4
N

EECS 388: Lab 5

e HTML and JavaScript
e Mechanics of XSS and CSRF

Current Assignments

Reminder: Canvas quizzes due the day

before the next lecture

e Project 2: Web Security
o Due Thursday, October 5th at 6 PM
o Coverage:
m SQL Injection (Lecture 8 and previous lab)
m XSS Attack (Lecture 8 and today's lab)
m CSRF Attack (Lecture 8 and today’s lab)
o Please see supplemental lecture videos for material that didn't fit in Lecture 8

If you haven't started, start now!
Partners are optional.

HTML, HT TP & JavaScript

Hypertext Markup Language (HTML)

e Opening & closing tags build a tree structure (Document Object Model (DOM))
e Describes objects to display on the web page
e Tags <a> may contain attributes (href=)

<html>
<head>
<title>Hello</title>
</head>
<body>
<p>Some paragraph.
This is a link.</p>
</body>
</html>

e Tryit:curl -v https://example.com; Developer To

Hypertext Transfer Protocol (HTTP)

e Requests

o GET
m Request to “get” the page at a given URI
m Can send data in the URI, but not in the request body
m Asking someone for information
m e.g,clicking a link to load a web page

m Not supposed to have side-effects

m Submitting some data, usually in the request body
m Sending someone a package
m e.g, signing in with username and password
m Side-effects allowed
o Many others too—take EECS 485!

JavaScript

e Scripting language that runs in the context of a page and can directly interact
with HTML (i.e., modify elements in the DOM)
e See example:

@) https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref onclick html

e JavaScript values are either objects (similar to dictionaries), arrays, or

p rl m It I VeS [w ﬁ_| Elements Console Sources Network Pe
() top v Filter In
> var numObj={}; K
numobij[“one"]=1; eys

numobj ["two"]=2;
numobj[“three"]=3;
3

> numobj { "name":"John", "age":30, "car":null }

v Object {one: 1, two: 2, three: 3}
one: 1
three: 3
two: 2

» _proto_ : Object Values

> JSON.stringify(numobj)
"{"one":1,"two":2,"three":3}"

https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_onclick_html

JSON: JavaScript Object Notation

e Standard text-based format for

JSON OBIJECT

NESTED JSON OBJECT

representing structured data in Ae———
JavaScript object format e
o Consists of attribute-value pairs, | & oo
arrays, nested objects e————
e Commonly used to transmit data in g[
web applications :

1
¥

o Sending data from server to
client, vice-versa

https://www.json.org/json-en.html

https://www.json.org/json-en.html

jQuery

e jQueryis a JS library that simplifies DOM interaction and event handling

o Provides simple selector functions for matching HTML elements by ID, class, etc.
o Allows for easy HTTP request creation/sending

m $.ajaxis the most generic; $.get and $.post are more ‘simple’ versions of $.ajax

JQUERY :: AJAX

$.ajax({
WEL: ¢ /api/posts’?
type: ‘POST’,
data: {},
success: function () {},
error: function () {}

$(document).ready()

e A page can't be manipulated safely until the DOM is “ready”
e This will run the code only after the DOM is fully loaded

$(document).ready(function() { Shorthand:

console.log(“DOM ready!”); $(function() {
}); console.log(“DOM ready!”);

});

e Takeaway: If you're modifying/accessing data within the DOM, wait until it's fully
loaded!

JavaScript vs. jQuery

JavaScript jQuery

A scripting language to work with HTML JS library that simplifies DOM interaction
ID selection: ID selection:

var el = document.getElementById(‘hello’); var el = $(“#hello”);

Class selection: Class selection:

var el = document.getElementByClass(‘bye’); var el = $(‘.bye’);

Get text (and print to console): Get text (and print to console):
console.log(el.innerHTML); console.log(el.text());

There is nothing that jQuery can do that JavaScript can't, but jQuery makes it way easier!

Cross-Site Scripting
(XSS)

XSS

e Cross Site Scripting (XSS)

o Injecting code into the DOM that is executed when the page loads
o Can be either reflected (mirrored from URL into the page) or stored (e.g. in a comment)

e Aninnocent example

ALL COMMENTS (322,186)

<script>alert(1)</script>

&

Your comment will be visible to people outside of your domain. ~ Cancel m

e On load, the script is executed

Exercise: XSS Attack

e Navigate to https://goo.qgl/CivpX2
e Working alone or with people around you, see how many levels you can get

through in the next 5-10 minutes
e Let me know if you have any questions!

(Protip: 4 hands on 1 keyboard = double the hacking)

https://goo.gl/CivpX2

Project 2: XSS

e Your goal
o Steal a user’s search history and send it to yourself
o You will submit a URL
o Must work in specific Firefox version within Docker

Exercise: Try JS in the Browser Console

1. Open BUNGLE! inside your Docker Firefox
2. Create a new user, login, and follow along

o DO NOT use an important password to test an insecure site!!!
3. Open Dev Tools, go to Console

4. Try some sample code w/ JS and JQuery:

Remember!

NEVER use an important
password for an account on
an insecure site!

(Also, never reuse a password at all) -

Project 2: JavaScript
You can use jQuery within Project 2 (but not other external scripts)

<html>
<body>
<script>
$.get("https://example.com"); // Send an http get request using jQuery
// Cannot read the response if the origin is different, due to same origin policy.
</script>
</body>
</html>

Since BUNGLE! already has jQuery loaded, you
don’t need to import it yourself when performing XSS

Cross-Site Request Forgery
(CSRF)

What is CSRF?

e An attack that makes a victim _— Victim Bank

execute commands against their POST /ogin

will on another website to which e G| sesion sablhed

- SessionlD=02k13jf
wrre/1.1200 g:_‘o““):ozmsf

they are currently authenticated A CooKe:s

. . I'\nde"'h‘m\
() In the prOJeCt, you are trylng to /

force a user to log into your own
attacker account without their

fPOST/transfer.cg,'

actiol ttp://fictitiousbank/transfer.cgi">

inputtype="hicden" nome="from’ rom=35367021&to,

routoren e ame=e” alues“48412534° m valid SessionID

knowledge b e Transfers funds to attacker
. i[h::)oso?zomu 2000\(

(Why would this benefit the attacker?) O T AW/

A4 v v

Step By Step

k.com
myban

Step By Step

Victim browser

1) Victim signs on to mybank

2) Victim visits
attacker.com

mybank.com

attacker.com

3) Page contains
CSRF code

‘ R 4) Browser sends
<form action=https://mybank.com/transfer.jsp t
1e request to mybank

method=POST>
<input name=recipient value=attacker>

<input name=amount value=1000>

</form>
<script>document.forms[0].submit{)</script>

POST /transfer.jsp HTTP/1.1
Cookie: «<mybank authentication cookie>
recipient=attacker&amount=1000

HTML Forms

e Forms are a common way to send POST requests

<html> The action is a URL where the POST is sent

A
(|

<body>
<form action="https://example.com/submitcomment"” method="post= id="commentForm">
<input type="text" name="comment">
<input type="hidden" name="id" value="someval">
<input type="submit" value="Submit">
</form>
<script>$("#commentForm").submit()</script>
</body>
</html>

Loading this page will send the POST request, writing a
comment on https://example.com/submitcomment
But also redirects the user to another page!

The inputs define the data
sent in the request

https://example.com/submitcomment

Project 2: CSRF

e Your goal
o Get someone to login to the attacker account without their knowledge or consent

e What this should look like
o Victim is logged into BUNGLE!
o Victim clicks on your link while browsing another page
m “Click this link for $1,000,000!!""
o When Victim goes back to BUNGLE! and does another search (or refreshes the page) they are
now logged in as attacker

e Your attack page may need to import jQuery.
See spec: only one particular jQuery version is allowed.

Project Resources: HTML Forms with Ajax

<html><body>

<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.0/jquery.min.js" ></script>

<form id="forml" method="post" action="https://example.com/submitcomment” style="display: none;">
<input name="comment" value="hello world">

</form>

¢ '"POST',
: $('"#forml').serialize(),
.. "https://example.com/submitcomment’,
xhrFrelds: {withCredentials: true} // Necessary if you want to send and set cookies
1)
</script>
</body></html>

Ajax — Asynchronous. Doesn't redirect the user!

e What does this code do differently?

Project 2: Big Picture

Exploit three classic attacks and know how to prevent them

e SAQL Injection provides malicious input that gets interpreted as SQL code by

the server
o Defense: Always use SQL prepared statements

e XSS provides malicious input that gets interpreted as JavaScript in the

victim's browser
o Defense: Validate inputs and escape outputs; use Content Security Policy (CSP)

e CSRF performs actions as the user on another site
o Defense: SameSite cookie attribute,
dynamic token validation in forms

