#### **COURSE ANNOUNCEMENTS**

- Homework 5 has been posted, due Friday 3/24 on Gradescope
- Homework 6 will be posted this week, and due Friday 3/31

## ue Friday 3/24 on Gradescope week, and due Friday 3/31

# Lecture 15: Protected Database Search

#### **REVIEW: MPC**

"Secure multi-party computation ... enables different participating entities in possession of private sets of data to link and aggregate their data sets for the exclusive purpose of performing a finite number of preapproved computations without transferring or otherwise revealing any private data to each other or anyone else."



#### **MPC DEPLOYMENTS**

#### **<u>Cybernetica</u>**: VAT tax audits



#### **<u>Google</u>:** Federated machine learning



#### **<u>BU</u>**: Pay equity in Boston



#### **Partisia:** Rate credit of farmers



#### **<u>Unbound</u>:** Protect cryptographic keys







## **15.1 From Data to Databases**











![](_page_9_Picture_2.jpeg)

#### **OBJECTIVE: CRYPTOGRAPHICALLY PROTECTED DATABASE SEARCH**

![](_page_10_Figure_1.jpeg)

• Return whole dataset encrypted

Utility of stored data

No server protections (encrypt data at rest)

Property preserving encryption

• Symmetric searchable encryption

Multi-party computation

![](_page_10_Figure_9.jpeg)

![](_page_10_Figure_10.jpeg)

#### **INTEREST BY GOVERNMENT STATISTICAL AGENCIES**

![](_page_11_Picture_1.jpeg)

![](_page_11_Figure_2.jpeg)

bea.gov/evidence

![](_page_11_Picture_4.jpeg)

![](_page_11_Picture_7.jpeg)

unstats.un.org/bigdata/ task-teams/privacy

![](_page_11_Picture_9.jpeg)

# **15.2 Designing MPC for Databases**

## MOTIVATING USE CASE: DIGITAL HEALTH ANALYTICS

![](_page_13_Picture_2.jpeg)

#### What would be the right System X for this use case?

https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/ 8

#### (BU Medical & Hariri Institute for Computing)

![](_page_13_Figure_6.jpeg)

![](_page_13_Picture_7.jpeg)

![](_page_13_Picture_8.jpeg)

## **SECURE COLLABORATIVE ANALYTICS**

Medical Studies

![](_page_14_Picture_2.jpeg)

![](_page_14_Figure_3.jpeg)

![](_page_14_Picture_4.jpeg)

![](_page_14_Figure_5.jpeg)

Healthcare providers

Credit score agencies

Market Analyses

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

![](_page_14_Picture_11.jpeg)

![](_page_14_Picture_12.jpeg)

![](_page_14_Picture_13.jpeg)

End-users

![](_page_14_Picture_15.jpeg)

## **SECURE COLLABORATIVE ANALYTICS**

#### Medical Studies

![](_page_15_Picture_2.jpeg)

![](_page_15_Figure_3.jpeg)

![](_page_15_Picture_4.jpeg)

![](_page_15_Figure_5.jpeg)

Healthcare providers

![](_page_15_Picture_8.jpeg)

Credit score agencies

#### Privacy-preserving advertising

![](_page_15_Picture_11.jpeg)

![](_page_15_Figure_12.jpeg)

End-users

**Requirements:** 

- No information leakage to untrusted entities
- No reliance on trusted resources
- Relational analytics
- Practical performance

![](_page_15_Picture_19.jpeg)

### **GOAL: END-TO-END DATA PROTECTION**

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

Data "at rest"

Advanced Encryption Standard (AES)

Transport Layers Security (TLS)

![](_page_16_Picture_7.jpeg)

Data "in transit"

Data "in use"

Why should we protect data in use?

![](_page_16_Picture_12.jpeg)

## CHALLENGE: HOW TO REDUCE THE MPC COST?

"Running the query entirely under MPC [...] fails to scale beyond 3,000 total records..."

"Computing a function f on millions of client inputs" [...] could potentially take an **astronomical** amount of time in a full MPC."

"The primary source of the slowdown arises from their join operators that have **hundreds of** input tuples..."

<sup>1</sup> N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and A. Bestavros. Conclave: secure multi-party computation on big data. EuroSys, 2019. <sup>2</sup> J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and J. Rogers. SMCQL: secure querying for federated databases. PVLDB, 10(6):673-684, 2017. <sup>3</sup> H. Corrigan-Gibbs and D. Boneh. Prio: Private, Robust, and Scalable Computation of Aggregate Statistics, NSDI, 2017.

![](_page_17_Figure_5.jpeg)

| Plaintext | Secure          | Slowdown    |
|-----------|-----------------|-------------|
| 158       | $253,\!894$     | $1,\!609X$  |
| 165       | $159,\!145$     | 967X        |
| 193       | $8,\!195,\!317$ | $43,\!337X$ |

![](_page_17_Figure_7.jpeg)

![](_page_17_Picture_8.jpeg)

## TO MAKE MPC PRACTICAL WE NEED TO RETHINK THE SYSTEM STACK

![](_page_18_Figure_1.jpeg)

- User Interfaces
- Query Engine
- Secure Protocols
- System Runtime
- Communication
  - Hardware

![](_page_18_Picture_8.jpeg)

# The Secrecy Framework

No information leakage

No trusted resources

Complex data analytics

![](_page_19_Picture_4.jpeg)

## **OPENING THE MPC BLACK BOXES**

![](_page_20_Figure_1.jpeg)

<sup>1</sup> X. Wang, A. J. Malozemoff, and J. Katz. *EMP-toolkit: Efficient MultiParty* computation toolkit, 2016. <u>https://github.com/emp-toolkit</u>

![](_page_20_Figure_3.jpeg)

Secrecy

Supported optimizations:

- Logical (e.g. operator reordering)
- Physical (e.g. message batching, operator fusion)
- Protocol-specific (e.g. dual sharing)

![](_page_20_Figure_11.jpeg)

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

Secrecy

![](_page_21_Picture_4.jpeg)

![](_page_21_Picture_5.jpeg)

![](_page_21_Picture_6.jpeg)

![](_page_22_Figure_1.jpeg)

Secrecy

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

![](_page_23_Picture_5.jpeg)

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

![](_page_24_Picture_3.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_3.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

## **THREAT MODEL AND GUARANTEES**

#### <u>Semi-honest model</u>

- -
- party (but cannot alter its execution)

#### <u>Security guarantees</u>

- Untrusted parties do not learn anything about:
  - The original data, intermediate or output result sizes
  - The data access patterns during query execution

\* Adding support for maliciously secure primitives in progress

Computing parties do not deviate from the protocol ("honest but curious") - Adversary can monitor the network and can also compromise one computing

24

Arithmetic sharing:  $x = x_1 + x_2 + x_3 \pmod{2^{64}}$ 

![](_page_28_Picture_2.jpeg)

![](_page_28_Figure_3.jpeg)

![](_page_28_Picture_4.jpeg)

![](_page_28_Picture_6.jpeg)

![](_page_28_Picture_7.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_29_Picture_4.jpeg)

![](_page_29_Picture_5.jpeg)

Arithmetic sharing:  $x = x_1 + x_2 + x_3 \pmod{2^{64}}$ 

![](_page_30_Picture_2.jpeg)

![](_page_30_Figure_3.jpeg)

![](_page_30_Picture_4.jpeg)

![](_page_30_Figure_6.jpeg)

![](_page_30_Figure_7.jpeg)

![](_page_30_Figure_8.jpeg)

![](_page_30_Picture_9.jpeg)

![](_page_30_Picture_10.jpeg)

![](_page_30_Picture_11.jpeg)

Arithmetic sharing:  $x = x_1 + x_2 + x_3 \pmod{2^{64}}$ 

![](_page_31_Picture_2.jpeg)

![](_page_31_Figure_3.jpeg)

![](_page_31_Figure_5.jpeg)

![](_page_31_Figure_6.jpeg)

![](_page_31_Figure_7.jpeg)

![](_page_31_Picture_8.jpeg)

![](_page_31_Picture_9.jpeg)

![](_page_31_Picture_10.jpeg)

![](_page_32_Picture_2.jpeg)

![](_page_32_Figure_3.jpeg)

![](_page_32_Picture_5.jpeg)

## **EXAMPLE: SECURE MULTIPLICATION IN SECRECY**

![](_page_33_Picture_2.jpeg)

![](_page_33_Figure_3.jpeg)

![](_page_33_Picture_5.jpeg)

![](_page_33_Picture_6.jpeg)

## **EXAMPLE: SECURE MULTIPLICATION IN SECRECY**

Arithmetic sharing:  $x = x_1 + x_2 + x_3 \pmod{2^{64}}$ 

![](_page_34_Figure_2.jpeg)

![](_page_34_Figure_4.jpeg)

![](_page_34_Figure_5.jpeg)

![](_page_34_Picture_7.jpeg)

![](_page_34_Picture_8.jpeg)

![](_page_34_Picture_9.jpeg)

## **EXAMPLE: SECURE MULTIPLICATION IN SECRECY**

![](_page_35_Figure_2.jpeg)

![](_page_35_Picture_4.jpeg)

![](_page_35_Picture_5.jpeg)

![](_page_35_Picture_6.jpeg)
## FROM SECURE ADD & MUL TO RELATIONAL ANALYTICS





that is data-independent

- Data access patterns do not depend on the actual shares \_
- No conditionals (if-then-else)
- No data reduction -

For 3-bit numbers:

"'Number a is greater than b if the first bit they differ as we go from left to right is **1** for a and **0** for b "

If  $(a > b) \{...\}$ 



Cleartext

#### To prevent information leakage, the computing parties perform an identical computation

\* Both a and b are secret-shared

#### $a: a_2 a_1 a_0 \qquad b: b_2 b_1 b_0$





that is data-independent

- Data access patterns do not depend on the actual shares
- No conditionals (if-then-else)
- No data reduction

For 3-bit numbers:  $a : a_2a_1a_0$   $b : b_2b_1b_0$ 

Cleartext

#### To prevent information leakage, the computing parties perform an identical computation

\* Both a and b are secret-shared

 $\oplus$   $(a_2 \oplus b_2 \oplus 1) \land (a_1 \oplus b_1) \land a_1$ 

 $\oplus$   $(a_2 \oplus b_2 \oplus 1) \land (a_1 \oplus b_1 \oplus 1) \land ((b_0 \oplus 1) \land a_0)$ 

Oblivious





that is data-independent

- Data access patterns do not depend on the actual shares \_
- No conditionals (if-then-else)
- No data reduction ----

 $b: b_{2}b_{1}b_{0}$  $a: a_2 a_1 a_0$ "If the most significant bits are not the same, then a is greater than b when  $a_2$  is set"  $\oplus$   $(a_2 \oplus b_2 \oplus 1) \land (a_1 \oplus b_1) \land a_1$  $\oplus$   $(a_2 \oplus b_2 \oplus 1) \land (a_1 \oplus b_1 \oplus 1) \land ((b_0 \oplus 1) \land a_0)$ Oblivious

For 3-bit numbers: If  $(a > b) \{...\}$   $\phi = a \stackrel{?}{>} b = (a_2 \oplus b_2) \land a_2$ Cleartext

#### To prevent information leakage, the computing parties perform an identical computation

\* Both a and b are secret-shared





To prevent information leakage, the computing parties perform an identical computation that is data-independent

- Data access patterns do not depend on the actual shares \_
- No conditionals (if-then-else)
- No data reduction —

 $\oplus$  ( $a_2 \oplus b_2 \oplus 1$ )  $\wedge$  ( $a_1 \oplus b_1$ )  $\wedge$  $\oplus$   $(a_2 \oplus b_2 \oplus 1) \land (a_1 \oplus b_1 \oplus 1) \land ((b_0 \oplus 1) \land a_0)$ 

For 3-bit numbers:  $a : a_2a_1a_0$   $b : b_2b_1b_0$ If  $(a > b) \{...\}$   $\phi = a \stackrel{?}{>} b = (a_2 \oplus b_2) \land a_2$  "Else, *a* is greater than *b* when the second most significant bits are not the same and  $a_1$  is set"

Cleartext

\* Both a and b are secret-shared

Oblivious





that is data-independent

- Data access patterns do not depend on the actual shares \_
- No conditionals (if-then-else)
- No data reduction —

 $b: b_{2}b_{1}b_{0}$  $a: a_2 a_1 a_0$ "Else, a is greater than b when  $a_0$  is set and  $b_0$  is not set"  $\oplus (a_2 \oplus b_2 \oplus 1) \land (a_1 \oplus b_1) \land a_1$  $\oplus$   $(a_2 \oplus b_2 \oplus 1) \land (a_1 \oplus b_1 \oplus 1) \land ((b_0 \oplus 1) \land a_0)$ 

For 3-bit numbers: If  $(a > b) \{...\}$   $\phi = a \stackrel{?}{>} b = (a_2 \oplus b_2) \land a_2$ 

Cleartext

#### To prevent information leakage, the computing parties perform an identical computation

\* Both a and b are secret-shared

Oblivious





that is data-independent

- Data access patterns do not depend on the actual shares -
- No conditionals (if-then-else)
- No data reduction -

|   | Employee | Salary |
|---|----------|--------|
| R | Kim      | 2000   |
|   | Jane     | 1500   |
|   | Alex     | 4500   |





\* All attributes are secret-shared

#### To prevent information leakage, the computing parties perform an identical computation

 $\sigma(Salary > 3000)$ Employee Ф Salary Kim 2000 0 R Jane 1500 0 Alex 4500



## **SECRECY'S CORE CONTRIBUTIONS**

- Ι.
  - Amortize network I/O
  - Make secret-sharing competitive in high-latency (WAN) environments -

#### Redesigned MPC primitives that work directly on relations instead of individual records







#### User Interfaces

#### Query Engine

#### Secure Protocols

#### n Runtime

#### Communication

#### dware





 $a' \stackrel{?}{\geq} b \iff \cdots$ 



 $a \stackrel{?}{\geq} b \iff (a_3 \oplus b_3) \wedge a_3$ 

- $\bigoplus ((a_3 \oplus b_3) \oplus 1) \land (a_2 \oplus b_2) \land a_2$
- $\bigoplus ((a_3 \oplus b_3) \oplus 1) \land ((a_2 \oplus b_2) \oplus 1) \land (a_1 \oplus b_1) \land a_1$
- $\bigoplus ((a_3 \oplus b_3) \oplus 1) \land ((a_2 \oplus b_2) \oplus 1) \land ((a_1 \oplus b_1) \oplus 1) \land (((a_0 \oplus 1) \land b_0) \oplus 1))$

- $\bigoplus$  (( $a_3 \oplus b'_3$ )  $\oplus$  1)  $\land$  ( $a_2 \oplus b'_2$ )  $\land$   $a_2$
- $((a_3 \oplus b'_3) \oplus 1) \land ((a_2 \oplus b'_2) \oplus 1) \land (a_1 \oplus b'_1) \land a_1$  $\bigoplus$
- $\bigoplus ((a_3 \oplus b'_3) \oplus 1) \land ((a_2 \oplus b'_2) \oplus 1) \land ((a_1 \oplus b'_1) \oplus 1) \land (((a_0 \oplus 1) \land b'_0) \oplus 1))$











 $a' \stackrel{?}{\geq} b \iff \cdots$ 

44



 $a' \stackrel{?}{\geq} b \iff \cdots$ 





 $a' \stackrel{?}{\geq} b \iff \cdots$ 





 $a' \stackrel{?}{\geq} b \iff \cdots$ 



#### **EFFECT OF MESSAGE BATCHING (LAN)**



\* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)

- Eager: Message batching disabled (one network I/O per row)
- Batched: Message batching enabled

Lower is better





## **SECRECY'S CORE CONTRIBUTIONS**

- - Amortize network I/O
  - Make secret-sharing competitive in high-latency (WAN) environments -

#### 2. Analytical cost model based on secure computation and communication primitives

- Operation cost (number of MPC operations)
- Synchronization cost (number of communication rounds)
- Composition cost (extra cost of composing relational operators)

#### Redesigned MPC primitives that work directly on relations instead of individual records





#### LOGICAL TRANSFORMATION RULES (CLEARTEXT DATABASES)



SELECT P.id FROM Patients as P, Clients as C WHERE P.id = C.idAND P.zip='02446'

"Find the IDs of patients who are also clients (of an insurance company) and live in Brookline"





## LOGICAL TRANSFORMATION RULES (CLEARTEXT DATABASES)



SELECT P.id FROM Patients as P, Clients as C WHERE P.id = C.id AND P.zip='02446'

Pushing the selection down reduces the size of intermediate data and improves performance





## **CLEARTEXT OPTIMIZATIONS ARE NOT ALWAYS EFFECTIVE UNDER MPC**



Pushing the selection before the JOIN does not improve JOIN's performance under MPC (since the oblivious selection does not remove any tuples from P)





## **OPERATOR REORDERING STILL MAKES SENSE UNDER MPC**



#### User Interfaces

#### Query Engine

#### Secure Protocols

#### n Runtime

#### Communication

#### rdware



## **OPERATOR REORDERING STILL MAKES SENSE UNDER MPC**



SELECT DISTINCT M.id FROM Medication as M, Prescribed as P WHERE M.id = P.id

> "Find the distinct medication IDs that have been prescribed to patients"





## **OPERATOR REORDERING STILL MAKES SENSE UNDER MPC**



 $O(n^2 \log^2 n)$  operations / messages  $O(\log^2 n)$  rounds  $O(n^2)$  space

\* Assuming the distinct operator is based on a sorting network

SELECT DISTINCT M.id FROM Medication as M, Prescribed as P WHERE M.id = P.id

 $|\mathbf{M}| = |\mathbf{P}| = n$ 





## **EXAMPLE: DISTINCT PUSH-DOWN IN SECRECY**



 $O(n^2 \log^2 n)$  operations / messages  $O(\log^2 n)$  rounds  $O(n^2)$  space

\* Assuming the distinct operator is based on a sorting network



 $O(n^2)$  operations / messages ~ 4 × fewer rounds O(n) space



## **EXAMPLE: DISTINCT PUSH-DOWN IN SECRECY**



 $O(n^2 \log^2 n)$  operations / messages  $O(\log^2 n)$  rounds  $O(n^2)$  space

\* Assuming the distinct operator is based on a sorting network

 $O(n^2)$  operations / messages

 $\sim 4 \times$  fewer rounds O(n) space



## **EFFECT OF DISTINCT PUSH-DOWN (LAN)**



\* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)







SELECT M.med, COUNT(\*) FROM Medication as M, Patients as P WHERE M.id = P.id GROUP-BY M.med

"Count the number of patients per prescribed medication"







Applying GROUP-BY after the join will require materializing the cartesian product  $M \times P$ 

SELECT M.med, COUNT(\*) FROM Medication as M, Patients as P WHERE M.id = P.idGROUP-BY M.med

We can decompose the aggregation in two parts and push the first (and most expensive one) down







Applying GROUP-BY after the join will require materializing the cartesian product  $M \times P$ 



cnt is the number of times each id in M matched with an id in P during the SEMI-JOIN







 $O(n^2 \log^2 n)$  operations / messages  $O(n^2)$  rounds  $O(n^2)$  space

\* Assuming the group-by operator is based on a sorting network



 $O(n^2)$  operations / messages O(n) rounds O(n) space





## **EFFECT OF JOIN-AGGREGATION DECOMPOSITION (LAN)**



\* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)

Lower is better



## **SECRECY'S CORE CONTRIBUTIONS**

- - Amortize network I/O
  - Make secret-sharing competitive in high-latency (WAN) environments

#### 2. Analytical cost model based on secure computation and communication primitives

- Operation cost (number of MPC operations)
- Synchronization cost (number of communication rounds)
- Composition cost (extra cost of composing relational operators)

#### 3. Volcano-style query processor for vectorized MPC execution

- Logical optimizations (e.g., operator reordering and decomposition)
- Physical optimizations (e.g., message batching, operator fusion)
- Protocol-specific optimizations (e.g., dual sharing)

#### Redesigned MPC primitives that work directly on relations instead of individual records





## **SECRECY OVERVIEW**



Public or private cloud, federated datacenter, on-premises cluster



## **SECRECY OVERVIEW**



Public or private cloud, federated datacenter, on-premises cluster

66

## **SECRECY OVERVIEW**



Public or private cloud, federated datacenter, on-premises cluster



# Performance on real and synthetic queries



## **SUMMARY OF RESULTS**

- Secrecy optimizations can improve performance by orders of magnitude
- Secrecy scales to millions of input rows 2.
- 3. Secrecy outperforms state-of-the-art frameworks
- Relational operators scale well with configurable memory footprints 4.
- Secrecy can perform millions of primitive MPC operations per second 5.

J. Liagouris, V. Kalavri, M. Faisal, M. Varia. Secrecy: Secure Collaborative Analytics on Secret-shared Data. arXiv:2102.01048, 2021.


# **SUMMARY OF RESULTS**

- Secrecy optimizations can improve performance by orders of magnitude
- Secrecy scales to millions of input rows 2.
- 3. Secrecy outperforms state-of-the-art frameworks
- 4. Relational operators scale well with configurable memory footprints
- 5. Secrecy can perform millions of primitive MPC operations per second

J. Liagouris, V. Kalavri, M. Faisal, M. Varia. Secrecy: Secure Collaborative Analytics on Secret-shared Data. arXiv:2102.01048, 2021.





\* Parties deployed in three AWS regions: us-east-2 (Ohio), us-east-1 (Virginia), and us-west-1 (California)

\* Reported times are for 1000 rows per input relation

\* Not optimized plans use message batching too (otherwise the cost of MPC is prohibitive)







\* Parties deployed in three AWS regions: us-east-2 (Ohio), us-east-1 (Virginia), and us-west-1 (California)

\* Reported times are for 1000 rows per input relation

\* Not optimized plans use message batching too (otherwise the cost of MPC is prohibitive)



## **SECRECY's SCALING BEHAVIOR (LAN)**



\* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)

#### Rec. C. Diff scales to 2 million rows in $\sim 1.2h$

```
WITH rcd AS (
   SELECT pid, time, row_no() OVER
   (PARTITION BY pid ORDER BY time)
   FROM diagnosis
   WHERE diag=cdiff)
 SELECT DISTINCT pid
 FROM rcd r1 JOIN rcd r2 ON r1.pid = r2.pid
 WHERE r2.time - r1.time >= 15 DAYS
 AND r2.time - r1.time <= 56 DAYS
 AND r2.row_no = r1.row_no + 1
```

"Find the distinct ids of patients who have been diagnosed with cdiff and have two consecutive infections between 15 and 56 days apart"

Rows





# What about more complex queries?



```
select
        o_year,
        sum(case
                 when nation = '[NATION]'
                 then volume
                 else 0
        end) / sum(volume) as mkt_share
from (
         select
                 extract(year from o_orderdate) as o_year,
                 l_extendedprice * (1-l_discount) as volume,
                 n2.n name as nation
        from
                 part,
                 supplier,
                 lineitem,
                 orders,
                 customer,
                 nation n1.
                 nation n2,
                 region
         where
                 p_partkey = l_partkey
                 and s_suppkey = l_suppkey
                 and l_orderkey = o_orderkey
                 and o custkey = c custkey
                 and c_nationkey = n1.n_nationkey
                 and n1.n_regionkey = r_regionkey
                 and r_name = '[REGION]'
                 and s nationkey = n2.n nationkey
                 and o_orderdate between date '1995-01-01' and date '1996-12-31'
                 and p_type = '[TYPE]'
        ) as all nations
group by
        o_year
order by
        o_year;
```

""This query determines how the market share of a given nation within a given region has changed over two years for a given part type"

> A naive approach would require  $O(n^8 \log^2 n)$  operations under MPC





```
select
        o_year,
        sum(case
                 when nation = '[NATION]'
                 then volume
                 else 0
        end) / sum(volume) as mkt_share
from (
         select
                 extract(year from o orderdate) as o year,
                 1 extendedprice * (1-1 discount) as volume,
                 n2.n name as nation
        from
                 part,
                 supplier,
                 lineitem,
                 orders,
                 customer,
                 nation n1.
                 nation n2,
                 region
         where
                 p_partkey = l_partkey
                 and s_suppkey = l_suppkey
                 and l_orderkey = o_orderkey
                 and o custkey = c custkey
                 and c nationkey = n1.n nationkey
                 and n1.n_regionkey = r_regionkey
                 and r_name = '[REGION]'
                 and s nationkey = n2.n nationkey
                 and o_orderdate between date '1995-01-01' and date '1996-12-31'
                 and p_type = '[TYPE]'
        ) as all nations
group by
         o_year
order by
        o_year;
```

""This query determines how the market share of a given nation within a given region has changed over two years for a given part type"







```
select
        o_year,
        sum(case
                 when nation = '[NATION]'
                 then volume
                 else 0
        end) / sum(volume) as mkt_share
from (
         select
                 extract(year from o_orderdate) as o_year,
                 1_extendedprice * (1-l_discount) as volume,
                 n2.n name as nation
        from
                 part,
                 supplier,
                 lineitem,
                 orders,
                 customer.
                 nation n1.
                 nation n2,
                 region
         where
                 p_partkey = l_partkey
                 and s_suppkey = l_suppkey
                 and l_orderkey = o_orderkey
                 and o_custkey = c_custkey
                 and c_nationkey = n1.n_nationkey
                 and n1.n regionkey = r regionkey
                 and r_name = '[REGION]'
                 and s nationkey = n2.n nationkey
                 and o_orderdate between date '1995-01-01' and date '1996-12-31'
                 and p_type = '[TYPE]'
        ) as all nations
group by
         o_year
order by
        o_year;
```

""This query determines how the market share of a given nation within a given region has changed over two years for a given part type"







## LOGICAL + SYSTEM OPTIMIZATIONS TO SCALE COMPLEX QUERIES



#### Interfaces

## Query Engine

### e Protocols

### System Runtime

#### nunication

#### rdware





#### Customer

SELECT O.Oid FROM Customer as C, Orders as O WHERE  $C.C_{id} = O.C_{id}$  AND C.Name=John

\* All attributes are secret-shared







#### Customer

SELECT O.Oid FROM Customer as C, Orders as O WHERE  $C.C_{id} = O.C_{id}$  AND C.Name=John

\* All attributes are secret-shared

| $R_{i}$ | d | Name | $C_{id}$ | $O_{id}$ |
|---------|---|------|----------|----------|
| С       |   | Mary | 5        |          |
| С       |   | Ann  | 12       |          |
| С       |   | Bob  | 189      |          |
| С       |   | John | 7        |          |
| С       |   | Tom  | 66       |          |
| 0       |   |      | 5        | 12       |
| 0       |   |      | 7        | 123      |
| 0       |   |      | 66       | 33       |
| 0       |   |      | 7        | 4        |
|         |   |      |          |          |

 $S \cup T$ 





SELECT O.Oid FROM Customer as C, Orders as O



\* All attributes are secret-shared

| $R_{id}$ | Name | $C_{id}$ | <i>O</i> <sub>id</sub> |
|----------|------|----------|------------------------|
| С        | Mary | 5        |                        |
| С        | Ann  | 12       |                        |
| С        | Bob  | 189      |                        |
| С        | John | 7        |                        |
| С        | Tom  | 66       |                        |
| 0        |      | 5        | 12                     |
| 0        |      | 7        | 123                    |
| 0        |      | 66       | 33                     |
| 0        |      | 7        | 4                      |

SUT

\* All attributes are secret-shared

| R <sub>id</sub> |  | Name |  | C <sub>id</sub> | O <sub>id</sub> |
|-----------------|--|------|--|-----------------|-----------------|
| С               |  | Mary |  | 5               |                 |
| С               |  | Ann  |  | 12              |                 |
| С               |  | Bob  |  | 189             |                 |
| С               |  | John |  | 7               |                 |
| С               |  | Tom  |  | 66              |                 |
| Ο               |  |      |  | 5               | 12              |
| Ο               |  |      |  | 7               | 123             |
| Ο               |  |      |  | 66              | 33              |
| 0               |  |      |  | 7               | 4               |
| $S \cup T$      |  |      |  |                 |                 |

Sort on  $C_{id}, R_{id}$ 

 $O(n \log^2 n)$  operations  $O(\log^2 n)$  rounds  $n = |S \cup T|$ O(n) space

\* Assuming the distinct operator is based on a sorting network



\* All attributes are secret-shared

| R <sub>id</sub> | Name | $C_{id}$ | O <sub>id</sub> |
|-----------------|------|----------|-----------------|
| С               | Mary | 5        |                 |
| С               | Ann  | 12       |                 |
| С               | Bob  | 189      |                 |
| С               | John | 7        |                 |
| С               | Tom  | 66       |                 |
| 0               |      | 5        | 12              |
| 0               |      | 7        | 123             |
| Ο               |      | 66       | 33              |
| Ο               |      | 7        | 4               |
| SUT             |      |          |                 |

| R <sub>id</sub> | Name   | $C_{id}$ | O <sub>id</sub> |
|-----------------|--------|----------|-----------------|
| Ο               |        | 5        | 12              |
| С               | Mary   | 5        |                 |
| Ο               |        | 7        | 123             |
| 0               |        | 7        | 4               |
| С               | John   | 7        |                 |
| С               | Ann    | 12       |                 |
| 0               |        | 66       | 33              |
| С               | Tom    | 66       |                 |
| С               | Bob    | 189      |                 |
| ·               | $\sim$ |          |                 |

 $S \cup T$ 

\* All attributes are secret-shared

 $O_{id}$ 

| R <sub>id</sub> | Name | $C_{id}$ | O <sub>id</sub> |
|-----------------|------|----------|-----------------|
| С               | Mary | 5        |                 |
| С               | Ann  | 12       |                 |
| С               | Bob  | 189      |                 |
| С               | John | 7        |                 |
| С               | Tom  | 66       |                 |
| Ο               |      | 5        | 12              |
| 0               |      | 7        | 123             |
| 0               |      | 66       | 33              |
| 0               |      | 7        | 4               |

 $S \cup T$ 



12 Apply odd-even aggregation phase to find "matched pairs of tuples" and mask the rest 123 4  $O(n \log n)$  operations  $O(\log n)$  rounds  $n = |S \cup T|$ O(n) space 33

#### Using this simple idea, we can evaluate the whole query in:

- $O(n \log^2 n)$  operations
- $O(\log^2 n)$  rounds
- O(n) space

#### where n is the total number of input rows across all input relations

"This query determines how the market share of a given nation within a given region has changed over two years for a given part type"







# The optimization applies to all MPC queries used in existing systems







# PARALLEL OBLIVIOUS SORT ON SECRECY (LAN)



\* Reported times are for 2M input rows

\* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)



# Ongoing and Future Work



## **REAL-WORLD SECRECY USE CASES**

#### Digital Health Analytics

(BU Medical & Hariri Institute for Computing)



https://www.bu.edu/hic/research/focused-research-programs/continuous-analysisof-mobile-health-data-among-medically-vulnerable-populations/

#### Secure cross-site analytics on OpenShift logs (BU RedHat Collaboratory)



https://www.bu.edu/rhcollab/projects/security-privacy/secure-cross-site-analytics-onopenshift-logs/



# BROADER VISION A general-purpose framework for private data analysis in untrusted clouds



- + Relational analytics
- + ML workloads
- + Fully Homomorphic Encryption primitives
- + Differential Privacy
- Hardware acceleration
   for secure computation



## **SECRECY SUMMARY**



## Up to 1000x speedups for real and synthetic queries



J. Liagouris, V. Kalavri, M. Faisal, M. Varia. Secrecy: Secure Collaborative Analytics on Secret-shared Data. arXiv:2102.01048, 2021.



#### Millions of input rows entirely under MPC





