4
N

EECS 388: Lab 1

Introducing Project 1
Project Mechanics
Python Overview



Welcome to EECS 388 Lab!






Course Projects



Course Projects

e Five projects = 45% of your semester grade
e Labs will introduce you to the projects and help guide you

e Projects have multiple parts - use time wisely
o  Seriously, start early! Come to office hours, in person or online

e Project 1-4: Work individually or with a partner
o May switch partners between projects, but not within a project

e Project 5: Must work with a partner.
e For each project, a simple Lab Assignment will help introduce you to
languages and tools (total of 5% of semester grade)

e Make sure you have 15 gigabytes of free space for projects.
o If you don't, Google Drive or a USB Stick could help you make space




Project Preview: Security Tools and New Languages

1. Cryptography - Python

o Length extension attack, hash collisions, RSA signature forgery, padding oracle attack
2. Web -SQL/Javascript

o Database (SQL) injection attacks, cross-site scripting attacks, cross-site request forgery
3. Networking

o Network packet analysis, network attacks and defenses .
4. Application Security - C/Python

o Buffer overflow attacks, reverse engineering @
5. Forensics

o Disk image analysis, steganography A““mpsy

*assignments are due at 6 p.m., not midnight!



Project Expectations

Projects are a deep-dive in specific topics and techniques

(@)

(@)

Not everything you'll need to know is taught in class—and that’s to be expected!
Specs will point to further reading and research

Sometimes you may need to pick up new programming languages:

that's expected at your level of CS education

Labs will give an initial walkthrough of new languages and particular tools

are bound by the Honor Code

Google is also your friend for finding reference material (but not solutions!)
(Not sure if a source is OK to use? Ask us!)

See the course site for details about our policy on collaboration
Violators will be reported to the Honor Council

You're not allowed to use hints/solutions/code from others
(including from an Al system)




Getting Help

Piazza

e https://piazza.com/umich/fall2023/eecs388
e Please be polite and first check if your question was answered already :-)

e Also, spread the knowledge by answering your fellow students’ questions!
o  This will contribute to your participation!

Office Hours

e Online and in-person. Schedule posted at eecs388.org (subject to change)

o You can also add our calendar to yours: Go here

e Join the queue: in-person or online

e Please attempt a solution before asking for help,
and tell us what you've tried.


https://piazza.com/umich/fall2023/eecs388
https://eecs388.org/
https://calendar.google.com/calendar/render?cid=c_d51082e28c2bd9bb571753f95b1131cfe64925e0e2bd28c03ede8b626c2d633d@group.calendar.google.com
https://eecsoh.eecs.umich.edu/queues/2E2Su6AeUMpliuCLUrxGA2361aV
https://eecsoh.eecs.umich.edu/queues/2E2SwLeycRtJs5AIlH4xO6Zt0to

Project 1: Cryptography

Investigate vulnerable applications of cryptography,
inspired by problems in many real-world implementations

Lab 1: Due Sep. 7 (6 p.m.)

Part 1: Due Sep. 14 (6 p.m.)
1.1 Length extension
1.2 Hash collisions
Part 2: Due Sep. 21 (6 p.m.)
2.1 Padding oracle
2.2 RSA signature forgery




Project Mechanics



GitHub

Used to distribute starter code for each project

e You will generate a Git repository for each project

e Make sure you keep these repositories private
o Even after the semester finishes
o  Even after you graduate




Docker

Used to manage environments for each project

e Container Framework — Allows for a virtual sandbox to run in the background
e Runs a Docker image that will set up the container and environment
e Works seamlessly with VS Code

Further reading and installation instructions are on the course website



https://eecs388.org/docker.html

Docker Walkthrough - Installation

1.  Windows and macOS: navigate to the Docker Desktop download page.
a. Windows — .exe corresponding to your system
b. macOS — .dmg corresponding to your system
c. Linux — Docker provides for multiple distributions
Install Docker Engine, not Docker Desktop.
Docker Desktop currently has a bug with permissions.
2. Run the download and install Docker
3. Once finished installing, open a terminal and run:

docker run -it hello-world

Docker has run a simple program in an isolated container in the backgroun



https://www.docker.com/products/docker-desktop
https://forums.docker.com/t/bind-mount-permissions-unexpected-mounting-as-root-root/129328/5

Docker Walkthrough - Visual Studio Code

If you do not have Visual Studio Code already installed, visit https://code.visualstudio.com/

1. Open Visual Studio Code.
2. Navigate to “Extensions” on the sidebar.
3. Search for “Dev Containers”, and install it.

& p O

EXTENSIONS: MARKETP.. ¥ O = - [3 Extension: Dev Containers X

dev containers

i
Dev Containers < 16.1M % 4.5
Open any folder or repository ...
% Microso ft
Remote Devel... ©3.3M % 45
)( An extension pack that lets yo...

3 & Microsoft

Dev Containers ve.266.1
© Microsoft | < 16,159,271 | sk Kk % % (42)

Open any foger or repository inside a Docker containe...

Xtension is recommended because you have

AZ AL Dev Tools... 142K % 5 Kubemetes installed.
AZ AL Development Tools: AL...
GOM  Andrzej Zwierzcho... Details Feature Contributions

EEE  Unity Dev Pack D5IK * 5

We will go into further detail on how to connect this to projects in later labs.



https://code.visualstudio.com/

Autograder

Submission platform hosted on autograder.io like EECS 280

e FEach project will have a designated list of files to submit for grading
e Make sure to submit early as Autograder can be bogged near deadlines
e Please do not use it as a debugger!



http://autograder.io

Git

Q@ ® I
e Whatis it? ) 4 g
o Version control system
o Track file changes and coordinate work among multiple contributors
o  Widely used in industry

e Whydo I need it for 388?

o Synchronize work with your partner (when you have one)
o Undo mistakes

Quick refresher: https://www.atlassian.com/qit



https://www.atlassian.com/git

Git Lingo

e Repository (repo): project directory, i 5
including revision history CEERCTI o
e Clone: make a local copy of your repo o

e Pull: Update your local repo with any g Bl

changes made to the remote repo < T

e Commit: Save your changes < fetch

revert

e Push: Update the remote repo with
changes you made locally

diff HEAD

compare

diff

Git Glossary: hitps://help.github.com/articles/github-glossary/ _



https://help.github.com/articles/github-glossary/

Git Lingo

e Branch: A parallel version of your repository

MASTER




Python Introduction

Useful for Project 1!



Hello, world!

print('Hello, world!")

$ python3 filename.py




Variables




Functions

add_one(input):

return input + 1




add_and_subtract(a, b):
sum = a + b

difference =

return sum, difference

add_and_subtract(8, 3)




1=1[1, 2, 3, 4]
1.append(5)

print(1l)
1[e])
1[-11)

print

print

(
(
(
(

print(1[1:4])




Dictionaries

'eecs': 388,

‘time': '10:30°',

d[ 'projects'] = 5

print(d)
print(d[ 'eecs'])




If-statements

if n > 0:
print( ' Positive")
elif n < @:
print('Negative')
else:

print('Zero')




For Loops

for i in range(5):

print(i) 'eecs': 388,

‘time': '10:30",

for i in range(5, 10):

print(i)

for key, value in d.items():

1 = ['hello', 'world'] print(key, value)
for item in 1:

print(item)




While Loops

while n != 1;:

print(n)

ifn%2 ==0:
n=mn}//2
else:

n=3%n+1




Notable Features

e Control-flow based on whitespace, not brackets
e Only two scopes: local (within the function) and global
e Duck-typing (variable types are figured out at runtime)

Easy array indexing:

$ python3

Python 3.8.5 (default, Jul 28 2020, 12:59:40)

[GCC 9.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.
msg "hello"
msg[0]

h
msg[-1]

o'

msg[1:4]
'ell’

msg[:4]
"hell'

msg[-3:]
"o



Reference Semantics

e All variables in Python are references to values, rather than values themselves
o Kind of similar to pointers in C/C++, but not as scary

e Assigning to a variable (using the = operator) makes a copy of the reference
o Visualized Example in PythonTutor

e Function parameters are copies of the references

o Be careful when writing functions that modify their inputs
o Example of accidentally modifying a variable
o Example of accidentally not modifying a variable



https://pythontutor.com/visualize.html#code=x%20%3D%20%5B1,%202,%203%5D%0Ay%20%3D%20x%0Ay.append%284%29%0Aprint%28x%29%0A%0Ax%20%3D%20%5B1,%202,%203,%204%5D%0Ay.append%285%29%0Aprint%28x%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
https://pythontutor.com/visualize.html#code=%23%20This%20function%20unexpectedly%20modifies%20the%20input%0Adef%20concatenate_lists%28list_1,%20list_2%29%3A%0A%20%20%20%20for%20item%20in%20list_2%3A%0A%20%20%20%20%20%20%20%20%23%20list_1%20is%20a%20reference%20to%20the%20list%0A%20%20%20%20%20%20%20%20%23%20Modifying%20it%20here%20modifies%20it%20everywhere%0A%20%20%20%20%20%20%20%20list_1.append%28item%29%0A%20%20%20%20%0A%20%20%20%20return%20list_1%0A%0A%23%20my_list_1%20gets%20modified%20by%20the%20function%0Amy_list_1%20%3D%20%5B0,%201,%202%5D%0Amy_list_2%20%3D%20%5B3,%204,%205%5D%0Amy_list_3%20%3D%20concatenate_lists%28my_list_1,%20my_list_2%29%0Aprint%28my_list_1%29%0Aprint%28my_list_2%29%0Aprint%28my_list_3%29%0A%0A%23%20It's%20even%20worse%20down%20here%0A%23%20We%20get%20stuck%20in%20an%20infinite%20loop%0Amy_list_4%20%3D%20%5B6,%207,%208%5D%0Amy_list_5%20%3D%20my_list_4%0Amy_list_6%20%3D%20concatenate_lists%28my_list_4,%20my_list_5%29%0Aprint%28my_list_4%29%0Aprint%28my_list_5%29%0Aprint%28my_list_6%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
https://pythontutor.com/visualize.html#code=%23%20This%20function%20does%20not%20modify%20the%20input%0Adef%20empty_list%28l%29%3A%0A%20%20%20%20%23%20Here%20we%20are%20creating%20a%20new%20empty%20list,%0A%20%20%20%20%23%20not%20emptying%20the%20existing%20one%0A%20%20%20%20l%20%3D%20%5B%5D%0A%0Amy_list%20%3D%20%5B1,%202,%203%5D%0Aempty_list%28my_list%29%0Aprint%28my_list%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Working with bytes

Check the documentation!

Bytes Objects

Bytes objects are immutable sequences of single bytes.|Since many major binary protocols are based on the
ASCII text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible
data and are closely related to string objects in a variety of other ways.

class bytes([source[, encoding|, errors]]])
Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is

added:

e Single quotes: b'still allows embedded "double" quotes'
e Double quotes: b"still allows embedded 'single' quotes".
o Triple quoted: b'* '3 single quotes''', b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any
binary values over 127 must be entered into bytes literals using the appropriate escape sequence.

Airakhla nramcarcin~a Af AnrAnA fAaMTANAAA ChAn

Aer anith ftrina litarals hadas litAarale manve Alea siea A © Arafiv +4



https://docs.python.org/3/library/stdtypes.html#bytes-objects

Arrays of bytes?

Bytearray objects—Python documentation

Bytearray Objects

bytearray objects are a|mutable counterpart to bytes objects.

class bytearray/([source[, encoding|, errors]]])

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the
constructor:

Creating an empty instance: bytearray()

Creating a zero-filled instance with a given length: bytearray(10)

From an iterable of integers: bytearray(range(20))

« Copying existing binary data via the buffer protocol: bytearray(b'Hi! ")

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common
bytes and bytearray operations described in Bytes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly

used format for describing binary data. Accordingly, the bytearray type has an additional class method to
read data in that format:

- classmethod fromhex(string)

This bytearray class method returns bytearray object, decoding the given string object. The string must


https://docs.python.org/3/library/stdtypes.html#bytearray-objects

Final thoughts

e Other Python resources we recommend:
https://docs.python.org/3/tutorial/
https://www.geeksforgeeks.org/python-programming-language/
https://pythontutor.com/visualize.html

e When in doubt: Google for official documentation

e Use VS Code! Really helpful when learning syntax and debugging code.



https://docs.python.org/3/tutorial/
https://www.geeksforgeeks.org/python-programming-language/
https://pythontutor.com/visualize.html

Lab 1 Assignment

See recording for walkthrough



Generating the repository

Note: this is the same process you'll follow to
generate the starter code for projects!

Make sure you are signed into your Github account

Set your repository as Private

Click Create repository from template

Create a new repository from lab1

The new repository will start with the s iles and folders as 388f22/lab1.

Owner * Repository name *

o yottalogical ~ [ eecs388-lab1 v

Great repository names are short and memorable. Need inspiration? How about shiny-spork?

Description (optional)

a0 his repository. You
commit to this

Include all branches

@ You are creating a private repository in your

Create repository from template

After a few seconds, you should see your
repository with the starter code

& yottalogical [ eecs388-lab1  private

nerated fr 2/lab1

Code (©) Issues 11 Pull requests (® Actions [ Projects (@ Security [~/ Insights i Settings

Go to file Add file ~

Pibranch ©

¥ main ~

) NOW

0 yottalogical Initial commit 5f5fe

8 .devcontainer Initial commit
vscode Initial commit
openss|_output.txt Initial commit
partl.py Initial commit
part2.py Initial commit

[ part3.py Initial commit

[ partd.py Initial commit

unigname.txt Initial commit

O 1 commit

now




Step 1: let's git it

e Open aterminal
e Verify that git is installed (git --version)
e Initial git setup:

git config --global user.name "github_ id"

git config --global user.email "github email"

find the full URL here! oo I f”m

e Clone your repo:

git clone <...>.git
cd eecs388-1labi 7645181 on Sep 4, 2020 O 1 commit

4 months ago

7




Push it!

git add .

git commit -m "Pushing some code"

git push




4
N

See you next week!



