
EECS 388: Lab 2
Length extension
Hash collisions

Upcoming Deadlines

● Project 1: Cryptography
○ Part 1 due: Thursday, September 14 at 6 p.m.

■ Coverage: Length extension attack, Hash collisions
○ Part 2 due: Thursday, September 21 at 6 p.m.

■ Coverage: Padding oracle attack, RSA signature forgery

Reminder: Canvas
quizzes due the day
before the next lecture

Length Extension
Attack
(Project 1, Part 1.1)

“hello, Bob!”

What could possibly go wrong?

Alice messages Bob

Alice messages Bob, with a MAC

A4F2EC5DFEF428C8E7CDE710FF6E92AE
B96363CAA3971C363189697F1C292F84

huh? Looks
random to me.

Ah yes, this corresponds
to the message, which
was not tampered with.

“hello, Bob!”

What is this …?

Output from a pseudorandom function; let’s call it fk(x).

● In this case, x = “hello, Bob!”

● fk is indistinguishable from a random function, unless you know k.
○ Alice and Bob know k, so they know fk(x) for all x.
○ Mallory doesn’t know k, and cannot derive fk(x).

● Embodied by functions like HMAC-SHA256

● What happens if we use plain SHA-256 instead?

A4F2EC5DFEF428C8E7CDE710FF6E92AE
B96363CAA3971C363189697F1C292F84

Common Hash Function Construction

● MD5, SHA-1, SHA-256: Hash functions utilizing Merkle-Damgård Construction

● Merkle-Damgård Construction: uses a compression function (h) of small,
fixed-size inputs to construct a bigger hash function (H) of variable-length input

Merkle-Damgård Construction

Merkle-Damgård Construction

0x80 0x00 ... 0x00 0x01 0x23 0x45 0x67 0x89 0x01 0x23 0x45

0x80 Enough zeros to
fill up the block The bit length of m (big endian) in 8 bytes

Merkle-Damgård Construction

Key (proven!) property: if h is collision-resistant, then H is also collision-resistant.

Makes building a secure hash function easier!
But… introduces length-extension vulnerability :(

Length Extension Attack

● Alice and Bob want to communicate and have integrity
● They have a shared secret key, k, and hash function, H

m = “hello, Bob!”
v = H(k || “hello, Bob!”)

m, v Verifies that
H(k || m) == v

Mallory intercepts m and v
… what can she do?

Length Extension Attack

This is the v that
Mallory intercepted

She doesn’t know this message because it
had a secret k, but she doesn’t need it….

Feed the output of the hash function
into the next SHA-256 block

Appended message can be whatever
Mallory wants, like “please send $1000”

Just need to know the length of
the original message so the
padding block has the correct
length

● Now Mallory can send m =
original_message || padding ||
“please send $1000” with a valid v
that Bob will accept

Length Extension Attack
How can we “extend” a hash computation?

h1
= s

ha2
56(

)

h1.update(“Use
HMAC, not hashes”)

h1.update(“Good
advice”)

h2 = sha256(state=bytes.fromhex("..."), count=bytes)

Thought experiment (h1): Imagine you know the original message…

You can do the same thing without knowing the original message!

h2: Start with hash(m) and length of m in bytes (needed for padding scheme)

h2.update(“Good
advice”)

We didn’t need to know “Use HMAC, not hashes”, only its hash!

h1.hexdigest()

h1.update(padding(m))

What have we hashed?
h1:

h2:

Important takeaways
● Both hash the same thing
● Both hash padding in the middle

Use HMAC, not hashes\x80\x00\x00\x00\x00…\x00\xa0Good advice

Use HMAC, not hashes\x80\x00\x00\x00\x00…\x00\xa0Good advice

Length Extension Attack: Prevention

● Length extension attack comes from using plain hash functions as a MAC
● It doesn’t mean that the hash function itself is a bad hash function
● To make a good MAC function from a hash function, use the HMAC

construction, as discussed in lecture:

HMACk(m) = hash(k ⊕ c1 ǁ hash(k ⊕ c2 ǁ m))

More with
Hash Collisions

Properties of Good Cryptographic Hash Functions
And how to break them

● Preimage resistance
○ For a given output, find an input that produces it.

● Second-preimage resistance
○ For a given input, find a different input with the same output.

● Collision resistance
○ Find two inputs that map to the same output.

Collision resistance implies second-preimage resistance,
but not preimage resistance.

Second preimage attack implies collision attack.

Properties of Good Cryptographic Hash Functions

RIP MD5 and SHA-1

❌ Preimage resistance
○ Theoretically broken

❌ Second preimage resistance
○ Theoretically broken, based on same attack above

❌ Collision resistance
○ Totally broken

http://link.springer.com/chapter/10.1007%2F978-3-642-01001-9_8

RIP MD5 and SHA-1

Collisions with an identical prefix
MD5: 2004 (cost in 2023: free, you do this using fastcoll!)
SHA-1: 2017 (cost in 2023: ~$10,000)

Collisions with a (chosen) pair of different prefixes
MD5: 2007 (cost in 2023: ~$5)
SHA-1: 2019 (cost in 2023: ~$75,000)

https://eprint.iacr.org/2004/199.pdf
https://shattered.io/
https://www.win.tue.nl/hashclash/ChosenPrefixCollisions/
https://sha-mbles.github.io/

SHA-1 Collisions!

https://shattered.io/

Review: Hashing vs Encryption?

When do we use a hash function vs. a MAC?

Hash function MAC

See you next week!

