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High-Threshold Asynchronous Verifiable Secret Sharing 
Setting:

● T parties are malicious
● N = 3T + 1 total parties

Security goal

● Agreement over the broadcasted message
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Note: In the following slides, we will only consider the 
case when n = 3t+1. However, everything would still 
work for any n >= 3t+1



High-Threshold Asynchronous Verifiable Secret Sharing 
Setting:

● T parties are malicious
● N = 3T + 1 total parties
● P = T + 1 can reconstruct the secret

Security goal

● Agreement.
● Privacy.
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High-Threshold Asynchronous Verifiable Secret Sharing 
Setting:

● T parties are malicious
● N = 3T + 1 total parties
● P = N - T parties can reconstruct the 

secret

Security goal

● Agreement: any p honest parties should 
be able to reconstruct the same secret.

● Privacy: any p - 1 shares should not reveal 
anything about the secret.
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Why high threshold AVSS is challenging
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Why high threshold AVSS is challenging
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Related Work - Dual AVSS
Reliable Broadcast of a bivariate polynomial commitment 

P2t+1 P3t+1...Pt+1 P2t
...

P1 Pt-1... dealer

shares

Previous work. ♣Bivariate 
polynomial of different 
degrees + digital signatures. 
The recovery polynomials 
was made of a degree t 
sharing, while the share 
polynomials are made of 
degree 2t.

♣ Asynchronous Distributed Key 
Generation for Computationally- Secure 
Randomness, Consensus, and 
Threshold Signatures. ELEFTHERIOS 
KOKORIS-KOGIAS, DAHLIA MALKHI, 
ALEXANDER SPIEGELMAN. (2020)
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HAVEN
HAVEN is a customizable Dual AVSS that supports high thresholds of reconstruction. HAVEN bridges 
asynchronous reliable broadcast with secret sharing using additively homomorphic polynomial 
commitments. As a result, based on the polynomial commitment that is used with HAVEN we achieve 
different properties that outperform the best AVSS.

We include a comparison of HAVEN equipped with KZG commitments (option1) and Bullet proofs (option 
2) with the state of the art AVSS.

8Where k is the security parameter that reflects the size of the element in the group, and n is the total 
number of parties in the protocol.



Root commitment doesn’t have to be a bivariate polynomial!
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Polynomial R that can recover the secret s

Problem:

Every party has to check in 
zero-knowledge that:
1. The share (column) 

polynomials are consistent 
with the recovery polynomial 
(∀i Si(0) = R(i))

2. deg(R) <= p 
3. deg(Si) <= t

Claim:

We can commit to this root 
commitment in O(1)

S0 S1 ... Si ... Sn



Polynomial commitments
Prover 

f(x) = (Σ ai · x
i) 

(x, f(x)) 

Verifier 

Verify(C, x, y, w)

C = commit(f(x))

y, x, w = create_witness(f,x)

Let g, h be elements of Zp of order q such that gq = hq =1 mod p

Name Polynomial Commitment
Size Additively Homomorphic

fi + f2 = f3 → 
(C1 operator  C2) = C3Commitment Witness

Feldman style 
commitment

[g^a0,g^a1 … g^ad] linear in d NULL Yes / C1 * C2 = C3

Pedersen style [g^a0*h^r0, … g^ad*h^rd] linear in d NULL Yes / C1 * C2 = C3

KZG commitments (g^f(𝜶)) or (g^f(𝜶) * h^f’(𝜶)) constant constant Yes / C1 * C2 = C3

Bullet proofs  (𝚷(gi^ ai)) or ((𝚷(gi^ ai)) * 
h^r)

constant log(d) Yes / C1 * C2 = C3 10



Sn(1) ... Sn(i) ... R(n) =Sn(n)

... ... ... ... ...

 Si(1) ... R(i) = Si(i) ... Si(n)

... ... ... ... ...

R(1) =S1(1) ... S1(i) ... S1(n)

Any t+1 points on Si(x) can be used to recover Si(i) = R(i)
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Column representing shares party i will receive from 
the dealer

Solving the consistency problem

High Level Idea. Every party 
Checks that the row 
polynomial is a secret sharing 
of a share on R (∀i Si 
(i)=R(i))

Dealer gives every party access to 
the polynomial commitments of Si 
and Ri and a witness that (Si- R) 
(i) = 0  

Reminder. Any p+1 points on the 
pink diagonal can reconstruct   
R(0) = s !
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Sn(1) ... Sn(i) ... R(n) =Sn(n)

... ... ... ... ...

 Si(1) ... R(i) = Si(i) ... Si(n)

... ... ... ... ...

R(1) =S1(1) ... S1(i) ... S1(n)

Dealing Stage

Protocol. 

1. Create a polynomial R with degree p+1 
such that f(0) = s.

2. Produce n points using f, secret share 
every point and produce the row columns.

3. Commit to every row polynomial S_i and 
to the diagonal R_i

4. Create witnesses that (R- Si)(i) = 0

5. Commit to all Si and R, we are going to 
call this the root commitment C

6. Send C and all S commits to everyone, 
and for every Pi the proper shares and 
witnesses

Shares party i will receive from the dealer

Dealer

P1 Pn-1...

C+m1 C+mn-1
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Sn(1) ... Sn(i) ... R(n) =Sn(n)

... ... ... ... ...

 Si(1) ... R(i) = Si(i) ... Si(n)

... ... ... ... ...

R(1) =S1(1) ... S1(i) ... S1(n)

Echo Stage

Protocol. 

1. Each party pi will perform checks to see 
that the C is produced consistently with 
the data provided by dealer.

2. For every party j: Send C, party j’s share 
and what it thinks is the party’s polynomial 
commitment. Along with an argument that 
it’s linked to C, C -> S_i -> share

Shares party i will receive from the dealer

∀i, 
Pi

Pi+1Pi-1P1 Pn-1
......

C+m’1 C+m’n-1
...
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Sn(1) ... Sn(i) ... R(n) =Sn(n)

... ... ... ... ...

 Si(1) ... R(i) = Si(i) ... Si(n)

... ... ... ... ...

R(1) =S1(1) ... S1(i) ... S1(n)

Ready Stage

Protocol. 

1. Each party Pi will send a ready message 
C, in only two cases:

2. If 2t+1 echo with the same message C 
and are “good echo message”

3. Or t+1 ready messages

Shares party i will receive from the dealer
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C ... C
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Sn(1) ... Sn(i) ... R(n) =Sn(n)

... ... ... ... ...

 Si(1) ... R(i) = Si(i) ... Si(n)

... ... ... ... ...

R(1) =S1(1) ... S1(i) ... S1(n)

Reconstruction

s=R(0) R(1) ... R(i) ... R(n) 

∀i, 
Pi

Pi+1Pi-1P1 Pn-1
......

R(1) R(n-1)...
proof

Reconstruct R(0) = s from diagonal
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