4
N

EECS 388: Lab 2

Length extension
Hash collisions

Upcoming Deadlines

e Project 1: Cryptography
o Part 1 due: Thursday, September 14 at 6 p.m.
m Coverage: Length extension attack, Hash collisions
o Part 2 due: Thursday, September 21 at 6 p.m.
m Coverage: Padding oracle attack, RSA signature forgery

Reminder: Canvas
quizzes due the day
before the next lecture

Length Extension

Attack
(Project 1, Part 1.1)

Alice messages Bob

“hello, Bob!”

What could possibly go wrong?

Alice messages Bob, with a MAC

“hello, Bob!”

A4F2EC5DFEF428C8E7CDE710FF6E92AE
B96363CAA3971C363189697F1C292F84

Ah yes, this corresponds
to the message, which
was not tampered with.

huh? Looks
random to me.

M M A4F2EC5DFEF428C8E7CDE710FF6E92AE
What |S th | S B96363CAA3971C363189697F1C292F84 ,,,?
Output from a pseudorandom function; let's call it f,(x).

e Inthis case, x = “hello, Bob!”

o fk is indistinguishable from a random function, unless you know k.
o Alice and Bob know k, so they know f, (x) for all x.
o Mallory doesn't know k, and cannot derive f, (x).

e Embodied by functions like HMAC-SHA256

e What happens if we use plain SHA-256 instead?

Common Hash Function Construction

e MDS5, SHA-1, SHA-256: Hash functions utilizing Merkle-Damgard Construction

m[1] m[2] m[3] I PB

e Merkle-Damgard Construction: uses a compression function (h) of small,
fixed-size inputs to construct a bigger hash function (H) of variable-length input

Merkle-Damgard Construction

m[1] m[2] m[3] I PB

v H(m)
(fixed) Hpj =

Given h: TxX —T (compression function)

we obtain H: XSt —T. H. - chaining variables

PB: padding block

Merkle-Damgard Construction

Enough zeros to
9%89 il up the block o

7 . F . .

Ox80 Ox00 ... Ox00 Bx01 Ox23 Ox45 Ox67 Ox89 Bx01 Ox23 Ox45

The bit length of m (big endian) in 8 bytes

m[1] m[2] m[3] I PB

Merkle-Damgard Construction

m[1] m[2] m[3] I PB

Key (proven!) property: if h is collision-resistant, then H is also collision-resistant.

Makes building a secure hash function easier!
But... introduces length-extension vulnerability :(

Length Extension Attack

e Alice and Bob want to communicate and have integrity
e They have a shared secret key, k, and hash function, H

m, v Verifies that
H(k [| m)==v

m = “hello, Bob!” .
v = H(k || “hello, Bob!”) Mallory intercepts m and v

... what can she do?

Length Extension Attack

She doesn’t know this message because it

had a secret k, but she doesn’t need it.... This is the v that Appended message can be whatever

{ \ \ Mallory intercepted Mallory wants, like “please send $1000

A
(\
m[1] m[2] m[3] II PB \

m[1] m[2] m[3] I PB

Feed the output of the hash function
into the next SHA-256 block

e Now Mallory can send m =
original_message || padding ||
“please send $1000” with a valid v
that Bob will accept

Just need to know the length of
the original message so the
padding block has the correct
length

Length Extension Attack

How can we “extend” a hash computation?

Thought experiment (h1): Imagine you know the original message...

) X h1.update(“Use h1.update(padding(m)) h1.update(“Good
- HMAC, not hashes”) advice”)

m[1] m[2] m[3] Il PB

m[2] m[3] II PB

h1.hexdigest()

Hgn) . H(m)
(fixed) H, e /ﬁ) H, H,
h2 <
sh
a256(state\ h2.update(“Good
“bytes £ advice"”)
romhex(
You can do the same thing without knowing the original message!) Countsp,,,
es)

h2: Start with hash(m) and length of min bytes (needed for padding scheme)

We didn't need to know “Use HMAC, not hashes”, only its hash!

What have we hashed?

h1:

Use HMAC, not hashes'\x80\x00\x00\x00\x00...\x00\xa0Good advice

h2:
Use HMAC, not hashes'\x80\x00\x00\x00\x00...\x00\xa0Good advice

Important takeaways
e Both hash the same thing
e Both hash padding in the middle

Length Extension Attack: Prevention

e Length extension attack comes from using plain hash functions as a MAC

e It doesn't mean that the hash function itself is a bad hash function

e To make a good MAC function from a hash function, use the HMAC
construction, as discussed in lecture:

HMAC, (m) = hash(k @ c. I hash(k @ c, Il m))

More with
Hash Collisions

Properties of Good Cryptographic Hash Functions

And how to break them

e Preimage resistance
o For a given output, find an input that produces it.

e Second-preimage resistance
o For a given input, find a different input with the same output.

e Collision resistance
o Find two inputs that map to the same output.

Collision resistance implies second-preimage resistance,
but not preimage resistance.

Second preimage attack implies collision attack.

Properties of Good Cryptographic Hash Functions

?}fere nt/? ? Hello! ?
Ty . N

\{TAzs;J SHA256 SHA256
\ \ ¥

X 334d016£f755cd6dc58c53a86el 334d016£755cd6dc58c53a86el
83882f8ecldf52fb05345887c8 83882f8ecl4£f52fb05345887c8
aS5edd42c87b7 ab5eddd42c87b7

Collision resistance Preimage resistance Second-preimage

resistance

RIP MD5 and SHA-1 [l

X Preimage resistance
o Theoretically broken

X Second preimage resistance
o Theoretically broken, based on same attack above

X Collision resistance
o Totally broken

http://link.springer.com/chapter/10.1007%2F978-3-642-01001-9_8

RIP MD5 and SHA-1 [l

Collisions with an identical prefix
MD5: 2004 (costin 2023: free, you do this using fastcoll!)
SHA-1: 2017 (costin 2023: ~$10,000)

Collisions with a (chosen) pair of different prefixes
MD5: 2007 (costin 2023: ~S5)
SHA-1: 2019 (cost in 2023: ~$75,000)

https://eprint.iacr.org/2004/199.pdf
https://shattered.io/
https://www.win.tue.nl/hashclash/ChosenPrefixCollisions/
https://sha-mbles.github.io/

SHA-1 Collisions!

SHAttered

The first concrete collision attack against SHA-1
https://shattered.io

G Google

Elie Bursztein
Ange Albertini
Yarik Markov

Marc Stevens
Pierre Karpman

38762cf7f55934b34d179ae6a4c80cadccbb7f0a
38762cf7f55934b34d179ae6a4c80cadccbb7f0a

SHAttered

The first concrete collision attack against SHA-1

G Google

Elie Bursztein
Ange Albertini
Yarik Markov

Marc Stevens
Pierre Karpman

1.pdf
2.pdf

2bb787a73e37352192383abe7e2902936d1059ad9f1ba6édaaa9c1e58ee6970d0 1.pdf
4488775d29bdef7993367d541064dbdda50d383f89f0aal13a6ff2e0894ba5ff 2.pdf

https://shattered.io/

PDF Header

image object
reference to properties
content

JP

E,G header

prefix
(pre-determined)

JP

sion_blocks!

/.

computed

EG data

Ve

image properties
PDF content

page 1
page 2
page 3
page 4
'PDF footer

suffix
(appended after computation)

Review: Hashing vs Encryption?

When do we use a hash function vs. a MAC?

Hash function MAC

4
N

See you next week!

