (((a0 ⊕ 1) ∧ b0) ⊕ 1)⊕

a
?
≥ b ⟺

(a3 ⊕ b′￼3) ∧ a′￼3

((a3 ⊕ b′￼3) ⊕ 1) ∧ (a2 ⊕ b′￼2) ∧ a2⊕

((a3 ⊕ b′￼3) ⊕ 1) ∧ ((a2 ⊕ b′￼2) ⊕ 1) ∧ (a1 ⊕ b′￼1) ∧ a1⊕

((a3 ⊕ b′￼3) ⊕ 1) ∧ ((a2 ⊕ b′￼2) ⊕ 1) ∧ ((a1 ⊕ b′￼1) ⊕ 1) ∧ (((a0 ⊕ 1) ∧ b′￼0) ⊕ 1)⊕

a
?
≥ b′￼ ⟺

. . .

b3b2b1b0a3a2a1a0

a b

ℓ = 4 bits



a′￼

?
≥ b ⟺

⋈

R

S

A B

R . A ≥ S . B

a

a′￼

. . .

. . .

. . .

. . .

b
b′￼

(a3 ⊕ b3) ∧ a3

((a3 ⊕ b3) ⊕ 1) ∧ (a2 ⊕ b2) ∧ a2⊕

((a3 ⊕ b3) ⊕ 1) ∧ ((a2 ⊕ b2) ⊕ 1) ∧ (a1 ⊕ b1) ∧ a1⊕

((a3 ⊕ b3) ⊕ 1) ∧ ((a2 ⊕ b2) ⊕ 1) ∧ ((a1 ⊕ b1) ⊕ 1) ∧ (((a0 ⊕ 1) ∧ b0) ⊕ 1)⊕

a
?
≥ b ⟺

(a3 ⊕ b′￼3) ∧ a′￼3

((a3 ⊕ b′￼3) ⊕ 1) ∧ (a2 ⊕ b′￼2) ∧ a2⊕

((a3 ⊕ b′￼3) ⊕ 1) ∧ ((a2 ⊕ b′￼2) ⊕ 1) ∧ (a1 ⊕ b′￼1) ∧ a1⊕

((a3 ⊕ b′￼3) ⊕ 1) ∧ ((a2 ⊕ b′￼2) ⊕ 1) ∧ ((a1 ⊕ b′￼1) ⊕ 1) ∧ (((a0 ⊕ 1) ∧ b′￼0) ⊕ 1)⊕

a
?
≥ b′￼ ⟺

. . .
44

EXAMPLE: MESSAGE BATCHING
b′￼3b′￼2b′￼1b′￼0a′￼3a′￼2a′￼1a′￼0

ℓ = 4 bits

a′￼ b′￼

b3b2b1b0a3a2a1a0

a b
Compute XORs

(no communication)
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EXAMPLE: MESSAGE BATCHING
b′￼3b′￼2b′￼1b′￼0a′￼3a′￼2a′￼1a′￼0

ℓ = 4 bits

a′￼ b′￼

b3b2b1b0a3a2a1a0

a b

c4 ∧ c5 ∧ c7 ∧ (c8 ∧ b0)

c1 ∧ a3

c2 ∧ c3 ∧ a2

c4 ∧ c5 ∧ c6 ∧ a1

c′￼4 ∧ c′￼5 ∧ c′￼7 ∧ (c8 ∧ b′￼0)

c′￼1 ∧ a3

c′￼2 ∧ c′￼3 ∧ a2

c′￼4 ∧ c′￼5 ∧ c′￼6 ∧ a1

a′￼

?
≥ b ⟺

⋈

R

S

A B
a

a′￼

. . .

. . .

. . .

. . .

b
b′￼

⊕

⊕

⊕

a
?
≥ b ⟺

⊕

⊕

⊕

a
?
≥ b′￼ ⟺

. . .

R . A ≥ S . B
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EXAMPLE: MESSAGE BATCHING
b′￼3b′￼2b′￼1b′￼0a′￼3a′￼2a′￼1a′￼0

ℓ = 4 bits

a′￼ b′￼

b3b2b1b0a3a2a1a0

a b

c4 ∧ c5 ∧ c7 ∧ (c8 ∧ b0)

c1 ∧ a3

c2 ∧ c3 ∧ a2

c4 ∧ c5 ∧ c6 ∧ a1

c′￼4 ∧ c′￼5 ∧ c′￼7 ∧ (c8 ∧ b′￼0)

c′￼1 ∧ a3

c′￼2 ∧ c′￼3 ∧ a2

c′￼4 ∧ c′￼5 ∧ c′￼6 ∧ a1

(1 round of communication)

a′￼

?
≥ b ⟺

⋈

R

S

A B
a

a′￼

. . .

. . .

. . .

. . .

b
b′￼

⊕

⊕

⊕

a
?
≥ b ⟺

⊕

⊕

⊕

a
?
≥ b′￼ ⟺

. . .

R . A ≥ S . B

Compute independent ANDs
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EXAMPLE: MESSAGE BATCHING
b′￼3b′￼2b′￼1b′￼0a′￼3a′￼2a′￼1a′￼0

ℓ = 4 bits

a′￼ b′￼

b3b2b1b0a3a2a1a0

a b

 
communication 
rounds in total

log ℓ + 1

(for the whole join)

c4 ∧ c5 ∧ c7 ∧ (c8 ∧ b0)

c1 ∧ a3

c2 ∧ c3 ∧ a2

c4 ∧ c5 ∧ c6 ∧ a1

c′￼4 ∧ c′￼5 ∧ c′￼7 ∧ (c8 ∧ b′￼0)

c′￼1 ∧ a3

c′￼2 ∧ c′￼3 ∧ a2

c′￼4 ∧ c′￼5 ∧ c′￼6 ∧ a1

a′￼

?
≥ b ⟺

⋈

R

S

A B
a

a′￼

. . .

. . .

. . .

. . .

b
b′￼

⊕

⊕

⊕

a
?
≥ b ⟺

⊕

⊕

⊕

a
?
≥ b′￼ ⟺

. . .

R . A ≥ S . B

Independent on the 
cardinality of  and R S



EFFECT OF MESSAGE BATCHING (LAN)
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∼ 1000 ×

* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)

- Eager: Message batching disabled 
(one network I/O per row)


- Batched: Message batching enabled

Lower is 
better
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1. Redesigned MPC primitives that work directly on relations instead of individual records

- Amortize network I/O

- Make secret-sharing competitive in high-latency (WAN) environments 


2. Analytical cost model based on secure computation and communication primitives

- Operation cost (number of MPC operations)

- Synchronization cost (number of communication rounds)

- Composition cost (extra cost of composing relational operators)


3. Volcano-style query processor for vectorized MPC execution

- Novel logical optimizations (e.g., operator reordering, decomposition)

- Physical optimizations (e.g., operator fusion)

- Protocol-specific optimizations (e.g., dual sharing)

SECRECY’s CORE CONTRIBUTIONS
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SELECT P.id 

FROM Patients as P, Clients as C 

WHERE P.id = C.id 

AND P.zip=‘02446’

P C

⋈P.id=C.id

σP.zip=′￼02446′￼

LOGICAL TRANSFORMATION RULES (CLEARTEXT DATABASES)

“Find the IDs of patients who are also clients  
(of an insurance company) and live in Brookline”

σ : selection
⋈ : join



51

LOGICAL TRANSFORMATION RULES (CLEARTEXT DATABASES)

P

C

⋈P.id=C.id

Pushing the selection down reduces the size of 
intermediate data and improves performance 

σP.zip=′￼02446′￼

SELECT P.id 

FROM Patients as P, Clients as C 

WHERE P.id = C.id 

AND P.zip=‘02446’

σ : selection
⋈ : join
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CLEARTEXT OPTIMIZATIONS ARE NOT ALWAYS EFFECTIVE UNDER MPC

Pushing the selection before the JOIN does not improve JOIN’s performance under MPC

P

C

⋈P.id=C.id

σP.zip=′￼02446′￼

MPC

P C

⋈P.id=C.id

σP.zip=′￼02446′￼

MPC

(since the oblivious selection does not remove any tuples from P)

σ : selection
⋈ : join

σ : selection
⋈ : join
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OPERATOR REORDERING STILL MAKES SENSE UNDER MPC

Communication

Hardware

User Interfaces

System Runtime

Query Engine

Secure Protocols
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SELECT DISTINCT M.id 

FROM Medication as M, Prescribed as P 

WHERE M.id = P.id 

OPERATOR REORDERING STILL MAKES SENSE UNDER MPC

⋈M.id=P.id

δM.id

MPC

M P “Find the distinct medication IDs that 
have been prescribed to patients”

δ : distinct
⋈ : join
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OPERATOR REORDERING STILL MAKES SENSE UNDER MPC

|M|=|P|= nM

⋈M.id=P.id

δM.id

P

MPC

 operations / messages O(n2 log2 n)

 roundsO(log2 n)  spaceO(n2)
* Assuming the distinct operator is based on a sorting network

SELECT DISTINCT M.id 

FROM Medication as M, Prescribed as P 

WHERE M.id = P.id 

δ : distinct
⋈ : join
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EXAMPLE: DISTINCT PUSH-DOWN IN SECRECY

⋈M.id=P.id

δM.id

M P

MPC

⋈M.id=P.id

δM.id δP.id

M P

MPC

 operations / messages O(n2 log2 n)

 roundsO(log2 n)  spaceO(n2)  fewer rounds∼ 4 ×

 operations / messagesO(n2)

 spaceO(n)
* Assuming the distinct operator is based on a sorting network

δ : distinct
⋈ : join
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 fewer rounds∼ 4 ×

 operations / messagesO(n2)

 spaceO(n)

 operations / messages O(n2 log2 n)

 roundsO(log2 n)  spaceO(n2)
* Assuming the distinct operator is based on a sorting network

⋈M.id=P.id

δM.id

M P

MPC

⋈M.id=P.id

δM.id δP.id

M P

MPCδ : distinct
⋈ : join

fewer operations / messages


( improvement for ) 

O(log2 n) ×

∼ 100 × n = 1000

EXAMPLE: DISTINCT PUSH-DOWN IN SECRECY



58* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)

EFFECT OF DISTINCT PUSH-DOWN (LAN)

∼ 50 ×

Lower is 
better



MPC
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EXAMPLE: OPERATOR DECOMPOSITION IN SECRECY

SELECT M.med, COUNT(*) 

FROM Medication as M, Patients as P 

WHERE M.id = P.id 

GROUP-BY M.med

M

⋈M.id=P.id

γM.med

P

COUNT(*)

“Count the number of  patients per prescribed medication”

γ : aggregation

⋈ : join
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We can decompose the aggregation in two parts and 
push the first (and most expensive one) down

Applying GROUP-BY after the join will require 
materializing the cartesian product M × P

SELECT M.med, COUNT(*) 

FROM Medication as M, Patients as P 

WHERE M.id = P.id 

GROUP-BY M.med

MPC

M

⋈M.id=P.id

γM.med

P

COUNT(*)

γ : aggregation

⋈ : join

EXAMPLE: OPERATOR DECOMPOSITION IN SECRECY



MPC
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cnt is the number of times each id in M matched 
with an id in P during the SEMI-JOIN 

M

γM.med

P

SUM(cnt)

⋈M.id=P.id
+ partial 
aggregation

MPC

M

⋈M.id=P.id

γM.med

P

COUNT(*)

Applying GROUP-BY after the join will require 
materializing the cartesian product M × P

γ : aggregation

⋈ : join

EXAMPLE: OPERATOR DECOMPOSITION IN SECRECY
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 operations / messagesO(n2 log2 n)

 roundsO(n2)  spaceO(n2)  spaceO(n) roundsO(n)
 operations / messagesO(n2)

* Assuming the group-by operator  
is based on a sorting network

MPC

M

γM.med

P

SUM(cnt)

⋈M.id=P.id
+ partial 
aggregation

MPC

M

⋈M.id=P.id

γM.med

P

COUNT(*)

γ : aggregation

⋈ : join

EXAMPLE: OPERATOR DECOMPOSITION IN SECRECY



EFFECT OF JOIN-AGGREGATION DECOMPOSITION (LAN)
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∼ 100 ×

* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)

Lower is 
better



64

1. Redesigned MPC primitives that work directly on relations instead of individual records

- Amortize network I/O

- Make secret-sharing competitive in high-latency (WAN) environments 


2. Analytical cost model based on secure computation and communication primitives

- Operation cost (number of MPC operations)

- Synchronization cost (number of communication rounds)

- Composition cost (extra cost of composing relational operators)


3. Volcano-style query processor for vectorized MPC execution

- Logical optimizations (e.g., operator reordering and decomposition)

- Physical optimizations (e.g., message batching, operator fusion)

- Protocol-specific optimizations (e.g., dual sharing)

SECRECY’s CORE CONTRIBUTIONS
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SECRECY OVERVIEW
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SECRECY OVERVIEW
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SECRECY OVERVIEW
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Performance on real and 
synthetic queries



1. Secrecy optimizations can improve performance by orders of magnitude

2. Secrecy scales to millions of input rows

3. Secrecy outperforms state-of-the-art frameworks


4. Relational operators scale well with configurable memory footprints


5. Secrecy can perform millions of primitive MPC operations per second

69

SUMMARY OF RESULTS

J. Liagouris, V. Kalavri, M. Faisal, M. Varia. Secrecy: Secure Collaborative Analytics on Secret-shared Data. arXiv:2102.01048, 2021.

https://arxiv.org/abs/2102.01048


1. Secrecy optimizations can improve performance by orders of magnitude

2. Secrecy scales to millions of input rows

3. Secrecy outperforms state-of-the-art frameworks


4. Relational operators scale well with configurable memory footprints


5. Secrecy can perform millions of primitive MPC operations per second
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SUMMARY OF RESULTS

J. Liagouris, V. Kalavri, M. Faisal, M. Varia. Secrecy: Secure Collaborative Analytics on Secret-shared Data. arXiv:2102.01048, 2021.

https://arxiv.org/abs/2102.01048
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EFFECT OF SECRECY OPTIMIZATIONS ON REAL QUERIES (WAN)

* Reported times are for 1000 rows per input relation
* Not optimized plans use message batching too (otherwise the cost of MPC is prohibitive)

* Parties deployed in three AWS regions: us-east-2 (Ohio), us-east-1 (Virginia), and us-west-1 (California) 

Logical + System optimizations 
result in up to  speedups1000 ×
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EFFECT OF SECRECY OPTIMIZATIONS ON REAL QUERIES (WAN)

* Reported times are for 1000 rows per input relation
* Not optimized plans use message batching too (otherwise the cost of MPC is prohibitive)

* Parties deployed in three AWS regions: us-east-2 (Ohio), us-east-1 (Virginia), and us-west-1 (California) 

Protocol-specific 
optimizations result in 
up to  speedups27 ×



74* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)

The cost of 
these queries is 
dominated by 
the oblivious 

GROUP-BY and 
DISTINCT 
operators

Rec. C. Diff scales to 2 
million rows in ~1.2h

“Find the distinct ids of patients who have been 
diagnosed with cdiff and have two consecutive 

infections between 15 and 56 days apart” 


SECRECY’s SCALING BEHAVIOR (LAN)
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What about more complex 
queries?
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“This query determines how the market share of a given nation within 
a given region has changed over two years for a given part type”

TPC-H Q8: 7 JOINS + GROUP-BY + ORDER-BY

A naive approach would require 
 operations under MPCO(n8 log2 n)
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“This query determines how the market share of a given nation within 
a given region has changed over two years for a given part type”

TPC-H Q8: 7 JOINS + GROUP-BY + ORDER-BY

Part

LineItem

Supplier

Orders

Customer

Nation

Nation

Region

Primary Key (PK) to Foreign Key (FK) Join  

(one-to-many) 

Relation (DB Table)
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“This query determines how the market share of a given nation within 
a given region has changed over two years for a given part type”

TPC-H Q8: 7 JOINS + GROUP-BY + ORDER-BY

The query result size is 
bounded by the size of 

LineItem

Part

LineItem

Supplier

Orders

Customer

Nation

Nation

Region

Primary Key (PK) to Foreign Key (FK) Join  

(one-to-many) 

Relation (DB Table)
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Communication

Hardware

Secure Protocols

User Interfaces

System Runtime

Query Engine

LOGICAL + SYSTEM OPTIMIZATIONS TO SCALE COMPLEX QUERIES
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⋈
Mary 5

Ann 12

Bob 189

John 7

Tom 66

PK-to-FK

SELECT O.Oid 

FROM Customer as C, Orders as O 

WHERE C.Cid = O.Cid AND C.Name=John 


. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Cid = Cid

EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION

Customer

Order

. . .

. . .

. . .

. . .

. . .

CidName . . . . . .Oid. . . Cid

12 5

123 7

33 66

4 7

* All attributes are secret-shared



Cid
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EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION

S ∪ T

OidRid

⋈
Mary 5

Ann 12

Bob 189

John 7

Tom 66

CidName

PK-to-FK

SELECT O.Oid 

FROM Customer as C, Orders as O 

WHERE C.Cid = O.Cid AND C.Name=John 


. . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Cid = Cid

Customer

Order

Oid. . .

. . .

. . .

. . .

. . .

. . .

Name

Cid

12 5

123 7

33 66

4 7

C Mary 5

C Ann 12

C Bob 189

C John 7

C Tom 66

O 5 12

O 7 123

O 66 33

O 7 4

* All attributes are secret-shared



Cid
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EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION

S ∪ T

OidRid

⋈
Mary 5

Ann 12

Bob 189

John 7

Tom 66

CidName

PK-to-FK

SELECT O.Oid 

FROM Customer as C, Orders as O 

WHERE C.Cid = O.Cid AND C.Name=John 


. . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Cid = Cid

Customer

Order

Oid. . .

. . .

. . .

. . .

. . .

. . .

Name

Cid

12 5

123 7

33 66

4 7

C Mary 5

C Ann 12

C Bob 189

C John 7

C Tom 66

O 5 12

O 7 123

O 66 33

O 7 4

Padded 
attributes

* All attributes are secret-shared



EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION

Cid

S ∪ T

OidRid Name
C Mary 5

C Ann 12

C Bob 189

C John 7

C Tom 66

O 5 12

O 7 123

O 66 33

O 7 4

* All attributes are secret-shared



Cid

S ∪ T

OidRid Name
C Mary 5

C Ann 12

C Bob 189

C John 7

C Tom 66

O 5 12

O 7 123

O 66 33

O 7 4

Sort on Cid, Rid

 operations      


 rounds        


 space

O(n log2 n)

O(log2 n)

O(n)

* Assuming the distinct operator is based on a sorting network

n = |S ∪ T |

* All attributes are secret-shared

EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION



Cid

S ∪ T

OidRid Name Cid

O 5 12

C Mary 5

O 7 123

O 7 4

C John 7

C Ann 12

O 66 33

C Tom 66

C Bob 189

S ∪ T

OidRid Name
C Mary 5

C Ann 12

C Bob 189

C John 7

C Tom 66

O 5 12

O 7 123

O 66 33

O 7 4

* All attributes are secret-shared

EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION



Cid

S ∪ T

OidRid Name Cid

S ∪ T

OidRid Name

Apply odd-even aggregation phase to find 
“matched pairs of tuples” and mask the rest

 operations      


 rounds        


 space

O(n log n)

O(log n)

O(n)

n = |S ∪ T |

O 5 12

C Mary 5

O 7 123

O 7 4

C John 7

C Ann 12

O 66 33

C Tom 66

C Bob 189

C Mary 5

C Ann 12

C Bob 189

C John 7

C Tom 66

O 5 12

O 7 123

O 66 33

O 7 4

* All attributes are secret-shared

EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION
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“This query determines how the market share of a given nation within 
a given region has changed over two years for a given part type”

TPC-H Q8: 7 JOINS + GROUP-BY + ORDER-BY

Using this simple idea, we can evaluate the 
whole query in:


-  operations


-  rounds


-  space


where  is the total number of input rows 
across all input relations

O(n log2 n)

O(log2 n)

O(n)

n

Primary Key (PK) to Foreign Key (FK) Join  

(one-to-many) 

Relation (DB Table)

Part

LineItem

Supplier

Orders

Customer

Nation

Nation

Region
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“This query determines how the market share of a given nation within 
a given region has changed over two years for a given part type”

Part

LineItem

Supplier

Orders

Customer
Nation

Nation

Region
PK-to-FK Join  

(one-to-many) 

Relation

By repeatedly applying this technique, we 
can evaluate the whole query in


-  operations


-  rounds


-  space


where  is the total number of input rows

O(n log2 n)

O(log2 n)

O(n)

n

The optimization applies to all MPC queries 
used in existing systems
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“This query determines how the market share of a given nation within 
a given region has changed over two years for a given part type”

Part

LineItem

Supplier

Orders

Customer
Nation

Nation

Region
PK-to-FK Join  

(one-to-many) 

Relation

By repeatedly applying this technique, we 
can evaluate the whole query in


-  operations


-  rounds


-  space


where  is the total number of input rows

O(n log2 n)

O(log2 n)

O(n)

n

Secure query evaluation is 
reduced into a series of sorts
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PARALLEL OBLIVIOUS SORT ON SECRECY (LAN)

* Reported times are for 2M input rows

* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)

29 seconds
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Ongoing and Future Work



Secure cross-site analytics on OpenShift logs

(BU RedHat Collaboratory)


 

https://www.bu.edu/rhcollab/projects/security-privacy/secure-cross-site-analytics-on-
openshift-logs/ 
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REAL-WORLD SECRECY USE CASES
Digital Health Analytics


(BU Medical & Hariri Institute for Computing)


https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-
of-mobile-health-data-among-medically-vulnerable-populations/

Secrecy

Client 1

Client 2

Client N

…

Red Hat
Engineer

Monitoring & analytics  
dashboard service

Secrecy

Monitoring & analytics  
dashboard service

Doctor

https://www.bu.edu/rhcollab/projects/security-privacy/secure-cross-site-analytics-on-openshift-logs/
https://www.bu.edu/rhcollab/projects/security-privacy/secure-cross-site-analytics-on-openshift-logs/
https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/
https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/


on-premise clusters public clouds

+ Relational analytics


+ ML workloads            


+ Fully Homomorphic    
Encryption primitives


+ Differential Privacy


+ Hardware acceleration 
for secure computation

93

BROADER VISION

A general-purpose framework for private data analysis 
in untrusted clouds

……

Data  
Provider

Data  
Provider

Data  
Provider

Hybrid Cloud

Data  
Consumer

Data  
Consumer

Data  
Consumer

SECRECY



No reliance on 
trusted execution 
environments 

Hardware

No information 
leakage

End-to-end MPC 
execution

Decoupling data 
owners from 
computing parties

General and composable 
operators

Information 
leakage

High 
expressivity

Hardware
Query 

execution

Role of data 
owners

96

SECRECY SUMMARY

Up to 1000x speedups for 
real and synthetic queries

Millions of input rows 
entirely under MPC

Much larger inputs 
compared to prior works

J. Liagouris, V. Kalavri, M. Faisal, M. Varia. Secrecy: Secure Collaborative Analytics on Secret-shared Data. arXiv:2102.01048, 2021.

https://arxiv.org/abs/2102.01048
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