
EECS 388: Lab 5
● HTML and JavaScript
● Mechanics of XSS and CSRF

Current Assignments

● Project 2: Web Security
○ Due Thursday, October 5th at 6 PM
○ Coverage:

■ SQL Injection (Lecture 8 and previous lab)
■ XSS Attack (Lecture 8 and today’s lab)
■ CSRF Attack (Lecture 8 and today’s lab)

○ Please see supplemental lecture videos for material that didn’t fit in Lecture 8

If you haven’t started, start now!
Partners are optional.

Reminder: Canvas quizzes due the day
before the next lecture

HTML, HTTP & JavaScript

Hypertext Markup Language (HTML)
● Opening & closing tags build a tree structure (Document Object Model (DOM))
● Describes objects to display on the web page
● Tags <a> may contain attributes (href=)

<html>
<head>

<title>Hello</title>
</head>
<body>

<p>Some paragraph.
 This is a link.</p>

</body>
</html>

● Try it: curl -v https://example.com ; Developer Tools

Hypertext Transfer Protocol (HTTP)

● Requests
○ GET

■ Request to “get” the page at a given URI
■ Can send data in the URI, but not in the request body
■ Asking someone for information
■ e.g., clicking a link to load a web page
■ Not supposed to have side-effects

○ POST

■ Submitting some data, usually in the request body
■ Sending someone a package
■ e.g., signing in with username and password
■ Side-effects allowed

○ Many others too—take EECS 485!

JavaScript
● Scripting language that runs in the context of a page and can directly interact

with HTML (i.e., modify elements in the DOM)
● See example:

○ https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_onclick_html

● JavaScript values are either objects (similar to dictionaries), arrays, or
primitives

https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_onclick_html

JSON: JavaScript Object Notation

● Standard text-based format for
representing structured data in
JavaScript object format
○ Consists of attribute-value pairs,

arrays, nested objects
● Commonly used to transmit data in

web applications
○ Sending data from server to

client, vice-versa

https://www.json.org/json-en.html

https://www.json.org/json-en.html

jQuery
● jQuery is a JS library that simplifies DOM interaction and event handling

○ Provides simple selector functions for matching HTML elements by ID, class, etc.

○ Allows for easy HTTP request creation/sending

■ $.ajax is the most generic; $.get and $.post are more ‘simple’ versions of $.ajax

$(document).ready()

● A page can’t be manipulated safely until the DOM is “ready”
● This will run the code only after the DOM is fully loaded

$(document).ready(function() {

console.log(“DOM ready!”);

});

● Takeaway: If you’re modifying/accessing data within the DOM, wait until it’s fully
loaded!

Shorthand:
$(function() {

console.log(“DOM ready!”);

});

JavaScript vs. jQuery

JavaScript

A scripting language to work with HTML

ID selection:
var el = document.getElementById(‘hello’);

Class selection:
var el = document.getElementByClass(‘bye’);

Get text (and print to console):
console.log(el.innerHTML);

jQuery

JS library that simplifies DOM interaction

ID selection:
var el = $(“#hello”);

Class selection:
var el = $(‘.bye’);

Get text (and print to console):
console.log(el.text());

There is nothing that jQuery can do that JavaScript can't, but jQuery makes it way easier!

Cross-Site Scripting
(XSS)

XSS

● Cross Site Scripting (XSS)
○ Injecting code into the DOM that is executed when the page loads
○ Can be either reflected (mirrored from URL into the page) or stored (e.g. in a comment)

● An innocent example

● On load, the script is executed

Exercise: XSS Attack

● Navigate to https://goo.gl/CivpX2
● Working alone or with people around you, see how many levels you can get

through in the next 5–10 minutes
● Let me know if you have any questions!

(Protip: 4 hands on 1 keyboard = double the hacking)

https://goo.gl/CivpX2

Project 2: XSS

● Your goal
○ Steal a user’s search history and send it to yourself
○ You will submit a URL
○ Must work in specific Firefox version within Docker

Exercise: Try JS in the Browser Console

1. Open BUNGLE! inside your Docker Firefox
2. Create a new user, login, and follow along

○ DO NOT use an important password to test an insecure site!!!
3. Open Dev Tools, go to Console
4. Try some sample code w/ JS and JQuery:

Remember!

NEVER use an important
password for an account on
an insecure site!
(Also, never reuse a password at all)

You can use jQuery within Project 2 (but not other external scripts)

<html>

 <body>

 <script>

 $.get("https://example.com"); // Send an http get request using jQuery

 // Cannot read the response if the origin is different, due to same origin policy.

 </script>

 </body>

</html>

Since BUNGLE! already has jQuery loaded, you
don’t need to import it yourself when performing XSS

Project 2: JavaScript

Cross-Site Request Forgery
(CSRF)

What is CSRF?

● An attack that makes a victim
execute commands against their
will on another website to which
they are currently authenticated

● In the project, you are trying to
force a user to log into your own
attacker account without their
knowledge
(Why would this benefit the attacker?)

Step By Step

Step By Step

HTML Forms

● Forms are a common way to send POST requests

<html>
...
<body>

<form action="https://example.com/submitcomment" method="post" id="commentForm">
<input type="text" name="comment">
<input type="hidden" name="id" value="someval">
<input type="submit" value="Submit">

</form>
<script>$("#commentForm").submit()</script>

</body>
</html>

The action is a URL where the POST is sent

The inputs define the data
sent in the request

Loading this page will send the POST request, writing a
comment on https://example.com/submitcomment
But also redirects the user to another page!

https://example.com/submitcomment

Project 2: CSRF

● Your goal
○ Get someone to login to the attacker account without their knowledge or consent

● What this should look like
○ Victim is logged into BUNGLE!
○ Victim clicks on your link while browsing another page

■ “Click this link for $1,000,000!!!”
○ When Victim goes back to BUNGLE! and does another search (or refreshes the page) they are

now logged in as attacker

● Your attack page may need to import jQuery.
See spec: only one particular jQuery version is allowed.

Project Resources: HTML Forms with Ajax
<html><body>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<form id="form1" method="post" action="https://example.com/submitcomment" style="display: none;">

<input name="comment" value="hello world">
</form>
<script>
 $.ajax({
 type: 'POST',
 data: $('#form1').serialize(),
 url: 'https://example.com/submitcomment',
 xhrFields: {withCredentials: true} // Necessary if you want to send and set cookies
 });
</script>
</body></html>

● What does this code do differently?

Ajax → Asynchronous. Doesn’t redirect the user!

Exploit three classic attacks and know how to prevent them

● SQL Injection provides malicious input that gets interpreted as SQL code by
the server

○ Defense: Always use SQL prepared statements

● XSS provides malicious input that gets interpreted as JavaScript in the
victim’s browser

○ Defense: Validate inputs and escape outputs; use Content Security Policy (CSP)

● CSRF performs actions as the user on another site
○ Defense: SameSite cookie attribute,

dynamic token validation in forms

Project 2: Big Picture

