
Algorand School
2022

Open Source: github.com/cusma/algorand-school

The architecture of consensus

21

Temple of Concordia

Valley of Temples (Agrigento), 440-430 B.C.

1. How to choose the proposer for the next
block for a public and permissionless
blockchain?

2. How to ensure that there is no ambiguity in
the choice of the next block?

3. How to ensure that the blockchain stays
unique and has no forks?

4. How to ensure that consensus mechanism
itself can evolve over time while the
blockchain is an immutable ledger?

https://en.wikipedia.org/wiki/Temple_of_Concordia,_Agrigento

Proof of Work consensus mechanism

22

Miners compete with each other to append the next block and earn
a reward for the effort, fighting to win an expensive computational
battle.
The more computational power, the higher the probability of being
elected as block proposer.

PoW

Proof of Stake consensus mechanism

24

Network participants show their
commitment and interest in
keeping the ledger safe and
secure proving the ownership
of value stored on the ledger
itself.

The higher the skin in the
game the higher the
probability of being elected as
block proposer.

• Scalable 6000 TPS, billions of users

• Fast < 3.9 s per block

• Secure 0 downtime for over 23M blocks

• Low fees 0.001 ALGO per txn

• No Soft Forks prob. < 10-18

• Instant Transaction Finality

• Carbon neutral

• Minimal hardware node requirements

• No delegation or binding of the stake

• No minimum stake

• Secure with respect DDoS

• Network Partitioning resilience

Algorand PPoS Consensus

28

Silvio Micali
Algorand Founder
Professor MIT, Turing Award, Gödel Prize
Digital Signatures, Probabilistic Encryption, Zero-Knowledge Proofs,
Verifiable Random Functions and other primitives of modern
cryptography.

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Probabilistic_encryption
https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://en.wikipedia.org/wiki/Verifiable_random_function

Tamper-proof, unique and verifiable dices

29

VRF

1. Dices are perfectly balanced and equiprobable, nobody could tamper their result!

2. Keep observing dice rolls by no means increases the chance of guessing the next result!

3. Each dice is uniquely signed by its owner, nobody can roll someone else dices!

4. Dices are publicly verifiable, everybody can read the results of a roll!

Who chose the next block?

30

VRF VRF VRF VRF

WIN!

1. Each ALGO could be assimilated to a
tamper-proof dice participating in a
safe and secret cryptographic dice
roll. More ALGOs more dices to roll.

2. For each new block, dice rolls are
performed in a distributed, parallel
and secret and manner, directly on
online accounts’ hardware (in
microseconds).

3. The winner is revealed in a safe and
verifiable way only after winning the
dice roll, proposing the next block.

A glimpse on “simplified” VRF sortition

31

1. A secret key (SK) / public verification key (VK) pair is associated with each ALGO in the account

2. For each new round r of the consensus protocol a threshold L(r) is defined

3. Each ALGO in the account performs a VRF, using its own secret key (SK), to generate:

a. a pseudo-random number: Y = VRFSK(seed)

b. the verifiable associated proof: ⍴SK(seed)

4. If Y = VRFSK(seed) < L(r), that specific ALGO “wins the lottery” and viraly propagates the proof of

its victory ⍴SK(seed) to other network’s nodes, through “gossiping” mechanism

5. Others node can use the public verification key (VK) to verify, through ⍴SK(seed), that the number

Y was generated by that specific ALGO, owned by the winner of the lottery

Pure Proof of Stake, in short

32

Through the cryptographic lottery, an online account is elected with probability directly
proportional to its stake: each ALGO corresponds to an attempt to win the lottery!

An account is elected to
propose the next block

A committee is elected
to filter and vote on the

block proposals

A new committee is
elected to reach a quorum

and certify the block

The new block
is appended to
the blockchain

Each round of the consensus protocol appends a new block in the blockchain:

Pure Proof of Stake security

35

Algorand’s decentralized Byzantine consensus protocol can tolerate an arbitrary number of

malicious users as long as honest users hold a super majority of the total stake in the system.

1. The adversary does not know which users he should corrupt.

2. The adversary realizes which users are selected too late to benefit from attacking them.

3. Each new set of users will be privately and individually elected.

4. During a network partition in Algorand, the adversary is never able to convince two honest

users to accept two different blocks for the same round.

5. Algorand is able to recover shortly after network partition is resolved and guarantees that

new blocks will be generated at the same speed as before the partition.

Cryptographic Sortition

Sortition???

● What does sortition even mean?

Sortition???

● What does sortition even mean?
○ “the action of selecting or determining something by the casting or drawing of lots”

Sortition???

● What does sortition even mean?
○ “the action of selecting or determining something by the casting or drawing of lots”

● Why is this relevant to us?
○ Need to pick block proposers and committee members.

Sortition for Proposal and Committee

● Sortition is great!
● For example, if we want to select committee members:

○ Toss a coin with heads probability proportional to the amount of money a person has.
○ If heads then select person.

Sortition for Proposal and Committee

● Sortition is great!
● For example, if we want to select committee members:

○ Toss a coin with heads probability proportional to the amount of money a person has.
○ If heads then select person.

● What’s the problem?
○ Adversary can target committee members! :(

Cryptographic Sortition

● Define:
○ w_i = weight of user i, W = total weight. (weight = money)
○ pk_i = public key of user i, sk_i = private key of user i.

● Goal: select user i proportional to w_i / W in a secure way.

Cryptographic Sortition

● Define:
○ w_i = weight of user i, W = total weight. (weight = money)
○ pk_i = public key of user i, sk_i = private key of user i.

● Goal: select user i proportional to w_i / W in a secure way.
● Key tool: Verifiable random functions (VRFs).

Cryptographic Sortition

● Define:
○ w_i = weight of user i, W = total weight. (weight = money)
○ pk_i = public key of user i, sk_i = private key of user i.

● Goal: select user i proportional to w_i / W in a secure way.
● Key tool: Verifiable random functions (VRFs).

○ I have input string x.
○ VRF_sk(x) = (hash, pi).
○ hash is a hashlen-bit long string determined by sk and x.
○ hash is ~uniformly distributed between 0 and 2^(hashlen) - 1.
○ If you know pk, then using pi you can check hash is valid output for x.

Selection

● seed = publicly known
(more details coming up)

● tau = expected number of
users

● role = proposer, committte,
etc.

The cryptographic sortition algorithm.

Verification

Pseudocode for verifying sortition of a user with public key pk

How to choose the seed?

● Seed should be publicly known, but cannot be controlled by the adversary.
● seed_0: Generate using distributed random number generation.
● seed_r:

○ During block proposal, also compute (seed_r, pi) = VRF_sk(seed_r-1 || r).
○ Include this in every block.
○ Everyone knows seed_r at the start of round r.
○ However, if block does not contain a valid seed or has invalid transactions, use seed_r =

H(seed_{r-1} || r), where H is a cryptographic hash function.

How to choose the seed?

● Seed should be publicly known, but cannot be controlled by the adversary.
● seed_0: Generate using distributed random number generation.
● seed_r:

○ During block proposal, also compute (seed_r, pi) = VRF_sk(seed_r-1 || r).
○ Include this in every block.
○ Everyone knows seed_r at the start of round r.
○ However, if block does not contain a valid seed or has invalid transactions, use seed_r =

H(seed_{r-1} || r), where H is a cryptographic hash function.

● But the seed is refreshed every R rounds…
○ Compute seed_r in every round.
○ But use seed_{r - 1 - (r % R)} as input to sortition.

How to use the seed?
Round Compute seed_r Use seed_{r-1 - (r%R)}

1 seed_1, pi = VRF_sk(seed_0 || 1) seed_{-1}

2 seed_2, pi = VRF_sk(seed_1 || 2) seed_{-1}

3 seed_3, pi = VRF_sk(seed_2 || 3) seed_{-1}

4 seed_4, pi = VRF_sk(seed_3 || 4) seed_{-1}

5 seed_5, pi = VRF_sk(seed_4 || 5) seed_4

6 seed_6, pi = VRF_sk(seed_5 || 6) seed_4

7 seed_7, pi = VRF_sk(seed_6 || 7) seed_4

8 seed_8, pi = VRF_sk(seed_7 || 8) seed_4

R = 5

Why?

● Suppose network is not strongly synchronous
○ So adversary has complete control over links.
○ Can drop block proposals and force users to agree on empty blocks.
○ But gets users to compute future selection seeds!

Why?

● Suppose network is not strongly synchronous
○ So adversary has complete control over links.
○ Can drop block proposals and force users to agree on empty blocks.
○ But gets users to compute future selection seeds!

● Instead, in round r
○ Check timestamp of block in round r - 1 - (r % R).
○ Use keys and weights from last block created b-time before that block.

■ Lower bound on length of strongly synchronous period should allow for sufficiently many
blocks to be created in order to ensure at least one block was honest whp.

■ To ensure prob. of failure <= F, need # blocks O(log(1 / F)).

Proof-of-Stake
“Virtual Mining”

Algorand: Main Highlights

● Proof of Stake based Cryptocurrency
● High throughput: ~1 min to confirm transactions

vs an hour in Bitcoin

● Public ledger with low probability of forks
● Assumes 2/3-honest stake majority
● Uses a gossip communication protocol

● Adaptive adversary: May corrupt dynamically, as
long as 2/3 majority assumption holds

● Achieves Consistency assuming “weak synchrony”
○ Network can be asynchronous for long bounded time period b, but

then must have strong synchrony for short period s < b
● Achieves Liveness assuming “strong synchrony”

○ Most honest users (e.g., 95%) can send messages that will reach
within a known time bound

Algorand: Main Highlights

Main Design Ingredients

● Users weighted by stake (to prevent sybil attacks)
● Builds on byzantine agreement (BA) protocol of

Micali [ITCS’17] for consensus

● BA protocol executed between a small committee
of users for scalability

● Committee chosen at random, using
cryptographic techniques

Algorand Consensus: Main Highlights

● BA protocol in expectation terminates in only 4
steps (in “honest” case) or 13 steps (in
“dishonest” case)

● Player replaceability: Players across different
steps of BA protocol may not be the same
● Possible because protocol does not require “private state”

● For each step, players chosen at random, non-
interactively, in a “publicly verifiable” manner

