
EECS 388: Lab 1
Introducing Project 1
Project Mechanics
Python Overview

Welcome to EECS 388 Lab!

Course Projects

● Five projects = 45% of your semester grade
● Labs will introduce you to the projects and help guide you
● Projects have multiple parts - use time wisely

○ Seriously, start early! Come to office hours, in person or online

● Project 1–4: Work individually or with a partner
○ May switch partners between projects, but not within a project

● Project 5: Must work with a partner.
● For each project, a simple Lab Assignment will help introduce you to

languages and tools (total of 5% of semester grade)
● Make sure you have 15 gigabytes of free space for projects.

○ If you don’t, Google Drive or a USB Stick could help you make space

Course Projects

Project Preview: Security Tools and New Languages

1. Cryptography - Python
○ Length extension attack, hash collisions, RSA signature forgery, padding oracle attack

2. Web - SQL/Javascript
○ Database (SQL) injection attacks, cross-site scripting attacks, cross-site request forgery

3. Networking
○ Network packet analysis, network attacks and defenses

4. Application Security - C/Python
○ Buffer overflow attacks, reverse engineering

5. Forensics
○ Disk image analysis, steganography

*assignments are due at 6 p.m., not midnight!

Project Expectations
● Projects are a deep-dive in specific topics and techniques

○ Not everything you’ll need to know is taught in class—and that’s to be expected!
○ Specs will point to further reading and research
○ Sometimes you may need to pick up new programming languages:

that’s expected at your level of CS education
○ Labs will give an initial walkthrough of new languages and particular tools

● You are bound by the Honor Code
○ Google is also your friend for finding reference material (but not solutions!)

(Not sure if a source is OK to use? Ask us!)
○ See the course site for details about our policy on collaboration
○ Violators will be reported to the Honor Council
○ You’re not allowed to use hints/solutions/code from others

(including from an AI system)

Getting Help
Piazza

● https://piazza.com/umich/fall2023/eecs388
● Please be polite and first check if your question was answered already :-)
● Also, spread the knowledge by answering your fellow students’ questions!

○ This will contribute to your participation!

Office Hours

● Online and in-person. Schedule posted at eecs388.org (subject to change)
○ You can also add our calendar to yours: Go here

● Join the queue: in-person or online
● Please attempt a solution before asking for help,

and tell us what you’ve tried.

https://piazza.com/umich/fall2023/eecs388
https://eecs388.org/
https://calendar.google.com/calendar/render?cid=c_d51082e28c2bd9bb571753f95b1131cfe64925e0e2bd28c03ede8b626c2d633d@group.calendar.google.com
https://eecsoh.eecs.umich.edu/queues/2E2Su6AeUMpliuCLUrxGA2361aV
https://eecsoh.eecs.umich.edu/queues/2E2SwLeycRtJs5AIlH4xO6Zt0to

Project 1: Cryptography
Investigate vulnerable applications of cryptography,
inspired by problems in many real-world implementations

Lab 1: Due Sep. 7 (6 p.m.)

Part 1: Due Sep. 14 (6 p.m.)
1.1 Length extension
1.2 Hash collisions

Part 2: Due Sep. 21 (6 p.m.)
2.1 Padding oracle
2.2 RSA signature forgery

Project Mechanics

GitHub
Used to distribute starter code for each project

● You will generate a Git repository for each project
● Make sure you keep these repositories private

○ Even after the semester finishes
○ Even after you graduate

Docker

Used to manage environments for each project

● Container Framework → Allows for a virtual sandbox to run in the background
● Runs a Docker image that will set up the container and environment
● Works seamlessly with VS Code

Further reading and installation instructions are on the course website

https://eecs388.org/docker.html

Docker Walkthrough - Installation
1. Windows and macOS: navigate to the Docker Desktop download page.

a. Windows → .exe corresponding to your system
b. macOS → .dmg corresponding to your system
c. Linux → Docker provides for multiple distributions

Install Docker Engine, not Docker Desktop.
Docker Desktop currently has a bug with permissions.

2. Run the download and install Docker
3. Once finished installing, open a terminal and run:

Docker has run a simple program in an isolated container in the background

docker run -it hello-world

https://www.docker.com/products/docker-desktop
https://forums.docker.com/t/bind-mount-permissions-unexpected-mounting-as-root-root/129328/5

Docker Walkthrough - Visual Studio Code
If you do not have Visual Studio Code already installed, visit https://code.visualstudio.com/

1. Open Visual Studio Code.
2. Navigate to “Extensions” on the sidebar.
3. Search for “Dev Containers”, and install it.

We will go into further detail on how to connect this to projects in later labs.

https://code.visualstudio.com/

Autograder

Submission platform hosted on autograder.io like EECS 280

● Each project will have a designated list of files to submit for grading
● Make sure to submit early as Autograder can be bogged near deadlines
● Please do not use it as a debugger!

http://autograder.io

Git

● What is it?
○ Version control system
○ Track file changes and coordinate work among multiple contributors
○ Widely used in industry

● Why do I need it for 388?
○ Synchronize work with your partner (when you have one)
○ Undo mistakes

Quick refresher: https://www.atlassian.com/git

https://www.atlassian.com/git

Git Lingo
● Repository (repo): project directory,

including revision history

● Clone: make a local copy of your repo

● Pull: Update your local repo with any
changes made to the remote repo

● Commit: Save your changes

● Push: Update the remote repo with
changes you made locally

Git Glossary: https://help.github.com/articles/github-glossary/

https://help.github.com/articles/github-glossary/

Git Lingo

● Branch: A parallel version of your repository

time

Python Introduction
Useful for Project 1!

Hello, world!
print('Hello, world!')

$ python3 filename.py

Variables
n = 42

Functions
def add_one(input):

 return input + 1

Tuples
def add_and_subtract(a, b):

 sum = a + b

 difference = a - b

 return sum, difference

s, d = add_and_subtract(8, 3)

Lists
l = [1, 2, 3, 4]

l.append(5)

print(l) # Prints [1, 2, 3, 4, 5]

print(l[0]) # Prints 1

print(l[-1]) # Prints 5

print(l[1:4]) # Prints [2, 3, 4]

Dictionaries
d = {

 'eecs': 388,

 'time': '10:30',

}

d['projects'] = 5

print(d)

print(d['eecs'])

If-statements
if n > 0:

 print('Positive')

elif n < 0:

 print('Negative')

else:

 print('Zero')

For Loops
for i in range(5):

 print(i)

for i in range(5, 10):

 print(i)

l = ['hello', 'world']

for item in l:

 print(item)

d = {

 'eecs': 388,

 'time': '10:30',

}

for key, value in d.items():

 print(key, value)

While Loops
while n != 1:

 print(n)

 if n % 2 == 0:

 n = n // 2

 else:

 n = 3 * n + 1

Notable Features

● Control-flow based on whitespace, not brackets

● Only two scopes: local (within the function) and global

● Duck-typing (variable types are figured out at runtime)

● Easy array indexing:
$ python3
Python 3.8.5 (default, Jul 28 2020, 12:59:40)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> msg = "hello"
>>> msg[0]
'h'
>>> msg[-1]
'o'
>>> msg[1:4]
'ell'
>>> msg[:4]
'hell'
>>> msg[-3:]
'llo'

Reference Semantics
● All variables in Python are references to values, rather than values themselves

○ Kind of similar to pointers in C/C++, but not as scary

● Assigning to a variable (using the = operator) makes a copy of the reference
○ Visualized Example in PythonTutor

● Function parameters are copies of the references
○ Be careful when writing functions that modify their inputs
○ Example of accidentally modifying a variable
○ Example of accidentally not modifying a variable

https://pythontutor.com/visualize.html#code=x%20%3D%20%5B1,%202,%203%5D%0Ay%20%3D%20x%0Ay.append%284%29%0Aprint%28x%29%0A%0Ax%20%3D%20%5B1,%202,%203,%204%5D%0Ay.append%285%29%0Aprint%28x%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
https://pythontutor.com/visualize.html#code=%23%20This%20function%20unexpectedly%20modifies%20the%20input%0Adef%20concatenate_lists%28list_1,%20list_2%29%3A%0A%20%20%20%20for%20item%20in%20list_2%3A%0A%20%20%20%20%20%20%20%20%23%20list_1%20is%20a%20reference%20to%20the%20list%0A%20%20%20%20%20%20%20%20%23%20Modifying%20it%20here%20modifies%20it%20everywhere%0A%20%20%20%20%20%20%20%20list_1.append%28item%29%0A%20%20%20%20%0A%20%20%20%20return%20list_1%0A%0A%23%20my_list_1%20gets%20modified%20by%20the%20function%0Amy_list_1%20%3D%20%5B0,%201,%202%5D%0Amy_list_2%20%3D%20%5B3,%204,%205%5D%0Amy_list_3%20%3D%20concatenate_lists%28my_list_1,%20my_list_2%29%0Aprint%28my_list_1%29%0Aprint%28my_list_2%29%0Aprint%28my_list_3%29%0A%0A%23%20It's%20even%20worse%20down%20here%0A%23%20We%20get%20stuck%20in%20an%20infinite%20loop%0Amy_list_4%20%3D%20%5B6,%207,%208%5D%0Amy_list_5%20%3D%20my_list_4%0Amy_list_6%20%3D%20concatenate_lists%28my_list_4,%20my_list_5%29%0Aprint%28my_list_4%29%0Aprint%28my_list_5%29%0Aprint%28my_list_6%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
https://pythontutor.com/visualize.html#code=%23%20This%20function%20does%20not%20modify%20the%20input%0Adef%20empty_list%28l%29%3A%0A%20%20%20%20%23%20Here%20we%20are%20creating%20a%20new%20empty%20list,%0A%20%20%20%20%23%20not%20emptying%20the%20existing%20one%0A%20%20%20%20l%20%3D%20%5B%5D%0A%0Amy_list%20%3D%20%5B1,%202,%203%5D%0Aempty_list%28my_list%29%0Aprint%28my_list%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Working with bytes
Check the documentation!

https://docs.python.org/3/library/stdtypes.html#bytes-objects

Arrays of bytes?
Bytearray objects—Python documentation

https://docs.python.org/3/library/stdtypes.html#bytearray-objects

Final thoughts

● Other Python resources we recommend:
https://docs.python.org/3/tutorial/
https://www.geeksforgeeks.org/python-programming-language/
https://pythontutor.com/visualize.html

● When in doubt: Google for official documentation

● Use VS Code! Really helpful when learning syntax and debugging code.

https://docs.python.org/3/tutorial/
https://www.geeksforgeeks.org/python-programming-language/
https://pythontutor.com/visualize.html

Lab 1 Assignment
See recording for walkthrough

Make sure you are signed into your Github account

Set your repository as Private

Click Create repository from template

Generating the repository

After a few seconds, you should see your
repository with the starter code

Note: this is the same process you’ll follow to
generate the starter code for projects!

Step 1: let’s git it

● Open a terminal
● Verify that git is installed (git --version)
● Initial git setup:

● Clone your repo:

git config --global user.name "github_id"

git config --global user.email "github_email"

git clone <...>.git

cd eecs388-lab1

find the full URL here!

Push it!
$ git add . # Add all files to your local staging area

$ git commit -m "Pushing some code" # Create a commit (like a checkpoint!)

$ git push # Send commit to remote branch

See you next week!

