
COURSE ANNOUNCEMENTS

• Homework 5 has been posted, due Friday 3/24 on Gradescope

• Homework 6 will be posted this week, and due Friday 3/31

Lecture 15: Protected Database Search

REVIEW: MPC

“Secure multi-party computation … enables different participating
entities in possession of private sets of data to link and aggregate their
data sets for the exclusive purpose of performing a finite number of pre-
approved computations without transferring or otherwise revealing any
private data to each other or anyone else.”

a b

f(a,b) f(a,b)

MPC DEPLOYMENTS

Unbound: Protect cryptographic keysGoogle: Federated machine learning

BU: Pay equity in BostonCybernetica: VAT tax audits Partisia: Rate credit of farmers

15.1 From Data to Databases

LET’S PROTECT A DATABASE

Analyst
Backend storage

Database server

possible
threats?

Data owner

ENCRYPTION IN TRANSIT

Backend storage
Database server

possible
threats?

Data owner

Analyst

ENCRYPTION AT REST

Backend storage
Database server

possible
threats?

Data owner

Analyst

ENCRYPTION IN USE

Backend storage
Database server

possible
threats?

Data owner

Analyst

ENCRYPTION IN USE

Backend storage
Database server

possible
threats?

Data owner

Analyst

OBJECTIVE: CRYPTOGRAPHICALLY PROTECTED DATABASE SEARCH

Utility of stored data

Ri
sk

 o
f d

at
a

co
m

pr
om

is
e

Return whole dataset encrypted

No server protections
(encrypt data at rest)

Multi-party computation

Symmetric searchable encryption

Property preserving encryption

INTEREST BY GOVERNMENT STATISTICAL AGENCIES

bea.gov/evidence unstats.un.org/bigdata/
task-teams/privacy

15.2 Designing MPC for Databases

(BU Medical & Hariri Institute for Computing)

8

MOTIVATING USE CASE: DIGITAL HEALTH ANALYTICS

Medical
ResearcherPatients

System X

https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/

What would be the right System X for this use case?

https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/

SECURE COLLABORATIVE ANALYTICS

9

Medical
Studies

Privacy-preserving
advertising

End-usersHealthcare providers

Market
Analyses

Credit score agencies

Requirements:

- No information leakage
to untrusted entities

- No reliance on trusted
resources

- Relational analytics

- Practical performance

SECURE COLLABORATIVE ANALYTICS

10

Privacy-preserving
advertising

End-usersHealthcare providers

Market
Analyses

Credit score agencies

Medical
Studies

GOAL: END-TO-END DATA PROTECTION

1

Data “at rest” Data “in use”

Advanced Encryption
Standard (AES)

Data “in transit”

Transport Layers
Security (TLS)

Why should we protect
data in use?

CHALLENGE: HOW TO REDUCE THE MPC COST?

1 N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and A. Bestavros. Conclave: secure multi-party computation on big data. EuroSys, 2019.
2 J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and J. Rogers. SMCQL: secure querying for federated databases. PVLDB, 10(6):673–684, 2017.
3 H. Corrigan-Gibbs and D. Boneh. Prio: Private, Robust, and Scalable Computation of Aggregate Statistics, NSDI, 2017.

“The primary source of the slowdown arises from
their join operators that have hundreds of

input tuples…”

“Running the query entirely under MPC […] fails
to scale beyond 3,000 total records…”

“Computing a function f on millions of client inputs
[…] could potentially take an astronomical

amount of time in a full MPC.”

Aggregation Join

12

15

TO MAKE MPC PRACTICAL WE NEED TO RETHINK THE SYSTEM STACK

Hardware

Communication

Query Engine

Secure Protocols

User Interfaces

System Runtime

16

The Secrecy Framework

No information
leakage

No trusted
resources

Complex data
analytics

17

Input1Cl
ea

rte
xt

Se

cu
re

Query planner

Black-box  
MPC library 

e.g. EMP1

Input2

: data operator

1 X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit: Efficient MultiParty
computation toolkit, 2016. https://github.com/emp-toolkit

O
pt

im
iz

ed
 M

PC

Input1 Input2

End-to-end
secure MPC
query engine

Secrecy

Supported optimizations:

- Logical (e.g. operator
reordering)

- Physical (e.g. message
batching, operator fusion)

- Protocol-specific
(e.g. dual sharing)

OPENING THE MPC BLACK BOXES

https://github.com/emp-toolkit

18

SECRECY AS A SERVICE

Data ownersData analysts

Secrecy

19

SECRECY AS A SERVICE

Data ownersData analysts

1 Submit query
Secrecy

20

SECRECY AS A SERVICE

Data ownersData analysts

Secrecy
computing party

Secrecy
computing party

Secrecy
computing party

2 Provision parties

Supported Cloud providers:

Secrecy

21

SECRECY AS A SERVICE

Data ownersData analysts 3 Send secret
shares to parties

Secrecy
computing party

Secrecy
computing party

Secrecy
computing party

Secrecy

22

SECRECY AS A SERVICE

Data ownersData analysts

Wide area network 4
Secure

computation

Secrecy
computing party

Secrecy
computing party

Secrecy
computing party

Secrecy

23

SECRECY AS A SERVICE

Data ownersData analysts 5 Send result
shares

Secrecy
computing party

Secrecy
computing party

Secrecy
computing party

Secrecy

THREAT MODEL AND GUARANTEES

24

Semi-honest model

- Computing parties do not deviate from the protocol (“honest but curious”)

- Adversary can monitor the network and can also compromise one computing

party (but cannot alter its execution)

Security guarantees

- Untrusted parties do not learn anything about:

- The original data, intermediate or output result sizes

- The data access patterns during query execution

* Adding support for maliciously secure primitives in progress

Data Owner A

25

EXAMPLE: SECURE ADDITION IN SECRECY
Arithmetic sharing: (mod)x = x1 + x2 + x3 264

Party 1

Party 2Party 3

-3 12-54 =

Data Owner B
t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

Data Owner B

Data Owner A

26

Arithmetic sharing: (mod)x = x1 + x2 + x3 264
Party 1

Party 2Party 3

-3 12-54 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

1 -7 -3 -5

11-7 12-5-3 121 11

s1 s2 t1 t2

s2 s3 t2 t3s1 s3 t1 t3

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

EXAMPLE: SECURE ADDITION IN SECRECY

Party 1

Party 2Party 3
Data Owner B

Data Owner A

27

Arithmetic sharing: (mod)x = x1 + x2 + x3 264

Public 
Query

-3 12-5

Public 
Query

Public 
Query

4 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

1 -7 -3 -5

11-7 12-5-3 121 11

s1 s2 t1 t2

s2 s3 t2 t3s1 s3 t1 t3

Query: s + t

s + t = (s1 + t1) + (s2 + t2) + (s3 + t3)

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

+ +

+ + + +

EXAMPLE: SECURE ADDITION IN SECRECY

Party 1

Party 2Party 3
Data Owner B

Data Owner A

28

Arithmetic sharing: (mod)x = x1 + x2 + x3 264

Public 
Query

-3 12-5

Public 
Query

Public 
Query

4 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

s1 + t1 s2 + t2

s1 + t1 s3 + t3 s2 + t2 s3 + t3

s + t = (s1 + t1) + (s2 + t2) + (s3 + t3)

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

EXAMPLE: SECURE ADDITION IN SECRECY

-2

-2 -1223 23

-12

Query: s + t

Party 1

Party 2Party 3
Data Owner B

Data Owner A

29

Arithmetic sharing: (mod)x = x1 + x2 + x3 264

Public 
Query

-3 12-5

Public 
Query

Public 
Query

4 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

s1 + t1 s2 + t2

s1 + t1 s3 + t3 s2 + t2 s3 + t3

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

EXAMPLE: SECURE ADDITION IN SECRECY

-2

-2 -1223 23

-12

-2

23
-12

-2 -12 +23 = 9

Data Analyst

Party 1

Party 2Party 3
Data Owner B

Data Owner A

30

EXAMPLE: SECURE MULTIPLICATION IN SECRECY
Arithmetic sharing: (mod)x = x1 + x2 + x3 264

Public 
Query

-3 12-5

Public 
Query

Public 
Query

4 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

1 -7 -3 -5

11-7 12-5-3 121 11

s1 s2 t1 t2

s2 s3 t2 t3s1 s3 t1 t3

s × t = (s1 + s2 + s3) ⋅ (t1 + t2 + t3)

Query: s × t

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

Party 1

Party 2Party 3
Data Owner B

Data Owner A

31

Arithmetic sharing: (mod)x = x1 + x2 + x3 264

Public 
Query

-3 12-5

Public 
Query

Public 
Query

4 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

1 -7 -3 -5

11-7 12-5-3 121 11

s1 s2 t1 t2

s2 s3 t2 t3s1 s3 t1 t3

m1 = (s1 ⋅ t1) + (s1 ⋅ t2) + (s2 ⋅ t1)

m2 = (s2 ⋅ t2) + (s2 ⋅ t3) + (s3 ⋅ t2)m3 = (s3 ⋅ t3) + (s3 ⋅ t1) + (s1 ⋅ t3)

s × t = (s1 + s2 + s3) ⋅ (t1 + t2 + t3) = ⋯ = m1 + m2 + m3

Query: s × t

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

EXAMPLE: SECURE MULTIPLICATION IN SECRECY

Party 1

Party 2Party 3
Data Owner B

Data Owner A

32

Arithmetic sharing: (mod)x = x1 + x2 + x3 264

Public 
Query

-3 12-5

Public 
Query

Public 
Query

4 =

t1 t2 t3t

1 11-7

random data shares

5 =

s1 s2 s3s

random data shares

m1

m1 = (s1 ⋅ t1) + (s1 ⋅ t2) + (s2 ⋅ t1)

m2 = (s2 ⋅ t2) + (s2 ⋅ t3) + (s3 ⋅ t2)m3 = (s3 ⋅ t3) + (s3 ⋅ t1) + (s1 ⋅ t3)

m3

Query: s × t

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

+ +

+ +

s × t = m1 + m2 + m3 = 20

One round of
communication

m1 = 13

m3 = 111

m2 = − 104

EXAMPLE: SECURE MULTIPLICATION IN SECRECY

13

m2

-104111

m2

-104

m1

13

m3

111

33

Arithmetic sharing: (mod)s = s1 + s2 + s3 264

FROM SECURE ADD & MUL TO RELATIONAL ANALYTICS

Boolean sharing: s = s1 ⊕ s2 ⊕ s3

ADD ()+ MUL ()× XOR ()⊕ AND ()∧

SELECT DISTINCT GROUP-BY JOIN

SEMI-JOIN ORDER-BY COMPOSE …

EQUALITY INEQUALITY CONVERSION CMP-SWAP …

34

OBLIVIOUS COMPUTATION
To prevent information leakage, the computing parties perform an identical computation
that is data-independent

- Data access patterns do not depend on the actual shares

- No conditionals (if-then-else)

- No data reduction

Cleartext

If () {…}a > b “Number is greater than if the first bit they differ
as we go from left to right is 1 for and 0 for “

a b
a b

a : a2a1a0 b : b2b1b0For 3-bit numbers:

* Both and are secret-shareda b

To prevent information leakage, the computing parties perform an identical computation
that is data-independent

- Data access patterns do not depend on the actual shares

- No conditionals (if-then-else)

- No data reduction

35

OBLIVIOUS COMPUTATION

Cleartext

If () {…}a > b

a : a2a1a0 b : b2b1b0For 3-bit numbers:

ϕ = a
?
> b = (a2 ⊕ b2) ∧ a2

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1) ∧ a1⊕

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1 ⊕ 1) ∧ ((b0 ⊕ 1) ∧ a0)⊕

Oblivious

* Both and are secret-shareda b

a : a2a1a0 b : b2b1b0For 3-bit numbers:

ϕ = a
?
> b = (a2 ⊕ b2) ∧ a2

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1) ∧ a1⊕

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1 ⊕ 1) ∧ ((b0 ⊕ 1) ∧ a0)⊕

Oblivious

36

OBLIVIOUS COMPUTATION

“If the most significant bits are not the same,
then is greater than when is set”a b a2

Cleartext

If () {…}a > b

* Both and are secret-shareda b

To prevent information leakage, the computing parties perform an identical computation
that is data-independent

- Data access patterns do not depend on the actual shares

- No conditionals (if-then-else)

- No data reduction

a : a2a1a0 b : b2b1b0For 3-bit numbers:

ϕ = a
?
> b = (a2 ⊕ b2) ∧ a2

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1) ∧ a1⊕

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1 ⊕ 1) ∧ ((b0 ⊕ 1) ∧ a0)⊕

ObliviousCleartext

If () {…}a > b

37

OBLIVIOUS COMPUTATION

“Else, is greater than when the second most
significant bits are not the same and is set”

a b
a1

* Both and are secret-shareda b

To prevent information leakage, the computing parties perform an identical computation
that is data-independent

- Data access patterns do not depend on the actual shares

- No conditionals (if-then-else)

- No data reduction

38

OBLIVIOUS COMPUTATION

“Else, is greater than when
 is set and is not set”

a b
a0 b0

a : a2a1a0 b : b2b1b0For 3-bit numbers:

ϕ = a
?
> b = (a2 ⊕ b2) ∧ a2

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1) ∧ a1⊕

(a2 ⊕ b2 ⊕ 1) ∧ (a1 ⊕ b1 ⊕ 1) ∧ ((b0 ⊕ 1) ∧ a0)⊕

ObliviousCleartext

If () {…}a > b

* Both and are secret-shareda b

To prevent information leakage, the computing parties perform an identical computation
that is data-independent

- Data access patterns do not depend on the actual shares

- No conditionals (if-then-else)

- No data reduction

39

OBLIVIOUS COMPUTATION

Employee Salary
Kim 2000
Jane 1500
Alex 4500

R

* All attributes are secret-shared

σ(Salary > 3000) Employee Salary
Kim 2000 0
Jane 1500 0
Alex 4500 1

R′￼

ϕ

To prevent information leakage, the computing parties perform an identical computation
that is data-independent

- Data access patterns do not depend on the actual shares

- No conditionals (if-then-else)

- No data reduction

40

SECRECY’s CORE CONTRIBUTIONS
1. Redesigned MPC primitives that work directly on relations instead of individual records

- Amortize network I/O

- Make secret-sharing competitive in high-latency (WAN) environments

2. Exposing relational query costs in terms of secure computation and communication primitives

1. Operation cost (number of MPC operations)

2. Synchronization cost (number of rounds)

3. Composition cost (extra cost of composing relational operators)

3. Volcano-style query processor for vectorized MPC execution

- Novel logical optimizations (e.g., operator reordering, decomposition)

- Physical optimizations (e.g., operator fusion)

- Protocol-specific optimizations (e.g., dual sharing)

41

EXAMPLE: MESSAGE BATCHING

Hardware

User Interfaces

System Runtime

Query Engine

Communication

Secure Protocols

a′￼

?
≥ b ⟺

EXAMPLE: MESSAGE BATCHING

43

b′￼3b′￼2b′￼1b′￼0a′￼3a′￼2a′￼1a′￼0

a′￼ b′￼

⋈

R

S

A B

R . A ≥ S . B

a

a′￼

. . .

. . .

. . .

. . .

b
b′￼

(a3 ⊕ b3) ∧ a3

((a3 ⊕ b3) ⊕ 1) ∧ (a2 ⊕ b2) ∧ a2⊕

((a3 ⊕ b3) ⊕ 1) ∧ ((a2 ⊕ b2) ⊕ 1) ∧ (a1 ⊕ b1) ∧ a1⊕

((a3 ⊕ b3) ⊕ 1) ∧ ((a2 ⊕ b2) ⊕ 1) ∧ ((a1 ⊕ b1) ⊕ 1) ∧ (((a0 ⊕ 1) ∧ b0) ⊕ 1)⊕

a
?
≥ b ⟺

(a3 ⊕ b′￼3) ∧ a′￼3

((a3 ⊕ b′￼3) ⊕ 1) ∧ (a2 ⊕ b′￼2) ∧ a2⊕

((a3 ⊕ b′￼3) ⊕ 1) ∧ ((a2 ⊕ b′￼2) ⊕ 1) ∧ (a1 ⊕ b′￼1) ∧ a1⊕

((a3 ⊕ b′￼3) ⊕ 1) ∧ ((a2 ⊕ b′￼2) ⊕ 1) ∧ ((a1 ⊕ b′￼1) ⊕ 1) ∧ (((a0 ⊕ 1) ∧ b′￼0) ⊕ 1)⊕

a
?
≥ b′￼ ⟺

. . .

b3b2b1b0a3a2a1a0

a b

ℓ = 4 bits

a′￼

?
≥ b ⟺

⋈

R

S

A B

R . A ≥ S . B

a

a′￼

. . .

. . .

. . .

. . .

b
b′￼

(a3 ⊕ b3) ∧ a3

((a3 ⊕ b3) ⊕ 1) ∧ (a2 ⊕ b2) ∧ a2⊕

((a3 ⊕ b3) ⊕ 1) ∧ ((a2 ⊕ b2) ⊕ 1) ∧ (a1 ⊕ b1) ∧ a1⊕

((a3 ⊕ b3) ⊕ 1) ∧ ((a2 ⊕ b2) ⊕ 1) ∧ ((a1 ⊕ b1) ⊕ 1) ∧ (((a0 ⊕ 1) ∧ b0) ⊕ 1)⊕

a
?
≥ b ⟺

(a3 ⊕ b′￼3) ∧ a′￼3

((a3 ⊕ b′￼3) ⊕ 1) ∧ (a2 ⊕ b′￼2) ∧ a2⊕

((a3 ⊕ b′￼3) ⊕ 1) ∧ ((a2 ⊕ b′￼2) ⊕ 1) ∧ (a1 ⊕ b′￼1) ∧ a1⊕

((a3 ⊕ b′￼3) ⊕ 1) ∧ ((a2 ⊕ b′￼2) ⊕ 1) ∧ ((a1 ⊕ b′￼1) ⊕ 1) ∧ (((a0 ⊕ 1) ∧ b′￼0) ⊕ 1)⊕

a
?
≥ b′￼ ⟺

. . .
44

EXAMPLE: MESSAGE BATCHING
b′￼3b′￼2b′￼1b′￼0a′￼3a′￼2a′￼1a′￼0

ℓ = 4 bits

a′￼ b′￼

b3b2b1b0a3a2a1a0

a b
Compute XORs

(no communication)

45

EXAMPLE: MESSAGE BATCHING
b′￼3b′￼2b′￼1b′￼0a′￼3a′￼2a′￼1a′￼0

ℓ = 4 bits

a′￼ b′￼

b3b2b1b0a3a2a1a0

a b

c4 ∧ c5 ∧ c7 ∧ (c8 ∧ b0)

c1 ∧ a3

c2 ∧ c3 ∧ a2

c4 ∧ c5 ∧ c6 ∧ a1

c′￼4 ∧ c′￼5 ∧ c′￼7 ∧ (c8 ∧ b′￼0)

c′￼1 ∧ a3

c′￼2 ∧ c′￼3 ∧ a2

c′￼4 ∧ c′￼5 ∧ c′￼6 ∧ a1

a′￼

?
≥ b ⟺

⋈

R

S

A B
a

a′￼

. . .

. . .

. . .

. . .

b
b′￼

⊕

⊕

⊕

a
?
≥ b ⟺

⊕

⊕

⊕

a
?
≥ b′￼ ⟺

. . .

R . A ≥ S . B

46

EXAMPLE: MESSAGE BATCHING
b′￼3b′￼2b′￼1b′￼0a′￼3a′￼2a′￼1a′￼0

ℓ = 4 bits

a′￼ b′￼

b3b2b1b0a3a2a1a0

a b

c4 ∧ c5 ∧ c7 ∧ (c8 ∧ b0)

c1 ∧ a3

c2 ∧ c3 ∧ a2

c4 ∧ c5 ∧ c6 ∧ a1

c′￼4 ∧ c′￼5 ∧ c′￼7 ∧ (c8 ∧ b′￼0)

c′￼1 ∧ a3

c′￼2 ∧ c′￼3 ∧ a2

c′￼4 ∧ c′￼5 ∧ c′￼6 ∧ a1

(1 round of communication)

a′￼

?
≥ b ⟺

⋈

R

S

A B
a

a′￼

. . .

. . .

. . .

. . .

b
b′￼

⊕

⊕

⊕

a
?
≥ b ⟺

⊕

⊕

⊕

a
?
≥ b′￼ ⟺

. . .

R . A ≥ S . B

Compute independent ANDs

47

EXAMPLE: MESSAGE BATCHING
b′￼3b′￼2b′￼1b′￼0a′￼3a′￼2a′￼1a′￼0

ℓ = 4 bits

a′￼ b′￼

b3b2b1b0a3a2a1a0

a b

communication
rounds in total

log ℓ + 1

(for the whole join)

c4 ∧ c5 ∧ c7 ∧ (c8 ∧ b0)

c1 ∧ a3

c2 ∧ c3 ∧ a2

c4 ∧ c5 ∧ c6 ∧ a1

c′￼4 ∧ c′￼5 ∧ c′￼7 ∧ (c8 ∧ b′￼0)

c′￼1 ∧ a3

c′￼2 ∧ c′￼3 ∧ a2

c′￼4 ∧ c′￼5 ∧ c′￼6 ∧ a1

a′￼

?
≥ b ⟺

⋈

R

S

A B
a

a′￼

. . .

. . .

. . .

. . .

b
b′￼

⊕

⊕

⊕

a
?
≥ b ⟺

⊕

⊕

⊕

a
?
≥ b′￼ ⟺

. . .

R . A ≥ S . B

Independent on the
cardinality of and R S

EFFECT OF MESSAGE BATCHING (LAN)

48

∼ 1000 ×

* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)

- Eager: Message batching disabled
(one network I/O per row)

- Batched: Message batching enabled

Lower is
better

49

1. Redesigned MPC primitives that work directly on relations instead of individual records

- Amortize network I/O

- Make secret-sharing competitive in high-latency (WAN) environments

2. Analytical cost model based on secure computation and communication primitives

- Operation cost (number of MPC operations)

- Synchronization cost (number of communication rounds)

- Composition cost (extra cost of composing relational operators)

3. Volcano-style query processor for vectorized MPC execution

- Novel logical optimizations (e.g., operator reordering, decomposition)

- Physical optimizations (e.g., operator fusion)

- Protocol-specific optimizations (e.g., dual sharing)

SECRECY’s CORE CONTRIBUTIONS

50

SELECT P.id

FROM Patients as P, Clients as C

WHERE P.id = C.id

AND P.zip=‘02446’

P C

⋈P.id=C.id

σP.zip=′￼02446′￼

LOGICAL TRANSFORMATION RULES (CLEARTEXT DATABASES)

“Find the IDs of patients who are also clients
(of an insurance company) and live in Brookline”

σ : selection
⋈ : join

51

LOGICAL TRANSFORMATION RULES (CLEARTEXT DATABASES)

P

C

⋈P.id=C.id

Pushing the selection down reduces the size of
intermediate data and improves performance

σP.zip=′￼02446′￼

SELECT P.id

FROM Patients as P, Clients as C

WHERE P.id = C.id

AND P.zip=‘02446’

σ : selection
⋈ : join

52

CLEARTEXT OPTIMIZATIONS ARE NOT ALWAYS EFFECTIVE UNDER MPC

Pushing the selection before the JOIN does not improve JOIN’s performance under MPC

P

C

⋈P.id=C.id

σP.zip=′￼02446′￼

MPC

P C

⋈P.id=C.id

σP.zip=′￼02446′￼

MPC

(since the oblivious selection does not remove any tuples from P)

σ : selection
⋈ : join

σ : selection
⋈ : join

53

OPERATOR REORDERING STILL MAKES SENSE UNDER MPC

Communication

Hardware

User Interfaces

System Runtime

Query Engine

Secure Protocols

54

SELECT DISTINCT M.id

FROM Medication as M, Prescribed as P

WHERE M.id = P.id

OPERATOR REORDERING STILL MAKES SENSE UNDER MPC

⋈M.id=P.id

δM.id

MPC

M P “Find the distinct medication IDs that
have been prescribed to patients”

δ : distinct
⋈ : join

55

OPERATOR REORDERING STILL MAKES SENSE UNDER MPC

|M|=|P|= nM

⋈M.id=P.id

δM.id

P

MPC

 operations / messages O(n2 log2 n)

 roundsO(log2 n) spaceO(n2)
* Assuming the distinct operator is based on a sorting network

SELECT DISTINCT M.id

FROM Medication as M, Prescribed as P

WHERE M.id = P.id

δ : distinct
⋈ : join

56

EXAMPLE: DISTINCT PUSH-DOWN IN SECRECY

⋈M.id=P.id

δM.id

M P

MPC

⋈M.id=P.id

δM.id δP.id

M P

MPC

 operations / messages O(n2 log2 n)

 roundsO(log2 n) spaceO(n2) fewer rounds∼ 4 ×

 operations / messagesO(n2)

 spaceO(n)
* Assuming the distinct operator is based on a sorting network

δ : distinct
⋈ : join

57
 fewer rounds∼ 4 ×

 operations / messagesO(n2)

 spaceO(n)

 operations / messages O(n2 log2 n)

 roundsO(log2 n) spaceO(n2)
* Assuming the distinct operator is based on a sorting network

⋈M.id=P.id

δM.id

M P

MPC

⋈M.id=P.id

δM.id δP.id

M P

MPCδ : distinct
⋈ : join

fewer operations / messages

(improvement for)

O(log2 n) ×

∼ 100 × n = 1000

EXAMPLE: DISTINCT PUSH-DOWN IN SECRECY

58* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)

EFFECT OF DISTINCT PUSH-DOWN (LAN)

∼ 50 ×

Lower is
better

MPC

59

EXAMPLE: OPERATOR DECOMPOSITION IN SECRECY

SELECT M.med, COUNT(*)

FROM Medication as M, Patients as P

WHERE M.id = P.id

GROUP-BY M.med

M

⋈M.id=P.id

γM.med

P

COUNT(*)

“Count the number of patients per prescribed medication”

γ : aggregation

⋈ : join

60

We can decompose the aggregation in two parts and
push the first (and most expensive one) down

Applying GROUP-BY after the join will require
materializing the cartesian product M × P

SELECT M.med, COUNT(*)

FROM Medication as M, Patients as P

WHERE M.id = P.id

GROUP-BY M.med

MPC

M

⋈M.id=P.id

γM.med

P

COUNT(*)

γ : aggregation

⋈ : join

EXAMPLE: OPERATOR DECOMPOSITION IN SECRECY

MPC

61

cnt is the number of times each id in M matched
with an id in P during the SEMI-JOIN

M

γM.med

P

SUM(cnt)

⋈M.id=P.id
+ partial
aggregation

MPC

M

⋈M.id=P.id

γM.med

P

COUNT(*)

Applying GROUP-BY after the join will require
materializing the cartesian product M × P

γ : aggregation

⋈ : join

EXAMPLE: OPERATOR DECOMPOSITION IN SECRECY

62

 operations / messagesO(n2 log2 n)

 roundsO(n2) spaceO(n2) spaceO(n) roundsO(n)
 operations / messagesO(n2)

* Assuming the group-by operator
is based on a sorting network

MPC

M

γM.med

P

SUM(cnt)

⋈M.id=P.id
+ partial
aggregation

MPC

M

⋈M.id=P.id

γM.med

P

COUNT(*)

γ : aggregation

⋈ : join

EXAMPLE: OPERATOR DECOMPOSITION IN SECRECY

EFFECT OF JOIN-AGGREGATION DECOMPOSITION (LAN)

63

∼ 100 ×

* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)

Lower is
better

64

1. Redesigned MPC primitives that work directly on relations instead of individual records

- Amortize network I/O

- Make secret-sharing competitive in high-latency (WAN) environments

2. Analytical cost model based on secure computation and communication primitives

- Operation cost (number of MPC operations)

- Synchronization cost (number of communication rounds)

- Composition cost (extra cost of composing relational operators)

3. Volcano-style query processor for vectorized MPC execution

- Logical optimizations (e.g., operator reordering and decomposition)

- Physical optimizations (e.g., message batching, operator fusion)

- Protocol-specific optimizations (e.g., dual sharing)

SECRECY’s CORE CONTRIBUTIONS

65

SECRECY OVERVIEW

66

SECRECY OVERVIEW

67

SECRECY OVERVIEW

68

Performance on real and
synthetic queries

1. Secrecy optimizations can improve performance by orders of magnitude

2. Secrecy scales to millions of input rows

3. Secrecy outperforms state-of-the-art frameworks

4. Relational operators scale well with configurable memory footprints

5. Secrecy can perform millions of primitive MPC operations per second

69

SUMMARY OF RESULTS

J. Liagouris, V. Kalavri, M. Faisal, M. Varia. Secrecy: Secure Collaborative Analytics on Secret-shared Data. arXiv:2102.01048, 2021.

https://arxiv.org/abs/2102.01048

1. Secrecy optimizations can improve performance by orders of magnitude

2. Secrecy scales to millions of input rows

3. Secrecy outperforms state-of-the-art frameworks

4. Relational operators scale well with configurable memory footprints

5. Secrecy can perform millions of primitive MPC operations per second

70

SUMMARY OF RESULTS

J. Liagouris, V. Kalavri, M. Faisal, M. Varia. Secrecy: Secure Collaborative Analytics on Secret-shared Data. arXiv:2102.01048, 2021.

https://arxiv.org/abs/2102.01048

71

EFFECT OF SECRECY OPTIMIZATIONS ON REAL QUERIES (WAN)

* Reported times are for 1000 rows per input relation
* Not optimized plans use message batching too (otherwise the cost of MPC is prohibitive)

* Parties deployed in three AWS regions: us-east-2 (Ohio), us-east-1 (Virginia), and us-west-1 (California)

Logical + System optimizations
result in up to speedups1000 ×

72

EFFECT OF SECRECY OPTIMIZATIONS ON REAL QUERIES (WAN)

* Reported times are for 1000 rows per input relation
* Not optimized plans use message batching too (otherwise the cost of MPC is prohibitive)

* Parties deployed in three AWS regions: us-east-2 (Ohio), us-east-1 (Virginia), and us-west-1 (California)

Protocol-specific
optimizations result in
up to speedups27 ×

74* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)

The cost of
these queries is
dominated by
the oblivious

GROUP-BY and
DISTINCT
operators

Rec. C. Diff scales to 2
million rows in ~1.2h

“Find the distinct ids of patients who have been
diagnosed with cdiff and have two consecutive

infections between 15 and 56 days apart”

SECRECY’s SCALING BEHAVIOR (LAN)

75

What about more complex
queries?

76

“This query determines how the market share of a given nation within
a given region has changed over two years for a given part type”

TPC-H Q8: 7 JOINS + GROUP-BY + ORDER-BY

A naive approach would require
 operations under MPCO(n8 log2 n)

77

“This query determines how the market share of a given nation within
a given region has changed over two years for a given part type”

TPC-H Q8: 7 JOINS + GROUP-BY + ORDER-BY

Part

LineItem

Supplier

Orders

Customer

Nation

Nation

Region

Primary Key (PK) to Foreign Key (FK) Join

(one-to-many)

Relation (DB Table)

78

“This query determines how the market share of a given nation within
a given region has changed over two years for a given part type”

TPC-H Q8: 7 JOINS + GROUP-BY + ORDER-BY

The query result size is
bounded by the size of

LineItem

Part

LineItem

Supplier

Orders

Customer

Nation

Nation

Region

Primary Key (PK) to Foreign Key (FK) Join

(one-to-many)

Relation (DB Table)

79

Communication

Hardware

Secure Protocols

User Interfaces

System Runtime

Query Engine

LOGICAL + SYSTEM OPTIMIZATIONS TO SCALE COMPLEX QUERIES

80

⋈
Mary 5

Ann 12

Bob 189

John 7

Tom 66

PK-to-FK

SELECT O.Oid

FROM Customer as C, Orders as O

WHERE C.Cid = O.Cid AND C.Name=John

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Cid = Cid

EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION

Customer

Order

. . .

. . .

. . .

. . .

. . .

CidNameOid. . . Cid

12 5

123 7

33 66

4 7

* All attributes are secret-shared

Cid

81

EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION

S ∪ T

OidRid

⋈
Mary 5

Ann 12

Bob 189

John 7

Tom 66

CidName

PK-to-FK

SELECT O.Oid

FROM Customer as C, Orders as O

WHERE C.Cid = O.Cid AND C.Name=John

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Cid = Cid

Customer

Order

Oid. . .

. . .

. . .

. . .

. . .

. . .

Name

Cid

12 5

123 7

33 66

4 7

C Mary 5

C Ann 12

C Bob 189

C John 7

C Tom 66

O 5 12

O 7 123

O 66 33

O 7 4

* All attributes are secret-shared

Cid

82

EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION

S ∪ T

OidRid

⋈
Mary 5

Ann 12

Bob 189

John 7

Tom 66

CidName

PK-to-FK

SELECT O.Oid

FROM Customer as C, Orders as O

WHERE C.Cid = O.Cid AND C.Name=John

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Cid = Cid

Customer

Order

Oid. . .

. . .

. . .

. . .

. . .

. . .

Name

Cid

12 5

123 7

33 66

4 7

C Mary 5

C Ann 12

C Bob 189

C John 7

C Tom 66

O 5 12

O 7 123

O 66 33

O 7 4

Padded
attributes

* All attributes are secret-shared

EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION

Cid

S ∪ T

OidRid Name
C Mary 5

C Ann 12

C Bob 189

C John 7

C Tom 66

O 5 12

O 7 123

O 66 33

O 7 4

* All attributes are secret-shared

Cid

S ∪ T

OidRid Name
C Mary 5

C Ann 12

C Bob 189

C John 7

C Tom 66

O 5 12

O 7 123

O 66 33

O 7 4

Sort on Cid, Rid

 operations

 rounds

 space

O(n log2 n)

O(log2 n)

O(n)

* Assuming the distinct operator is based on a sorting network

n = |S ∪ T |

* All attributes are secret-shared

EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION

Cid

S ∪ T

OidRid Name Cid

O 5 12

C Mary 5

O 7 123

O 7 4

C John 7

C Ann 12

O 66 33

C Tom 66

C Bob 189

S ∪ T

OidRid Name
C Mary 5

C Ann 12

C Bob 189

C John 7

C Tom 66

O 5 12

O 7 123

O 66 33

O 7 4

* All attributes are secret-shared

EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION

Cid

S ∪ T

OidRid Name Cid

S ∪ T

OidRid Name

Apply odd-even aggregation phase to find
“matched pairs of tuples” and mask the rest

 operations

 rounds

 space

O(n log n)

O(log n)

O(n)

n = |S ∪ T |

O 5 12

C Mary 5

O 7 123

O 7 4

C John 7

C Ann 12

O 66 33

C Tom 66

C Bob 189

C Mary 5

C Ann 12

C Bob 189

C John 7

C Tom 66

O 5 12

O 7 123

O 66 33

O 7 4

* All attributes are secret-shared

EVALUATING JOINs USING SORT AND ODD-EVEN AGGREGATION

87

“This query determines how the market share of a given nation within
a given region has changed over two years for a given part type”

TPC-H Q8: 7 JOINS + GROUP-BY + ORDER-BY

Using this simple idea, we can evaluate the
whole query in:

- operations

- rounds

- space

where is the total number of input rows
across all input relations

O(n log2 n)

O(log2 n)

O(n)

n

Primary Key (PK) to Foreign Key (FK) Join

(one-to-many)

Relation (DB Table)

Part

LineItem

Supplier

Orders

Customer

Nation

Nation

Region

88

“This query determines how the market share of a given nation within
a given region has changed over two years for a given part type”

Part

LineItem

Supplier

Orders

Customer
Nation

Nation

Region
PK-to-FK Join

(one-to-many)

Relation

By repeatedly applying this technique, we
can evaluate the whole query in

- operations

- rounds

- space

where is the total number of input rows

O(n log2 n)

O(log2 n)

O(n)

n

The optimization applies to all MPC queries
used in existing systems

89

“This query determines how the market share of a given nation within
a given region has changed over two years for a given part type”

Part

LineItem

Supplier

Orders

Customer
Nation

Nation

Region
PK-to-FK Join

(one-to-many)

Relation

By repeatedly applying this technique, we
can evaluate the whole query in

- operations

- rounds

- space

where is the total number of input rows

O(n log2 n)

O(log2 n)

O(n)

n

Secure query evaluation is
reduced into a series of sorts

90

PARALLEL OBLIVIOUS SORT ON SECRECY (LAN)

* Reported times are for 2M input rows

* Parties deployed on AWS EC2 r5.xlarge instances (us-east-2)

29 seconds

91

Ongoing and Future Work

Secure cross-site analytics on OpenShift logs

(BU RedHat Collaboratory)

 

https://www.bu.edu/rhcollab/projects/security-privacy/secure-cross-site-analytics-on-
openshift-logs/

92

REAL-WORLD SECRECY USE CASES
Digital Health Analytics

(BU Medical & Hariri Institute for Computing)

https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-
of-mobile-health-data-among-medically-vulnerable-populations/

Secrecy

Client 1

Client 2

Client N

…

Red Hat
Engineer

Monitoring & analytics  
dashboard service

Secrecy

Monitoring & analytics  
dashboard service

Doctor

https://www.bu.edu/rhcollab/projects/security-privacy/secure-cross-site-analytics-on-openshift-logs/
https://www.bu.edu/rhcollab/projects/security-privacy/secure-cross-site-analytics-on-openshift-logs/
https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/
https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/

on-premise clusters public clouds

+ Relational analytics

+ ML workloads

+ Fully Homomorphic
Encryption primitives

+ Differential Privacy

+ Hardware acceleration
for secure computation

93

BROADER VISION

A general-purpose framework for private data analysis
in untrusted clouds

……

Data
Provider

Data
Provider

Data
Provider

Hybrid Cloud

Data
Consumer

Data
Consumer

Data
Consumer

SECRECY

No reliance on
trusted execution
environments

Hardware

No information
leakage

End-to-end MPC
execution

Decoupling data
owners from
computing parties

General and composable
operators

Information
leakage

High
expressivity

Hardware
Query

execution

Role of data
owners

96

SECRECY SUMMARY

Up to 1000x speedups for
real and synthetic queries

Millions of input rows
entirely under MPC

Much larger inputs
compared to prior works

J. Liagouris, V. Kalavri, M. Faisal, M. Varia. Secrecy: Secure Collaborative Analytics on Secret-shared Data. arXiv:2102.01048, 2021.

https://arxiv.org/abs/2102.01048

	Database2.pdf
	Course Announcements
	Lecture 15: Protected Database Search
	Review: MPC
	MPC Deployments
	15.1 From Data to Databases
	Let’s protect a database
	Encryption in transit
	Encryption at rest
	Encryption in use
	Encryption in use
	Objective: Cryptographically protected database search
	Interest by Government Statistical Agencies
	15.2 Designing MPC for Databases

	Database3.pdf
	Database-new.pdf
	Research_Overview
	Database-new
	Database-new

